Как работает телевизор
Тем не менее, вещи, которые я буду рассказывать в этом цикле статей, могут вполне пригодиться в нашей с вами практической деятельности.
Итак, сейчас мы разберемся, как же происходит передача видеосигнала. Рассматривать мы будем родную до боли систему SECAM, потому что в нашей стране ( а именно — Российской Федерации) официально принята именно эта система телевидения. Впрочем — обо всем по порядку.
Как работает телевизор?
Телевизор работает по 24 часа в сутки 7 дней в неделю. Это понятно.
У него есть экран — 1шт и динамик — от 1 до бесконечности, в зависимости от «навороченности» агрегата. Еще у него есть антенна и пульт управления. Но нас сейчас интересует только экран. А переводя с языка домохозяек на язык мудрых котов — кинескоп (электронно-лучевая трубка — ЭЛТ).
Я прекрасно понимаю, что в наш век плазмы и жидкого кристалла, электронно-лучевой кинескоп кажется кому-то пережитком старины. Однако, понять принцип работы телевизора, проще всего именно разбираясь с ЭЛТ.
Электронно-лучевая трубка
Шо це таке. Причем здесь электроны? Причем здесь лучи?
Дело в том, что картинка на экране рисуется при помощи электронного луча. Электронный луч очень похож на световой. Но световой луч состоит из фотонов, а электронный — из электронов, и мы его увидеть не можем. Куча электронов несется с бешеной скоростью по прямой от пункта А — к пункту Б. Так образуется «луч».
Пункт Б — это анод. Он находится прямо на обратной стороне экрана. Также, экран (с обратной стороны) вымазан специальным веществом — люминофором. При столкновении электрона на бешеной скорости с люминофором, последний испускает видимый свет. Чем быстрее летел электрон до столкновения — тем свет будет ярче. То есть, люминофор — это преобразователь «света» электронного луча в свет, видимый для человеческого глаза.
С пунктом Б разобрались. А что же такое пункт «А»? А — это «электронная пушка«. Название страшное. Но страшного в ней ничего нет. Она не предназначена для того, чтобы жестоко расстреливать пришельцев с Марса. Но «стрелять» она все же умеет — электронным лучем в экран.
Как это все устроено?
Вообще, ЭЛТ — это такая большая электронная лампа. Как? Вы не знаете что такое лампа? Ну ладно…
Электронные лампы — это такие же усилительные элементы как и любимые всеми нами транзисторы. Но лампы появились намного раньше их кремниевых «коллег», еще в первой половине прошлого века.
Лампа — это такой стеклянный баллон, из которого откачан воздух.
В самой простой лампе — 4 вывода: катод, анод и два вывода нити накала. Нить накала нужна для того, чтобы разогреть катод. А разогреть катод нужно для того, чтобы с него полетели электроны. А электроны должны полететь затем, чтоб возник электрический ток через лампу. Для этого обычно на нить накала подается напряжение — 6,3 или 12,6 В (в зависимости от типа лампы)
Кроме того, чтобы полетели электроны — нужно высокое напряжение между катодом и анодом. Оно зависит от расстояния между электродами и от мощности лампы. В обычных радиолампах это напряжение составляет несколько сотен вольт, расстояния от катода до анода в таких лампах не превышают нескольких миллиметров.
В кинескопе расстояние от катода, находящегося в электронной пушке до экрана может превышать несколько десятков сантиметров. Соответственно, и напряжение там нужно намного большее — 15…30 кВ.
Такие зверские напряжения создает специальный повышающий трансформатор. Его еще называют строчный трансформатор, поскольку он работает на строчной частоте. Но, об этом — чуть позже.
При ударении электрона об экран, кроме видимого света, «вышибаются» также и другие излучения. В частности — радиоактивное. Вот почему не рекомендуется смотреть телек ближе 1…2 метров от экрана.
Итак, луч получили. И он так красивенько светит аккурат в центр экрана. Но нам-то надо, чтоб он «чертил» по экрану линии. То есть, нужно заставить его отклоняться от центра. И в этом вам помогут… электромагниты. Дело в том, что электронный луч, в отличие от светового, очень чувствителен к магнитному полю. Поэтому то он и используется в ЭЛТ.
Нужно поставить две пары отклоняющих катушек. Одна пара будет отклонять по горизонтали, другая — по вертикали. Умело управляя ими, можно гонять луч по экрану куда угодно.
Вот отсюда мы и начинаем нашу повесть о строчках точках и крючочках…
Повесть о Строчках, Точках и Крючочках
Картинка на экране телевизора образуется в результате того, что луч с бешенной скоростью чертит слева-направо сверху-вниз по экрану. Такой метод последовательной прорисовки изображения называется «развертка«.
Поскольку развертка происходит очень быстро — для глаза все точки сливаются в строчки а строчки — в единый кадр.
В системах PAL и SECAM за одну секунду луч успевает пробежать весь экран 50 раз.
В американской системе NTSC — еще больше — аж 60 раз! Вообще говоря, системы PAL и SECAM отличаются лишь в передаче цвета. Все остальное у них — одинаково.
Картинка образуется за счет того, что во время «бега», луч изменяет свою яркость в соответствии с принимаемым видеосигналом. Как происходит управление яркостью?
А очень просто! Дело в том, что кроме рассмотренных электродов — анода и катода, в лампах бывает еще третий электрод — сетка. Сетка — это управляющий электрод. подавая на сетку сравнительно низкое напряжение, можно управлять током, протекающим через лампу. Иными словами, можно управлять интенсивностью потока электронов, «летящих» от катода к аноду.
