Учебный вопрос № 4 Тепловой режим двигателя и контроль за температурой охлаждающей жидкости
Для контроля температуры охлаждающей жидкости устанавливаются датчики температуры.
Тепловой режим двигателя регулируется автоматически: (СЛАЙД № 18)
двумя термостатами, которые управляют направлением потока жидкости в зависимости от температуры охлаждающей жидкости на выходе из двигателя (рис. 6). Номинальная температура охлаждающей жидкости на выходе из двигателя должна находиться в пределах 85…90 °С.
Рис. 6. Термостат (СЛАЙД № 18)
вязкостной муфтой привода вентилятора в зависимости от температуры воздуха перед вентилятором (рис. 7), электромагнитной или гидродинамической муфтой привода вентилятора в зависимости от температуры охлаждающей жидкости на входе в двигатель.
Рис.7. Вязкостная муфта (СЛАЙД № 18)
Термостаты могут быть с твердым или жидкостным наполнителем. На двигателе КамАЗ-740 применяются термостаты с твердым наполнителем. Баллон термостата заполнен активной массой , состоящей из смеси церезина (нефтяного воска) и медного порошка.
Термостаты ЯМЗ-238 – двухканальные, гармошечного типа с жидкостным наполнителем. Герметично закрытый гофрированный баллон заполнен на 1/2 объема легкоиспаряющейся жидкостью.
При температуре окружающей жидкости (70±2)°С активная масса начинает плавиться, а у жидкостных термостатов испаряться и, расширяясь, перемещает вниз баллон, полное открытие которого произойдет при температуре (83±2) °С.
На двигателях КамАЗ-740 термостатов два и установлены они в одной коробке, закрепленной на переднем торце правого ряда блока цилиндров. У дизеля ЯМЗ-238 термостаты установлены в специальных коробках, прикрепленных к верхним трубопроводам блока цилиндров соединенных между собой перепускной трубой.
Выводы по вопросу.
Учебный вопрос №5 Предпусковой подогреватель
К индивидуальным средствам разогрева относятся предпусковые подогреватели, установленные на двигателе. (СЛАЙД № 20).
Предпусковой подогреватель предназначен для нагрева жидкости в системе охлаждения и масла в картере двигателя перед его пуском в холодный период времени. На автомобилях устанавливаются пусковые подогреватели, работающие на том же топливе, что и двигатель автомобиля (рис. 8, 9).
Рис. 8. Предпусковой подогреватель ПЖД-30 (СЛАЙД № 20)
Рис. 9. Установка предпускового подогревателя ПЖД-30 на автомобиле (СЛАЙД № 21)
1 – электромагнитный клапан; 2 – теплообменник с горелкой; 3 – воронка для залива жидкости; 4 – двигатель; 5 – топливный бачок; 6 – передняя поперечина рамы; 7 – насосный агрегат.
Техническая характеристика ПЖД-30 дана в табл. 1.
Таблица 1. Техническая характеристика ПЖД-30 (СЛАЙД № 22)
Теплопроизводительность, МДж/ч (ккал/ч)
Применяемое для двигателя
Расход топлива, кг/ч
Электроискровой свечой от транзисторного коммутатора с катушкой зажигания
Время работы свечи, с, не более
Предпусковой нагреватель топлива
Штифтовая электрическая свеча мощностью 200 W
СН 423, электроискровая
Коммутатор высокого напряжения
ТК 107 А, транзисторный
МЭ 252 мощностью 180 Вт
Контактор цепи электродвигателя
Переключатель режимов работы
Подогреватель установлен под передней поперечиной рамы автомобиля и состоит из следующих сборочных единиц и систем (рис.9): теплообменника 2 в сборе с горелкой, электромагнитного топливного клапана с форсункой и электронагревателем топлива в сборе, насосного агрегата 7 с электродвигателем, вентилятором, жидкостным и топливным насосами, системы электроискрового розжига с искровой свечой и транзисторным коммутатором, системы дистанционного управления подогревателем с переключателем режимов работы, контактором электродвигателя и кнопочного выключателя.
В горелке топливо смешивается с воздухом. Образовавшаяся смесь воспламеняется и сгорает. Горелка съемная, прикреплена к теплообменнику подогревателя болтами. На горелке установлены электроискровая свеча и топливный электромагнитный клапан в сборе с форсункой и электронагревателем топлива.