В ЭЛТ сетка используется для изменения яркости луча.
Подавая на сетку отрицательное напряжение (относительно катода), можно ослабить интенсивность потока электронов в луче, или вообще закрыть «дорогу» для электронов. Это бывает нужно, например, при перемещении луча от конца одной строки к началу другой.
Теперь поговорим поподробнее именно про принципы развертки.
Для начала, стоит запомнить несколько несложных чисел и терминов:
Растр — это одна «строчка», которую рисует луч на экране.
Поле — это все строчки, которые нарисовал луч за один вертикальный проход.
Кадр — это элементарная единица видеоряда. Каждый кадр состоит из двух полей — четного и нечетного.
Это стоит пояснить: изображение на экране телевизора разворачивается с частотой 50 полей в секунду. Однако, телевизионный стандарт равен 25 кадрам в секунду. Поэтому один кадр при передаче разбивается на два поля — четное и нечетное. В четном поле содержатся только четные строчки кадра (2,4,6,8…), в нечетном — только нечетные. Изображение на экране также «рисуется» через строку. Такая развертка называется » чересстрочная развертка «.
Бывает еще «прогрессивная развертка» — когда весь кадр развертывается за один вертикальный ход луча. Она используется в компьютерных мониторах.
Итак, теперь сухие числа. Все приведенные числа справедливы для систем PAL и SECAM.
Кол-во полей в секунде — 50
Кол-во строк в кадре — 625
Количество эффективных строк в кадре — 576
Количество эффективных точек в строке — 720
А эти числа выводятся из вышеприведенных:
Кол-во строк в поле — 312,5
Строчная частота — 15625 Гц
Длительность одной строки — 64 мкС (вместе с обратным ходом луча)
Далее мы поговорим о параметрах видеосигнала и составим схему, синтезирующую импульсы синхронизации.
none Опубликована: 2006 г. 0 1
Вознаградить Я собрал 0 1
Рыдания ретрофаната над старым телевизором
Ой всё. Мне всегда было интересно, где у ретрохобби… не дно, а граница серьезного увлечения, на грани помешательства. Теперь я знаю, это — старый ЭЛТ-телевизор. Они тяжелые. Они мерцают. Качество изображения — в лучшем случае терпимое, или так мне поначалу казалось. Когда ты покупаешь гудящий ящик с тысячами вольт внутри, ты переходишь на новый уровень коллекционирования, и уже не будет пути назад.
Если серьезно, теплые (натурально, они греются) ламповые (как минимум одна) телевизоры — это большой этап развития технологий, как домашних-телевизионных, так и компьютерных. Этап, который закончился достаточно резким переходом на тощие ЖК-экраны в течение буквально пяти лет, в конце нулевых. Хотя на дачах или даже дома у многих из нас (или у родственников) старый телевизор найдется и сейчас, это ненадолго. Их больше не делают, слишком сложно и не стоит оно того. Срок жизни у них меньше, чем у ЖК-дисплеев. Мы наблюдаем завершение жизненного цикла большого ассортимента технологий, в прошлое уходят связанные с ними потребительские привычки.
Вот эти особенности старого телевидения, просмотра видео с аналоговых источников на «голубом экране», восьмибитного гейминга я и хочу сегодня повспоминать. Ну и поискать примеры задач, в которых ЭЛТ до сих пор вне конкуренции. А начну с самого простого аргумента про преимущество телевизора с трубкой: он стильный! Вы посмотрите, какая роскошная коробка! Какой возмутительно неплоский экран! Какие божественные крутилки! Это же микроволновка (с тостером), только вместо еды она подогревает ностальгические чувства.
Дневник коллекционера старых железок я веду в Телеграмме.
Околотехнические вводные
Я не стану в подробностях описывать технологию работы кинескопных ТВ — иначе может возникнуть ощущение, что я в них разбираюсь, а это не так. Базовые вещи можно узнать где угодно, от Википедии до Ютюба. Попробую сформулировать те моменты, которые важны для повторного открытия этой ретротехники. Ну, например так: «Изобретению телевизора предшествовало открытие катодных лучей — потока электронов, ускоряемого в вакууме разностью потенциалов между катодом и анодом». Тут важно следующее: для нормальной работы этой схемы стрельба электронами должна производиться в вакууме. Именно откачивание воздуха из кинескопа делает необходимым толстые стенки из стекла, чтобы противостоять атмосферному давлению, из-за чего все ЭЛТ-телевизоры — тяжелые. И еще: на кинескоп подается напряжение в тысячи вольт, что при неаккуратном обращении может быть смертельно.