Теплообменник подогревателя (рис. 10) изготовлен из листовой нержавеющей стали, предназначен для передачи тепла циркулирующей через него жидкости от сгорающего топлива. По принципу действия теплообменник является рекуперативным и состоит из двух жидкостных рубашек и двух газоходов. Продукты сгорания из горелки 4 направляются в прямой газоход 3, затем проходят по обратному газоходу 2 и отводятся из теплообменника к картеру двигателя для подогрева масла. На выходе из обратного газохода установлен нагреватель 5 топлива, обеспечивающий подогрев топлива, подаваемого к форсунке, до температуры 60 — 80°С отработавшими газами.
Рис. 10. Теплообменник подогревателя (СЛАЙД № 23)
1 – теплообменник; 2 – газоход обратный; 3 – газоход прямой; 4 — горелка; 5 – нагреватель газовый топлива; 6 – патрубок подвода жидкости; 7 — электронагреватель топлива; 8 – клапан электромагнитный; 9 — патрубок отвода жидкости из теплообменника; 10 – свеча электроискровая; 11 – штуцер подвода топлива к нагревателю в теплообменнике; 12 – форсунка; 13 — патрубок отвода отработавших газов; 14 – фильтр топливный; 15 – датчик защиты от перегрева
Электромагнитный топливный клапан 8 предназначен для дистанционного отключения или включения подачи топлива в горелку подогревателя. Клапан открывается под действием электромагнитного поля катушки-соленоида, закрывается возвратной пружиной. В корпус клапана ввернута форсунка 12. В форсунке и клапане установлены фильтры тонкой очистки топлива.
Подогрев топлива, необходимого для зажигания устойчивого пламени в горелке, обеспечивает штифтовым электронагреватель топлива 7, установленный в приливе корпуса электромагнитного клапана.
Насосный агрегат (рис. 11) представляет собой устройство, состоящее из вентилятора (нагнетателя), топливного и жидкостного насосов, приводимых от одного электродвигателя. Жидкостный насос и вентилятор, выполненные в литом алюминиевом корпусе, установлены с одной стороны приводного электродвигателя; топливный насос, имеющий автономный корпус, закреплен с противоположной стороны электродвигателя. Такая конструкция насосного агрегата не вызывает трудностей при установке и удобна в обслуживании.
Рис. 11. Насосный агрегат: (СЛАЙД № 24)
1 – краник сливной; 2 – корпус жидкостного насоса; 3 – колесо рабочее жидкостного насоса; 4, 11 – манжеты уплотнительные; 5 – крыльчатка вентилятора; 6 – корпус; 7 — электронагреватель; 8 – муфта топливного насоса; 9 – ведущее зубчатое колесо топливного насоса; 10 — ведомое зубчатое колесо; 11 – клапан редукционный.
Жидкостный насос центробежного типа предназначен для обеспечения циркуляции теплоносителя между предпусковым подогревателем и системой охлаждения двигателя. Рабочее колесо 3 установлено непосредственно на вал электродвигателя 7 и закреплено гайкой. Со стороны вентилятора рабочая полость насоса уплотнена резиновой манжетой 4. Жидкость к насосу подводится через патрубок на крышке насоса, а отводится через патрубок на корпусе насоса. Для слива жидкости из полости насоса служит краник 1.
Вентилятор центробежного типа обеспечивает подачу воздуха в гopелку подогревателя. Крыльчатка 5 вентилятора установлена на вал электродвигателя на шпонке и закреплена гайкой. Необходимый зазор между крыльчаткой и корпусом вентилятора обеспечивается распорной втулкой, установленной между подшипником электродвигателя и ступицей крыльчатки.
Топливный насос шестеренного типа обеспечивает подачу топлива под давлением к форсунке подогревателя. Вал насоса со стороны электродвигателя уплотнен резиновой манжетой 11. Вал ведущего зубчатого колеса насоса соединен с валом электродвигателя эластичной муфтой 8.
Подача топливного насоса регулируется редукционным клапаном 12, обеспечивающим перепуск топлива из нагнетательной полости насоса во всасывающую полость.