Дальше: горячий катод, источник катодных лучей, подогревается до температуры в сотни градусов. Ламповые телевизоры греются и потребляют относительно много электроэнергии. Поток электронов ударяет в люминофор, вызывая свечение. Без системы электромагнитов у нас получилась бы одна яркая точка в центре экрана, но с их помощью поток электронов можно отклонять. Каждую секунду телевизор (в системе PAL или SECAM) с помощью катодных лучей и электромагнитов 50 раз проходит по всему экрану, сверху вниз и слева направо. За каждый из 50 проходов отображается только половина кадра, каждая четная или нечетная строка. Полных кадров получается 25 штук по 625 линий в каждом (видимых — 576), что достаточно для создания иллюзии движущихся картинок. Если сфотографировать экран с достаточно маленькой выдержкой, можно увидеть процесс создания изображения в действии:
Выводы: частота обновления кадров в 50 герц по ощущениям отличается от такой же на ЖК-телевизоре, где сразу отображается весь кадр. Ах да, телевизор у нас цветной, и это делает всю схему еще сложнее. Электронных пушек вместо одной становится три, они отвечают соответственно за красный, зеленый и синий компоненты изображения. Перед слоем люминофора появляется теневая маска: железная сетка с микроотверстиями, благодаря которой поток электронов от «красного» излучателя попадает только на «красный» люминофор. Выведем на ТВ сплошную заливку белым цветом и сфотографируем макрообъективом:
Так и хочется написать: красные, зеленые и синие пиксели «горят» одновременно, благодаря чему нам кажется, что мы видим белый цвет. На самом деле это не пиксели: просто зоны на экране, которые загораются под действием потока электронов. В ЭЛТ-телевизоре нет возможности зажечь один пиксель в произвольной точке экрана: такая техника просто не оперирует подобными понятиями. Можно посмотреть на границу между белым и черным участками: из-за аналоговой природы ЭЛТ она не такая четкая, как на современном дисплее.
Наконец: люминофор не вечен, он выгорает. Деградация происходит и с ЖК-дисплеями: кристаллы могут «застрять» в открытом или закрытом положении, может сесть подсветка. Но в ЭЛТ это происходит по-другому: постоянно включенный телевизор постепенно теряет яркость и контрастность изображения, становится блеклым. Если выводить на него статические элементы (логотип телеканала, меню «Пуск»), может выгореть именно эта часть люминофора, и тогда логотип останется с вами навсегда. Хороший телевизор может работать по 8 часов в день много лет подряд. Экран, который не выключают сутками, сядет за 5-7 лет. Пока нет проблемы найти ЭЛТ-телевизор в хорошем состоянии, но даже при бережной эксплуатации он рано или поздно выйдет из строя. Впрочем, на мой век хватит.
Персональная ТВ-история
Для правильной настройки на волну памяти приложу фото телевизора моего детства — модель Горизонт-736. Он дожил до конца девяностых, сначала как основной экран для семейного просмотра, потом — как монитор для восьмибитного компьютера. Хотя непосредственно телевещание не входит в сферу моих интересов, без нее тут не обойтись: начиная с довоенных времен и вплоть до конца семидесятых (а в моем случае — до начала девяностых) это был единственный способ отобразить что-то на экране вашего ТВ. Полноценное телевещание началось после войны, а моя бабушка еще помнила типичный телеприемник тех годов, «с линзой»:
Это КВН-49, и сразу видно, что он отличается от «Горизонта» диагональю экрана: 18 сантиметров против 61, или в устоявшихся позднее дюймах — 7 против 23. Помимо размеров экрана со временем улучшались параметры изображения — яркость и контрастность, повышался срок жизни кинескопа, с сотен часов до десятков тысяч в лучших экземплярах. Хотя в современные ЖК-матрицы упаковано куда больше технологий, кажется что сделать кинескоп — сложнее. Уж точно это было уникальное производство, просто так возобновить которое (на случай маловероятного CRT-ренессанса) не получится. Вот это видео показывает некоторые этапы производства кинескопов: Все Очень Сложно.
В девяностые к телеэфиру добавился видеомагнитофон, а также восьмибитный компьютер — сначала версия «Радио86-РК», а позднее — клон ZX Spectrum. Уставший «Горизонт» сменили на импортный 21-дюймовый JVC. Заграничная техника была прорывом по яркости, сочности картинки, хотя и произошла некоторая потеря по размеру экрана. К тому же добавился полноценный линейный вход, а до этого приходилось использовать RF-модуляторы, с неизбежной потерей в качестве. Да черт с ним с качеством, главное пульт, пульт появился! Больше не требовалось вставать с дивана, чтобы переключить канал! Старый телек в итоге переехал в гараж — просто так сразу выкинуть было жалко. Никогда не забуду это ощущение полноты и нестабильности, когда ты спускаешься по лестнице с советским телевизором в руках.
У моих родителей и многих знакомых стандартные, недорогие импортные телеки с диагональю в 21 дюйм прослужили по 10-15-20 лет и были заменены уже на большие ЖК-экраны. Наш экземпляр жив до сих пор, показывает кино на даче, хотя принимать эфирное ТВ самостоятельно уже не может — требуется декодер для цифрового сигнала. С отключением аналогового ТВ закончилась большая история: когда по воздуху передавался сигнал, непосредственно управляющий всей электроникой телевизора с трубкой. Помимо свойств приемника, на древний телевизионный экспириенс влияли удачное расположение дома относительно телевышки, качество антенны, хорошо (или плохо) распаянные разъемы, наличие радиолюбителя в соседнем доме или искрящего пылесоса этажом выше. Мы смотрели будто не сериал, и не новости, а весь окружающий мир, с полосами, снегом и рябью.
Телевизор часто не меняют, и я пропустил ЭЛТ-прогресс последних лет, уже в начале двадцать первого века. Между тем, технологии развивались до самого конца. В конце девяностых появились широкоформатные ЭЛТ-телевизоры. Увеличивались размеры экрана, достигнув максимума в 40 дюймов. Впрочем, в реальной жизни вы вряд ли найдете старый ТВ с диагональю больше 36″, а максимально распространены размеры 28-32. Это были монструозные аппараты весом под 50 кило. В них же золотым стандартом стало удвоение частоты смены кадров до 100 герц, что убирало мерцание. Самые последние ТВ имеют разъем HDMI и обрабатывают цифровую картинку с разрешением до 1080i (они же, кстати, не рекомендуются для ретро из-за лагов). В районе 2007 года произошло резкое падение продаж тяжелых телевизоров: потребитель голосовал за компактность, высокое разрешение ЖК-дисплеев и прочие удобства нового времени. Крупные вендоры в один год перестали показывать новые модели на выставках — ЭЛТ однозначно считался устаревшим. Обанкротились производители кинескопов. Сейчас ЭЛТ-телевизор проигрывает современным плоским почти во всем: от разрешения до диагонали, яркости и контрастности. Он превращается в ретро, но такое — для самых ценителей с хорошей физподготовкой или парочкой друзей. Качественные ЭЛТ-мониторы для компьютера сейчас стоят очень дорого, а вот просто телевизор достанется вам бесплатно или за копейки, только заберите.
Верните мне мой 1986-й
10 дюймов экрана), со встроенным видеоплеером, он был предназначен для дела. Например, для установки в присутственных местах. Особой фичей встроенного видеомагнитофона является возможность воспроизведения кассеты по кругу: включаете рекламный ролик вашего зубного кабинета и мучаете им посетителей до готовности. Предположу, что такую штуку можно было установить в автобусе, использовать для быстрого скрининга кассет из библиотеки, сделать переносную видеосистему в школе, и подобное. Помимо дизайна меня привлекла вот эта самодостаточность, а также наличие видеовхода. То, что в телевизоре нет собственно приемника телеканалов, меня совершенно не расстроило — ловить там все равно нечего.
Судя по дате в сервисном мануале, модель была разработана в середине восьмидесятых. В начале девяностых она продавалась в США за 500 долларов — немалые деньги за компактную модель.
Телевизор в таком возрасте может страдать большим количеством недугов, иметь севший кинескоп или выгоревшие секторы от статических элементов системы видеонаблюдения. Мне повезло, хотя и покупал без проверки: единственной неисправностью была застрявшая внутри кассета, которую со временем перекосило так, что пришлось разбирать весь механизм. Вытащил, вручную прокрутил механизм загрузки и выгрузки в штатное положение, и все заработало. Удивительно! Преимущество профессиональной техники: ее делали так, чтобы она работала даже в самых сложных условиях. Даже два резиновых привода в кассетном механизме не расплавились от времени, а это вообще фантастика.
Окей, я вставляю кассету с «Терминатором» и получаю восхитительный флешбек на придиванном столике. Он выглядит как гость из прошлого, и работает так же! Картинка качественная, но сам кассетный механизм — базовый, с двумя головками и без каких-либо средств улучшения изображения с VHS. Звук — монофонический, никакого Hi-Fi-стерео, но так даже лучше. Здесь вполне уместны артефакты видеокассеты, слегка бубнящий саундтрек. Именно так мы и смотрели кино в те времена, разве что экран был побольше.
Под откидной панелью спрятаны и стандартные регуляторы яркости и контрастности, и крутилка Vertical Hold, позволяющая подправить синхронизацию видеосигнала, если что-то пошло не так. В нашем случае — скорее сбить синхронизацию, для создания аутентичных артефактов старого ТВ-изображения:
Также вручную регулируется трекинг на видеокассете, отдельно для режимов воспроизведения и паузы. Покадровый просмотр — еще одна интересная фича магнитофона. Опять же, путем кручения ручки вызываем из небытия эффект пожеванной кассеты из видеопроката:
Вот оно, наше счастливое аналоговое детство! Можно ли сравнить изображение по технологиям 80-х с современным экраном? Для этого подойдет ретропланшет Apple iPad 2: размеры экрана похожие, такое же соотношение сторон.
Понятно кто выиграет по разрешению, хотя яркость и цветопередача у ЭЛТ неплохие. Главное, в 2021 году хочется иметь устройство со всеми артефактами из прошлого. Включение со свистом высоковольтных цепей, постепенное нарастание яркости изображения по мере прогрева. Даже отсутствие пульта не мешает — хочешь поставить на паузу, подойди и поставь! Больше всего досаждает то самое мерцание с частотой 50 герц: мы от него совсем отвыкли. Хотя если смотреть старый ТВ хотя бы час, перестаешь замечать.
Старый контент
Отличный компаньон для старого телевизора — DVD-рекордер, они сейчас тоже продаются очень дешево. Прежде всего я отметил, насколько все же качественнее картинка с DVD, по сравнению со встроенным VHS. Но дело не только в DVD: рекордер способен конвертировать любой вид аналогового сигнала в требуемый для этого ТВ композитный. Например, можно по S-Video подключить мой ретрокомпьютер на базе Pentium 4:
Но это полумеры. Я подключаю к телевизору микрокомпьютер Raspberry Pi 3. У всех версий Pi есть композитный видеовыход, способный работать со старыми телевизорами. Устанавливаю медиаплеер Kodi. Получаю ретротелевизор с возможностью стриминга с Ютюба, управляемый со смартфона. Но тут будет более уместен древний, соответствующий эпохе, контент:
Персональная машина времени оформлена, но самое интересное впереди.