Система электроискрового розжига (рис. 12) предназначена для обеспечения искрового разряда в горелке при пуске подогревателя. Топливная смесь в горелке теплообменника подогревателя воспламеняется высоковольтным разрядом, который образуется между электродами свечи 3. Высокое напряжение на электродах свечи создается транзисторным коммутатором и индукционной катушкой 2.
Рис. 12. Схема электрооборудования ПЖД-30 (СЛАЙД № 25)
Система дистанционного управления подогревателем дает возможность управлять работой подогревателя как при транспортном положении кабины автомобиля, так и при поднятой кабине.
Подогреватель работает следующим образом. Топливный насос подогревателя подает топливо из бачка 14 (рис. 13), которое через открытый электромагнитный клапан подводится к форсунке и впрыскивается во внутреннюю полость горелки теплообменника подогревателя. Распыленное топливо смешивается с подаваемым вентилятором воздухом, воспламеняется и сгорает, нагревая в теплообменнике 4 охлаждающую жидкость. Продукты сгорания топлива через трубу 3 направляются под масляный картер 1 двигателя и нагревают в нем масло.
Рис. 13. Схема работы предпускового подогревателя: (СЛАЙД № 26)
1 – картер двигателя; 2 – насосный агрегат; 3 – труба отвода газов; 4 – теплообменник подогревателя; 5 – воздухопровод к горелке подогревателя; 6 – труба подвода жидкости из подогревателя в блок; 7, 11 — труба отвода жидкости в из блока в подогревателя; 8 – фильтр тонкой очистки топлива; 9 – подводящая трубка насоса низкого давления; 10 — топливная сливная трубка; 12 – ручной топливоподкачивающий насос; 13 – жидкостный насос системы охлаждения двигателя; 14 – топливный бачок подогревателя; 15 – топливный кран подогревателя; 16 – подводящая трубка топливного насоса подогревателя.
Топливо очищается фильтрами, установленными в электромагнитном клапане и форсунке.
Топливо для подогревателя поступает из специального топливного бачка 14 (рис. 13), который заполняется автоматически при работающем двигателе. При неработающем двигателе бачок может быть наполнен с помощью ручного топливоподкачивающего насоса, установленного на ТНВД.
Расход топлива регулируется с помощью редукционного клапана, размещенного на топливном насосе.
При достижении температуры на датчике котла (76…85)ºС отключится электромагнитный клапан подачи топлива и подогреватель работает в режиме продувки. Повторный запуск возможен только при его полном отключении.
При эксплуатации предпускового подогревателя нужно следить, чтобы не было течи охлаждающей жидкости и топлива в соединениях топливных трубок, шлангов и кранов. Соединения топливных трубок с подогревателем должны быть герметичны, так как подсос воздуха в систему питания топливом не допускается. Наличие воздуха или течь в системе питания топливом подогревателя приводит к ненадежной работе и произвольной остановке подогревателя.
Что такое управляемый термостат?
Первые автомобили термостатов не имели. Вся система охлаждения двигателя сразу же включалась в работу. Чтобы прогреть таким относительно слабым кипятильником (мощность в пару десятков кВт) десяток литров воды в радиаторе, требовалось немало времени. Все это время тепловые зазоры в двигателе были неоптимальны — далеки от расчетных. Топливо же, попадая в "холодную" камеру сгорания, конденсировалось на стенках и растворяло масляную пленку — бензин отличный растворитель. В совокупности со значительными зазорами, которые превышали современные в несколько раз, все это плохо сказывалось на ресурсе мотора… Пробег в 100.000 км до капремонта был великой редкостью, но не только и не столько по этой причине, разумеется. Кроме того, холодный двигатель требовал слишком богатой смеси — приходилось значительно увеличивать подачу топлива для стабильной его работы.
В начале 30-х проблему решили, добавив устроство, самое распространенное из которых и дошедшее до наших дней практически без изменений, представляло собой запорный клапан, который открывался только после того, как пружина преодолевала сопротивление воскового наполнителя. Далее, процесс нагрева продолжался вплоть до достижения двигателем рабочей температуры.
Первые советские "лицензионные" лимузины — "Ленинград-1" — были оснащены механическим термостатом, уже в 30 годы XX века аналогичным современным по сути действия.