Безудержный ретрогейминг на эмуляторе
По-хорошему, если у вас есть аутентичный телевизор, надо не останавливаться и покупать оригинальную игровую приставку или восьмибитный компьютер. Ассортимент тут огромный, и я пока даже не знаю, с чего начать — то ли со Спектрума, то ли с «Денди». Эмуляция на Raspberry Pi — вполне достойный способ сначала попробовать, понравится ли. Я пользуюсь заточенным под ретроигры дистрибутивом RetroPie (точнее форком CRTPi с оптимизацией под композит) и подключаю беспроводной джойстик Logitech F710.
Здесь мне пришлось отвлечься и изучить феномен, известный как 240p. Те самые консоли из 80-х и 90-х (вплоть до шестого поколения игровых приставок на рубеже веков) вместо 480 ТВ-линий чересстрочно выводят картинку по-другому: 240 линий с прогрессивной разверткой, то есть пропускают каждую вторую строку. По факту рабочих линий в изображении разных приставок в разных регионах может быть меньше (192 или 224, например), важен именно принцип их отображения. Любые аналоговые стандарты передачи видеосигналов поддерживают 240p без проблем. Проблемы начинаются при попытке подключить старую консоль к новому ТВ, который по сути оцифровывает аналоговый сигнал. Зачастую он пытается сконвертировать 240p в 480i, и портит картинку, теряет строки, а некоторые спецэффекты ломаются совсем.
Режим 480i или 576i вполне подходит для кино, но для компьютерной картинки он не идеальный: на контрастных горизонтальных линиях, которых в таком изображении много, наблюдается нечеткость и мерцание, как видно на фото выше — интерфейс RetroPie выводится в 480i. Читать элементы меню того же Kodi нелегко, особенно мелкие.
Зато в эмуляторе с правильными настройками на ЭЛТ — прекрасное четкое изображение. Для настоящих консолей и для эмуляторов есть современное ПО 240p Test Suite, которое позволяет убедиться, что у вас действительно «правильный» режим. В том числе можно оценить геометрию экрана:
И на моем телевизоре на удивление все хорошо, что вообще-то не гарантируется. Хорошо — не в смысле идеально, а «бывает гораздо хуже». Заметно плохое сведение лучей в верхнем правом углу, и это я переживу. Самое главное: игры для старых приставок разрабатывали под старые телевизоры, с учетом их особенностей. На ЭЛТ они выглядят более «правильно», чем в эмуляторе на современном дисплее. Посмотрите:
Относительная нечеткость изображения, непопадание лучей в конкретные точки на экране, искажения композитного видеосигнала придают кирпичам в Super Mario дополнительную текстуру и объем. Мыльноватым изображение кажется на фотоснимке, в реальности все нормально. Еще один пример из игры Metroid для NES:
Ретрокартинка здорового человека. Насколько это мешает играть в старые игры на эмуляторе с разрешением 4К? Нисколько не мешает. Но при помощи старого телевизора я теперь играю в Super Mario Bros аутентично.
Хочу ли я порекомендовать всем покупать старые телевизоры, пока не поздно, вытаскивать ненужные тяжелые ящики из чулана? Не обязательно, хотя если у вас стоит старый телек на даче, небольшие затраты на микрокомпьютер с композитным выходом дадут ему вторую жизнь. Более того, мой конкретный ТВ покупался в основном за стильный вид и компактные размеры. На 20-27 дюймах большого ЭЛТ может получиться еще лучше. Тут есть масса способов реализовать идеальное «аналоговое» изображение. Путем моддинга Raspberry Pi для вывода более качественного компонентного RGB-сигнала, или же подключением к компьютерному ЭЛТ-монитору по VGA с заведомо лучшими характеристиками. Либо путем модификации старых консолей или использования нативного компонентного выхода в приставках поздних времен (Playstation 2/3 или Xbox 360S). Даже телевизор без RGB-входа можно модифицировать — все равно сигнал внутри раскладывается на красную, зеленую и синюю компоненты, почему бы не подать на него изображение лучшего качества? Есть много ступеней в этой кроличьей норе. Когда-нибудь я этим улучшайзингом обязательно займусь, но не на этом телеке, он хорош и так, без модификаций. Или плох, это зависит от вашей точки отсчета.
Ремонт ЭЛТ (кинескопного) телевизора своими руками
Устройство и принцип работы кинескопного телевизора
Многих любителей ретро техники интересует вопрос о том, из чего состоит кинескопный ТВ. Конструкция проста: стеклянная колба, на одном конце которой прикреплена электронно-лучевая трубка, а на другой установлен сам экран, что покрыт специальным фосфоросодержащим составом.
Из трубки будет исходить поток электронов, которые также называют электронным лучом. Луч направляется на фосфорные пиксели, после чего начинается свечение.
Кинескопные ТВ различались на две разновидности: чёрно-белые и цветные.
В чёрно-белых моделях была установлена только одна лучевая трубка, а в цветных разновидностях их три, чтобы передавать синий, красный и зелёный цвета.
Электронный луч направляется с левой на правую сторону, создавая пиксельную линию, после чего перемещается в нижнее направление, создавая новую линию. Поскольку луч перемещается очень быстро, человеческий глаз не может воспринимать картинку целиком.
Принцип работы
Чтобы изображение появилось на экране телевизора, луч, выпущенный электронной пушкой, должен последовательно коснуться всех точек в направлении слева направо и сверху вниз, вызвав их свечение. Скорость распространения луча по экрану должна достигать 75 раз в секунду, иначе точки будут гаснуть. Если скорость снизится до 25 раз в секунду, это вызовет мерцание картинки.
Чтобы лучи, коснувшиеся люминофорного покрытия, отражались от него, на горловину кинескопа крепится система, состоящая из четырёх катушек. Создающееся на них магнитное поле способствует отражению лучей в нужном направлении. Отдельные светящиеся точки складываются в единое изображение под действием управляющих сигналов. За каждое направление движения луча отвечает конкретная развёртка:
- строчная обеспечивает прямой горизонтальный ход;
- кадровая отвечает за вертикальное движение.
Кроме прямых траекторий имеются зигзагообразные (от верхнего левого к нижнему правому углу монитора) и обратные ходы. За движение в обратном направлении отвечают сигналы с выключенной яркостью.
Основной технической характеристикой кинескопного экрана считается кадровая частота, измеряемая в герцах. Чем она выше, тем устойчивее будет изображение. Произведение частоты вертикальной развёртки на число строк, выводимых в одном кадре, определяет параметр частоты строк в килогерцах. В зависимости от способа форматирования картинки (построчного или чересстрочного) чётные и нечётные строки могут появляться по очереди либо сразу в течение одного периода кадровой развёртки.
Другой важный параметр — размер люминофорных точек. Он влияет на чёткость выводимого изображения. Чем мельче точки, тем лучше. Чтобы картинка на экране была качественной, расстояние между ними должно составлять 0,26—0,28 мм.
В чёрно-белых телевизорах экран электронно-лучевой труби полностью покрывается люминофором, испускающим только белый свет. Электронный прожектор, закреплённый в горловине трубки, формирует тонкий луч, который производит сканирование экрана по строкам и способствует свечению люминофора. Интенсивность такого свечения регулируется силой видеосигнала, содержащего всю информацию об изображении.
Преимущества и недостатки
Основные плюсы или что ценного в кинескопе:
- Большое разнообразие моделей.
- Низкая цена за продукцию.
- Надежные технологии и схематехника.
- Естественная цветопередача, а также хорошее качество изображения.
- Срок службы составляет больше 15 лет
- Ремонтом кинескопных телевизоров занимаются не везде. Современные мастера специализируются больше на жидкокристаллических ТВ. Поэтому неисправности кинескопных телевизоров мало где получится устранить. Стоит отметить, неисправности могут возникать чаще, чем на ЖК экранах. К примеру, если не включается Самсунг, Ролсон или Erisson, то крайне сложно будет искать ремонтника. Распространенные поломки: монитор не светится, но звук есть, индикатор горит, но не включается экран, щелкает реле при включении аппарата, появляется широкая полоса на экране кинескопа из-за проблем с кадровой разверткой.
- Размер экрана небольшой. Если человек смотрел фильмы на большом современном телевизоре, ему будет некомфортен кинескопный вариант.
- Аппарат тяжёлый и имеет внушительные габариты. Современные теле аппараты плоские и весят меньше по сравнению с увесистыми старыми моделями.
- Проблемы с подключением цифрового вещания. Потребуется покупать специальные приставки и настраивать их.
- Кинескопный телевизор нельзя повесить на стену, поскольку он будет занимать много места.
- Экран может начать «осыпаться» точками. В таком случае понадобится замена кинескопа в телевизоре. Если не найти мастерскую, то производить демонтаж придется самостоятельно. Также возникают трудности в покупке самого кинескопа.
- Сложности с утилизацией из-за больших габаритов.
Рыдания ретрофаната над старым телевизором
Ой всё. Мне всегда было интересно, где у ретрохобби… не дно, а граница серьезного увлечения, на грани помешательства. Теперь я знаю, это — старый ЭЛТ-телевизор. Они тяжелые. Они мерцают. Качество изображения — в лучшем случае терпимое, или так мне поначалу казалось. Когда ты покупаешь гудящий ящик с тысячами вольт внутри, ты переходишь на новый уровень коллекционирования, и уже не будет пути назад. Если серьезно, теплые (натурально, они греются) ламповые (как минимум одна) телевизоры — это большой этап развития технологий, как домашних-телевизионных, так и компьютерных. Этап, который закончился достаточно резким переходом на тощие ЖК-экраны в течение буквально пяти лет, в конце нулевых. Хотя на дачах или даже дома у многих из нас (или у родственников) старый телевизор найдется и сейчас, это ненадолго. Их больше не делают, слишком сложно и не стоит оно того. Срок жизни у них меньше, чем у ЖК-дисплеев. Мы наблюдаем завершение жизненного цикла большого ассортимента технологий, в прошлое уходят связанные с ними потребительские привычки.
Вот эти особенности старого телевидения, просмотра видео с аналоговых источников на «голубом экране», восьмибитного гейминга я и хочу сегодня повспоминать. Ну и поискать примеры задач, в которых ЭЛТ до сих пор вне конкуренции. А начну с самого простого аргумента про преимущество телевизора с трубкой: он стильный! Вы посмотрите, какая роскошная коробка! Какой возмутительно неплоский экран! Какие божественные крутилки! Это же микроволновка (с тостером), только вместо еды она подогревает ностальгические чувства.
Дневник коллекционера старых железок я веду в Телеграмме.
Околотехнические вводные
Я не стану в подробностях описывать технологию работы кинескопных ТВ — иначе может возникнуть ощущение, что я в них разбираюсь, а это не так. Базовые вещи можно узнать где угодно, от Википедии до Ютюба. Попробую сформулировать те моменты, которые важны для повторного открытия этой ретротехники. Ну, например так: «Изобретению телевизора предшествовало открытие катодных лучей — потока электронов, ускоряемого в вакууме разностью потенциалов между катодом и анодом». Тут важно следующее: для нормальной работы этой схемы стрельба электронами должна производиться в вакууме. Именно откачивание воздуха из кинескопа делает необходимым толстые стенки из стекла, чтобы противостоять атмосферному давлению, из-за чего все ЭЛТ-телевизоры — тяжелые. И еще: на кинескоп подается напряжение в тысячи вольт, что при неаккуратном обращении может быть смертельно.