Термостаты отличаются точкой начала открытия и рабочим диапазоном. До конца 90-х, как правило, это были устройства, которые начинали открываться при достижении двигателем температуры 70-80 градусов Цельсия и полностью открывались при температуре на 10-15 градусов больше. Фактически, это обеспечивало средний температурный диапазон двигателя около 80-95 градусов. Дальнейшее зависило от конструкции всей системы охлаждения — размеров радиатора, наличия кондиционера, эффективности системы активного охлаждения — вентилятора. В любом случае, гражданский автомобиль не грелся в штатном режиме выше 100-105 градусов (последнее — лишь кратковременно), мотор хорошо обдувался, не был избыточно мощным — в 80-х-90-х двигатели даже очень мощных автомобилей, как правило развивали не более 150-200 л.с. Обычными же были диапазоны мощностей в 70-120 л.с.
В конце 90-х, мощность двигателей автомобилей премиум-сегмента начала заметно повышаться, требования эклогии — ужесточаться. На смену крестьянской лошадке обычному термостату пришел термостат управляемый. Его отличие — высокая собственная температура открытия и управляемая компьютером спираль, которая заметно расширяет рабочий диапазон.
Преимущества очевидны: в наиболее неэффективных и экологически вредных режимах типа холостого хода и частичных нагрузок, конденсация топлива — минимальна, температура выхлопных газов — максимальна, температура масла — максимальна (следовательно, его вязкость — минимальна), тепловые потери на отдачу тепла при сгорании в цилиндрах — минимальны. В общем, полнота сгорания и все условия для топливной экономии и нейтрализации газов. Топливоподача в таких режимах также уменьшается — смесь дополнительно забедняется.
Ну и почему бы не сделать обычный термостат, безо всяких электронных заморочек? Ну ослабили пружину, или технический воск другой использовали, сдвинули температуру открытия на 97-105 градусов, пускай себе регулирует в диапазоне около 100-120 — на пределе возможностей алюминиевых сплавов блока и головки блока. Хотя бы цена осталась бы прежней — управляемый термостат это не просто тарелка с пружиной, тут есть и корпус и электрический разъем и за него попросят уже пару сотен долларов.
А вот тут стоит рассмотреть обратную сторону медали.
Во-первых, детонация смеси крайне чувствительна к температуре двигателя. Именно поэтому (вместе с увеличенной степенью сжатия) минимальное требование практически для любого современного мотора — 98 бензин. Практически все современные моторы отчаянно звенят на 95-м. Найдите хотя бы один X6, например, с N63 который не звенит в жаркую погоду. Датчики детонации захлебываются, а владелец ничего и не слышит — шумоизоляция хорошая. Вот только что-то "машина не едет", вот странно-то…
Поэтому, как блок управления понимает, что вы "педаль в пол" нажали, так термостат на полную и открывает. Одна беда — в ту же секунду жидкость не остынет на 30 градусов, а детонация-то ждать не будет…
Практически все "спортивные" моторы BMW и не только, оснащались и оснащаются термостатами или прошивками настроенными на рабочую температуру около 90-100 градусов, не выше. S10, S52, S54, S62 — 79-80 градусов. Обычный термостат, никакой электроники. Рабочая температура — 90-95 градусов. Спортивно-гражданские моторы "Alpina" N62B48 "4.8is" часто встречаются с "холодными" прошивками. Живут такие моторы гораздо дольше. Найти такие моторы на пробеге 250-300 ткм — совсем не проблема. А вот попробуйте разыскать моторы N62, N46, M62 с рабочей температурой 108-111 градусов, в которые не приходилось вмешиваться на пробеге 100-150 ткм и которые не обладают масляным аппетитом.
Разумеется, такая температура двигателя дает многократно повышенную нагрузку на сальники, маслосъемные колпачки, прокладки и моторное масло. Современное моторное масло — химически агрессивная к резине субстанция. В современном гражданском (не гоночном!) моторе, в городе (не на гоночном кольце!) вы прогреваете масло до 120-130 градусов в картере.
Болезни современных и уже не очень современных моторов BMW серии M и N, оснащенных управляемым термостатом: течь прокладок ГБЦ, масляного картера, прокладки масляного фильтра, маслосъемных колпачков. Периодичность — 2-3 сезона и чаще, в зависимости от условий эксплуатации.
Без термостата
Двигатель прогревается долго и очень долго. Иногда и не успевает прогреться до рабочей температуры до конца поездки. Те, у кого термостат подклинивал в среднем положении, сразу поймут о чем речь.
Недостатки: во всем. Экономия, износ, экология и пр.
Обычный термостат
Сначала достаточно прогревается блок цилиндров, дальше жидкость постепенно выходит на полный круг и температура стабилизируется около рабочей, ограниченной активной системой охлаждения — вентилятором.
Недостатки: теоретически несколько хуже по экономичности и экологичности, чем управляемый термостат. Малозаметно на практике.
Управляемый термостат
Температура зависит от режима движения. На трассе ведет себя примерно как обычный термостат. В городе — кипятит мотор до предела. В критический момент резко роняет температуру, опасаясь перегрева, но делает это со значительной задержкой. В современных системах, DME еще и использует управление электрической водяной помпой для поддержания оптимального баланса, но такая помпа в принципе менее надежна, чем приводимая от коленвала.
Недостатки: постоянная и неизбежная угроза детонации, необходимость использования 98 бензина (и то мало), постоянная угроза перегрева, повышенная нагрузка на систему охлаждения, повышенная нагрузка на все резино-технические изделия, повышенная нагрузка на масло — оно стареет, окисляется, коксует кольца заметно быстрее. А меняете же вы его каждые 25000 км, "как компьютер просит"… И вот вам еще сюрприз: когда спираль перегорает (а она неизбежно перегорает — это как лампочка), вы не получаете никаких "чек енджинов", никаких "срочно в сервис", зато вы получаете постоянные 108-111 градусов и около во всех режимах движения. Только через год, на очередном осмотре, вам может быть скажут "ошибка "map-thermostat". — А что это? — А черт его знает: на работу вроде бы не влияет… многие с таким ездят…".
Кто в группе риска?
Большинство современных немецких моторов оборудованы управляемым термостатом. VW, Audi, BMW, Mercedes. Однако тепловой режим зависит от прошивки — вам может и повезти.
Среди BMW практически полностью могут забыть об этой проблеме владельцы моторов BMW до М50, по М50 включительно. Там и мощности не те, вне зависимости от версии термостата — под капотом есть место для еще одного мотора… Температуры термостатов могут быть от 80, до 95, в зависимости от того, установлен ли катализатор. Если автомобиль был без катализатора, туда ставился "горячий" термостат, чтобы хоть как-то способствовать полноте сгорания, но это не сильно отягчает последствия — кроме рабочей температуры важна мощность и эффективность охлаждения.
М52TU, М54, N52, N53, N54 — вопрос прошивки. Первые почти всегда сравнительно холодные, что-то около 100. А вот последняя троица проблемнее — могут быть по верхней границе стандарта — 108-111.
N46, M62, N62, N63 — почти всегда далеко за 100 градусов, но в некоторых вариантах, могут оказаться и с "холодной" заводской прошивкой.
Современные моторные отсеки плотные, удельной мощности хоть отбавляй. Эти моторы — кандидаты на выбывание маслосъемных колпачков, коксование колец в течение 3-5 лет. Иногда и быстрее.
Дизели и S-моторы могут забыть об этих проблемах. Равно как и владельцы сверхмалых моторов типа N45, BMW 116i, у которых "экологизировать" нечего, как посчитали в Европе — температура около 90-95 градусов. Большинство владельцев японских, корейских, китайских и американских автомобилей также могут ни о чем не беспокоиться.
Узнать температуру лично вашего мотора при помощи любого сканера во всех режимах движения, тоже самое можено сделать безо всякого сканера — через сервисное меню на приборке. При действительных цифрах выше 100 градусов — задуматься о следующих мерах:
1.Перейти на "полнозольное", хорошо моющее масло со стойкой к окислению основой. Никаких C3, LL-04 и LowSAPS.
2.Даже это масло менять не позже 8-10 тысяч км пробега "по пробкам". Не говоря уже про "простое" масло.