Дальше: горячий катод, источник катодных лучей, подогревается до температуры в сотни градусов. Ламповые телевизоры греются и потребляют относительно много электроэнергии. Поток электронов ударяет в люминофор, вызывая свечение. Без системы электромагнитов у нас получилась бы одна яркая точка в центре экрана, но с их помощью поток электронов можно отклонять. Каждую секунду телевизор (в системе PAL или SECAM) с помощью катодных лучей и электромагнитов 50 раз проходит по всему экрану, сверху вниз и слева направо. За каждый из 50 проходов отображается только половина кадра, каждая четная или нечетная строка. Полных кадров получается 25 штук по 625 линий в каждом (видимых — 576), что достаточно для создания иллюзии движущихся картинок. Если сфотографировать экран с достаточно маленькой выдержкой, можно увидеть процесс создания изображения в действии:
Выводы: частота обновления кадров в 50 герц по ощущениям отличается от такой же на ЖК-телевизоре, где сразу отображается весь кадр. Ах да, телевизор у нас цветной, и это делает всю схему еще сложнее. Электронных пушек вместо одной становится три, они отвечают соответственно за красный, зеленый и синий компоненты изображения. Перед слоем люминофора появляется теневая маска: железная сетка с микроотверстиями, благодаря которой поток электронов от «красного» излучателя попадает только на «красный» люминофор. Выведем на ТВ сплошную заливку белым цветом и сфотографируем макрообъективом:
Так и хочется написать: красные, зеленые и синие пиксели «горят» одновременно, благодаря чему нам кажется, что мы видим белый цвет. На самом деле это не пиксели: просто зоны на экране, которые загораются под действием потока электронов. В ЭЛТ-телевизоре нет возможности зажечь один пиксель в произвольной точке экрана: такая техника просто не оперирует подобными понятиями. Можно посмотреть на границу между белым и черным участками: из-за аналоговой природы ЭЛТ она не такая четкая, как на современном дисплее.
Наконец: люминофор не вечен, он выгорает. Деградация происходит и с ЖК-дисплеями: кристаллы могут «застрять» в открытом или закрытом положении, может сесть подсветка. Но в ЭЛТ это происходит по-другому: постоянно включенный телевизор постепенно теряет яркость и контрастность изображения, становится блеклым. Если выводить на него статические элементы (логотип телеканала, меню «Пуск»), может выгореть именно эта часть люминофора, и тогда логотип останется с вами навсегда. Хороший телевизор может работать по 8 часов в день много лет подряд. Экран, который не выключают сутками, сядет за 5-7 лет. Пока нет проблемы найти ЭЛТ-телевизор в хорошем состоянии, но даже при бережной эксплуатации он рано или поздно выйдет из строя. Впрочем, на мой век хватит.
Персональная ТВ-история
Для правильной настройки на волну памяти приложу фото телевизора моего детства — модель Горизонт-736. Он дожил до конца девяностых, сначала как основной экран для семейного просмотра, потом — как монитор для восьмибитного компьютера. Хотя непосредственно телевещание не входит в сферу моих интересов, без нее тут не обойтись: начиная с довоенных времен и вплоть до конца семидесятых (а в моем случае — до начала девяностых) это был единственный способ отобразить что-то на экране вашего ТВ. Полноценное телевещание началось после войны, а моя бабушка еще помнила типичный телеприемник тех годов, «с линзой»:
Это КВН-49, и сразу видно, что он отличается от «Горизонта» диагональю экрана: 18 сантиметров против 61, или в устоявшихся позднее дюймах — 7 против 23. Помимо размеров экрана со временем улучшались параметры изображения — яркость и контрастность, повышался срок жизни кинескопа, с сотен часов до десятков тысяч в лучших экземплярах. Хотя в современные ЖК-матрицы упаковано куда больше технологий, кажется что сделать кинескоп — сложнее. Уж точно это было уникальное производство, просто так возобновить которое (на случай маловероятного CRT-ренессанса) не получится. Вот это видео показывает некоторые этапы производства кинескопов: Все Очень Сложно.
В девяностые к телеэфиру добавился видеомагнитофон, а также восьмибитный компьютер — сначала версия «Радио86-РК», а позднее — клон ZX Spectrum. Уставший «Горизонт» сменили на импортный 21-дюймовый JVC. Заграничная техника была прорывом по яркости, сочности картинки, хотя и произошла некоторая потеря по размеру экрана. К тому же добавился полноценный линейный вход, а до этого приходилось использовать RF-модуляторы, с неизбежной потерей в качестве. Да черт с ним с качеством, главное пульт, пульт появился! Больше не требовалось вставать с дивана, чтобы переключить канал! Старый телек в итоге переехал в гараж — просто так сразу выкинуть было жалко. Никогда не забуду это ощущение полноты и нестабильности, когда ты спускаешься по лестнице с советским телевизором в руках.