3.Мыть радиаторы не реже раза в год — мотор и так задыхается, а у вас еще и между пакетами радиаторов шуба из пуха и грязи. Увеличиваете время работы мотора при критической температуре. Отличный показатель — вентилятор работает постоянно и не выключается после выключения мотора — это особенно заметно…
4.Использовать только 98-й бензин.
5.Выяснить о наличии "холодной" прошивки у дилера (могу представить себе ответ, но можете попробовать), или заказать ее у чип-тюнеров, что часто рекомендую особо проблемным моторам. Все это сейчас доступно. Это действие снимет большую часть проблем, но совсем не отменяет предыдушие пункты.
Все это, разумеется, поможет значительно продлить ресурс двигателя, не говоря уже про эксплуатационные выгоды от "не звенящего" детонацией "отупевшего" мотора. Управляй мечтой)
***
Для меня эта информация, стала честно говоря откровением, — я не знал о таком методе повышения "экологичности" мотора. И в очередной раз убедился в заводской "задушенности" современных ДВС.
Огромное спасибо товарищу bmwservice за статью.
Контроль и регулировка охлаждения двигателя
В условиях эксплуатации необходимо систематически следить за тем, чтобы тепловое состояние двигателя не выходило за пределы, обеспечивающие его надежную работу.
В двигателях воздушного охлаждения тепловое состояние двигателя контролируется по температуре головок цилиндров, измеряемой под задней свечой посредством термопары, а также по температуре масла на выходе из двигателя и по давлению масла в системе.
Температура головок измеряется обычно только в одном цилиндре, имеющем при работе более высокую температуру, чем остальные.
В двигателях жидкостного охлаждения контроль за тепловым состоянием производится по давлению масла в системе и его температуре на выходе из двигателя и по температуре охлаждающей жидкости на выходе из -двигателя.
Для каждого типа двигателя установлены на основании опыта нормы для температуры головок, температуры охлаждающей жидкости, температуры масла и его давления, в пределах которых гарантируется надежная работа двигателя. Так, например, для двигателя АШ-82ФН температура головки должна лежать в пределах 140 ÷ 215° С, а температура выходящего масла — в пределах 85 ÷ 115° С. Для двигателя М-11ФР-1 соответствующие значения температур головки и выходящего масла составляют 100 ÷ 220º С и 80 ÷ 100° С.
Тепловое состояние двигателя можно регулировать изменением количества тепла, выделяющегося в двигателе, или изменением количества тепла, отводимого от двигателя системой охлаждения.
Количество тепла, выделяющегося в двигателе, регулируют изменением режима его работы. Так, например, уменьшая наддув и число оборотов двигателя и обогащая смесь, мы тем самым уменьшаем количество тепла, выделяющегося в двигателе в единицу времени, а увеличивая наддув и число оборотов двигателя и обедняя смесь, наоборот, увеличиваем количество’ тепла.
Отвод тепла от системы охлаждения регулируется изменением количества воздуха, охлаждающего двигатель или радиаторы (масляные и водяные). Количество охлаждающего воздуха регулируется изменением положения заслонок в системах с регулируемым охлаждением или изменением режима (скорости) полета.
В условиях эксплуатации обычно приходится применять оба метода регулировки температурного состояния двигателя. Так, например, при наборе высоты даже при наличии регулируемого охлаждения двигатель может перегреться. В этом случае необходимо, сбавив газ и перейдя на горизонтальный полет, дать двигателю возможность охладиться. Наоборот, при длительном планировании для предотвращения переохлаждения двигателя бывает необходимо периодически переходить на горизонтальный полет, прогревая двигатель.
Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:
Датчик температуры охлаждающей жидкости: назначение, устройство, принцип работы
Работа мотора в машине сопряжена с постоянным процессом сгорания топливной смеси. Из-за чего двигатель внутреннего сгорания (ДВС) может перегреться и выйти со строя. Для предотвращения подобных инцидентов ДВС принудительно охлаждается посредством циркуляции специальной жидкости. А вот контроль за ее состоянием производит датчик температуры охлаждающей жидкости (ДТОЖ).
Назначение
Такой датчик предназначен для контроля состояния двигателя авто посредством фиксации температурных изменений жидкости охлаждения. С этой целью его размещают в антифризе, где происходит непосредственное взаимодействие чувствительного элемента и слоя охлаждающей жидкости. Также заметьте, что в некоторых автомобилях размещают два сенсора по отношению ко входному и выходному патрубку системы охлаждения, за счет чего компьютер производит сравнение показаний.
Датчик передает данные измерений на блок управления для дальнейшей регулировки работы системы. Логический блок принимает решение о продолжении работы автомобиля в том же режиме или об уменьшении параметра, влияющего на фактора нагрева. Помимо электронных моделей, существуют и механические сенсоры, которые предназначены не для взаимодействия с логическим блоком, а для вывода информации на термометр в салоне. В случае с механическими моделями водитель сам принимает решение об изменении режима вождения или полной остановке агрегата.
В зависимости от модели машины, датчик предназначается для выполнения таких функций:
- Контроль температуры в конкретный момент времени для системы охлаждения.
- Влияние на выбор режима работы, в зависимости от сложившейся ситуации.
- Подача сигнала к аварийному включению или отключению мотора, при резком нарастании или падении температуры.
- Контроль опережения или запаздывания зажигания – позволяет регулировать интенсивность выброса выхлопных газов и нагрузку на поршневую систему.
- Подача сигнала на обогащение топливной смеси в случае недопустимого снижения температуры охлаждающей жидкости.
Устройство и принцип работы
В отличии от устаревших моделей, современные приспособления для контроля температуры, основываются на работе термистора. В соответствии с п.22 ГОСТ 21414-75 это такой нелинейный резистор, который изменяет величину собственного омического сопротивления, в зависимости от степени нагрева или охлаждения.
Рис. 1. Устройство датчика температуры охлаждающей жидкости
Для датчика температуры охлаждающей жидкости применяются резистивные элементы с отрицательным температурным коэффициентом. Это обозначает, что в отличии от классических проводниковых материалов, где с нагреванием омическое сопротивление возрастает, повышение температуры датчика приводит к уменьшению сопротивления.
К примеру, измеряя показания при +20 ºС сопротивление термистора будет составлять 3,5 кОм. При нагревании антифриза до +90 ºС сопротивление датчика упадет до отметки 0,24 кОм. Но, существуют и исключения, к примеру, у автомобилей марки Renault датчик имеет положительный температурный коэффициент.
Принцип действия датчика температуры охлаждающей жидкости базируется на следующей схеме:
- В состоянии покоя двигателя охлаждающая жидкость будет иметь сопоставимую с окружающей средой температуру. Сопротивление термистора датчика Rt останется на максимальной отметке и поданное напряжение практически не выдаст ток в цепь индикации логического блока.
- При замыкании контактов V в замке зажигания вместе с запуском двигателя будет подано напряжение от аккумулятора А на датчик температуры. По мере нарастания оборотов, сопротивление термистора Rt будет снижаться в соответствии с его характеристикой.
- В случае превышения допустимого предела температур, Rt перейдет в режим проводимости. В соответствии с законом Ома величина тока, протекающего через термистор, возрастет. Сигнал придет на логический блок и будет подана команда для снижения объема, впрыскиваемого топлива, или уменьшение числа оборотов коленчатого вала.
- При снижении оборотов и мощности мотора, со временем камера сгорания охладится и ДВС придет в норматив температуры. Охлаждающая жидкость остынет и у термистора Rt снова возрастет сопротивление. Величина тока в цепи индикации логического блока снова уменьшится, и автомобиль перейдет в нормальный режим работы.
В зависимости от величины падения напряжения на термисторе датчика Rt, будет оцениваться текущий температурный режим. В данном примере мы рассмотрели электрический метод измерения, но у некоторых типов датчиков может применяться и механический, работающий за счет температурного расширения.
Где находится?
Для производства каких-либо операций с датчиком температуры охлаждающей жидкости необходимо четко представлять себе место его установки. Следует отметить, что точка установки будет отличаться в зависимости от модели автомобиля. Поэтому для поиска лучше обратиться к инструкции производителя, где указана позиция соприкосновения с охлаждающей жидкостью.
Рис. 3. Место установки датчика температуры охлаждающей жидкости
Наиболее распространенным местом установки является:
- головка блока цилиндров или выпускной патрубок;
- верхний шланг радиатора;
- корпус термостата;
- в некоторых ситуациях может устанавливаться два датчика температуры– на входе и на выходе.
Место установки предусматривает обеспечение контакта чувствительного элемента с охлаждающей жидкостью. Но, в случае утечки антифриза из системы, контакт может нарушиться и контроль температуры прекратиться. В результате этого вы получите некорректные показания, что может повлечь сбой в работе системы.
Признаки поломки
Как и неисправности любого устройства в автомобиле, выход со строя сенсора температуры охлаждающей жидкости может привести к нежелательным последствиям.
При движении машины поломка может проявляться как:
- проблематичный запуск мотора в холодную погоду;
- нетипичные звуки от выхлопных газов только запущенного мотора;
- при достижении максимальной температуры мотор глохнет;
- не запускается вентилятор охлаждения при нагревании ДВС;
- превышение расхода топлива сверх установленной нормы.
Современные авто выводят данные о нарушении температуры охлаждающей жидкости на дисплей. Причиной неисправности может стать как механическая поломка (сорванная резьба, растрескивание корпуса, перегорание термистора), так и электрическая (короткое замыкание в измерительной цепи или обрыв провода). Чтобы убедиться в правильности вашего предположения, проверьте датчик, и, при необходимости замените его новым.
Проверка и замена
Следует отметить, что появление характерных признаков может обуславливаться и другими поломками. К примеру, поломкой вентилятора охлаждения или нехваткой охлаждающей жидкости. Поэтому для начала необходимо проверить работоспособность и правильность показаний датчика температуры охлаждающей жидкости.
На практике существует довольно большое число методов, одни из которых вы можете реализовать в домашних условиях. Другие, как съем осциллограммы, вам проведут только на станциях техобслуживания. Самостоятельно произведите внешний осмотр датчика охлаждающей жидкости – на нем должны отсутствовать следы ржавчины, подтеки антифриза, трещины и прочие следы.
Если внешне датчик исправен, проверьте его с помощью мультиметра, для этого:
- Отсоедините шлейф от контактов датчика – вам необходимо получить доступ для проведения замеров.
- Измерения производятся изначально при холодном ДВС. Если это условие не обеспечено, выкрутите датчик с посадочного места и опустите чувствительный элемент в холодную воду.
- Подключите щупы мультиметра к выводам датчика и замерьте величину омического сопротивления.
- Затем запустите ДВС и дождитесь включения вентилятора охлаждения, если вы выкрутили датчик температуры, поместите его в кипяток. Повторно замерьте величину переходного сопротивления.
- Сравните полученные данные сопротивления для вашей модели автомобиля. К примеру, ниже приведена такая таблица:
Таблица: зависимость сопротивления и падения напряжения датчика температуры от степени нагрева
Температура ОЖ (°С) | Сопротивление (Ом) | Напряжение (В) |
4800 — 6600 | 4,00 — 4,50 | |
10 | 4000 | 3,75-4,00 |
20 | 2200 — 2800 | 3,00 — 3,50 |
30 | 1300 | 3,25 |
40 | 1000-1200 | 2,50 — 3,00 |
50 | 1000 | 2,5 |
60 | 800 | 2,00-2,50 |
80 | 270 — 380 | 1,00-1,30 |
110 | 0,5 | |
разрыв цепи | 5,0 ±0,1 |
В рассматриваемом примере в холодном состоянии при +10 ºС сопротивление будет составлять 4000 Ом. После того, как вы опустите его в кипяток, исправный датчик будет иметь сопротивление в пределах 200 – 270 Ом. Если показания кардинально отличаются, налицо поломка сенсора, в таком случае его необходимо заменить.
Для замены датчика температуры охлаждающей жидкости из системы охлаждения слейте антифриз. Отключите шнур питания, если еще не отсоединили его. Затем, при помощи торцевого или рожкового ключа выкрутите сам сенсор.
Установите новый датчик охлаждающей жидкости в посадочное место, обязательно наденьте прокладку. Плотно зажмите его ключом по резьбе до упора.
Рис. 8. Плотно зажмите ключом новый датчик
Замена окончена, можете подключить питающий шнур и залить обратно охлаждающую жидкость.