У моих родителей и многих знакомых стандартные, недорогие импортные телеки с диагональю в 21 дюйм прослужили по 10-15-20 лет и были заменены уже на большие ЖК-экраны. Наш экземпляр жив до сих пор, показывает кино на даче, хотя принимать эфирное ТВ самостоятельно уже не может — требуется декодер для цифрового сигнала. С отключением аналогового ТВ закончилась большая история: когда по воздуху передавался сигнал, непосредственно управляющий всей электроникой телевизора с трубкой. Помимо свойств приемника, на древний телевизионный экспириенс влияли удачное расположение дома относительно телевышки, качество антенны, хорошо (или плохо) распаянные разъемы, наличие радиолюбителя в соседнем доме или искрящего пылесоса этажом выше. Мы смотрели будто не сериал, и не новости, а весь окружающий мир, с полосами, снегом и рябью.
Телевизор часто не меняют, и я пропустил ЭЛТ-прогресс последних лет, уже в начале двадцать первого века. Между тем, технологии развивались до самого конца. В конце девяностых появились широкоформатные ЭЛТ-телевизоры. Увеличивались размеры экрана, достигнув максимума в 40 дюймов. Впрочем, в реальной жизни вы вряд ли найдете старый ТВ с диагональю больше 36″, а максимально распространены размеры 28-32. Это были монструозные аппараты весом под 50 кило. В них же золотым стандартом стало удвоение частоты смены кадров до 100 герц, что убирало мерцание. Самые последние ТВ имеют разъем HDMI и обрабатывают цифровую картинку с разрешением до 1080i (они же, кстати, не рекомендуются для ретро из-за лагов). В районе 2007 года произошло резкое падение продаж тяжелых телевизоров: потребитель голосовал за компактность, высокое разрешение ЖК-дисплеев и прочие удобства нового времени. Крупные вендоры в один год перестали показывать новые модели на выставках — ЭЛТ однозначно считался устаревшим. Обанкротились производители кинескопов. Сейчас ЭЛТ-телевизор проигрывает современным плоским почти во всем: от разрешения до диагонали, яркости и контрастности. Он превращается в ретро, но такое — для самых ценителей с хорошей физподготовкой или парочкой друзей. Качественные ЭЛТ-мониторы для компьютера сейчас стоят очень дорого, а вот просто телевизор достанется вам бесплатно или за копейки, только заберите.
Верните мне мой 1986-й
Этот телевизор я не выбирал по каким-то четким критериям, случайно вышло. Привлек необычный внешний вид — микроволновка какая-то — и относительно маленькие габариты. Это Panasonic AG-500, и вообще-то его правильно будет называть профессиональным видеомонитором. Но не в смысле «используется в теле- и киноиндустрии». Относительно портативный (26 сантиметров или
10 дюймов экрана), со встроенным видеоплеером, он был предназначен для дела. Например, для установки в присутственных местах. Особой фичей встроенного видеомагнитофона является возможность воспроизведения кассеты по кругу: включаете рекламный ролик вашего зубного кабинета и мучаете им посетителей до готовности. Предположу, что такую штуку можно было установить в автобусе, использовать для быстрого скрининга кассет из библиотеки, сделать переносную видеосистему в школе, и подобное. Помимо дизайна меня привлекла вот эта самодостаточность, а также наличие видеовхода. То, что в телевизоре нет собственно приемника телеканалов, меня совершенно не расстроило — ловить там все равно нечего.
Судя по дате в сервисном мануале, модель была разработана в середине восьмидесятых. В начале девяностых она продавалась в США за 500 долларов — немалые деньги за компактную модель.
Телевизор в таком возрасте может страдать большим количеством недугов, иметь севший кинескоп или выгоревшие секторы от статических элементов системы видеонаблюдения. Мне повезло, хотя и покупал без проверки: единственной неисправностью была застрявшая внутри кассета, которую со временем перекосило так, что пришлось разбирать весь механизм. Вытащил, вручную прокрутил механизм загрузки и выгрузки в штатное положение, и все заработало. Удивительно! Преимущество профессиональной техники: ее делали так, чтобы она работала даже в самых сложных условиях. Даже два резиновых привода в кассетном механизме не расплавились от времени, а это вообще фантастика. Окей, я вставляю кассету с «Терминатором» и получаю восхитительный флешбек на придиванном столике. Он выглядит как гость из прошлого, и работает так же! Картинка качественная, но сам кассетный механизм — базовый, с двумя головками и без каких-либо средств улучшения изображения с VHS. Звук — монофонический, никакого Hi-Fi-стерео, но так даже лучше. Здесь вполне уместны артефакты видеокассеты, слегка бубнящий саундтрек. Именно так мы и смотрели кино в те времена, разве что экран был побольше.
Под откидной панелью спрятаны и стандартные регуляторы яркости и контрастности, и крутилка Vertical Hold, позволяющая подправить синхронизацию видеосигнала, если что-то пошло не так. В нашем случае — скорее сбить синхронизацию, для создания аутентичных артефактов старого ТВ-изображения: Также вручную регулируется трекинг на видеокассете, отдельно для режимов воспроизведения и паузы. Покадровый просмотр — еще одна интересная фича магнитофона. Опять же, путем кручения ручки вызываем из небытия эффект пожеванной кассеты из видеопроката: Вот оно, наше счастливое аналоговое детство! Можно ли сравнить изображение по технологиям 80-х с современным экраном? Для этого подойдет ретропланшет Apple iPad 2: размеры экрана похожие, такое же соотношение сторон.
Понятно кто выиграет по разрешению, хотя яркость и цветопередача у ЭЛТ неплохие. Главное, в 2021 году хочется иметь устройство со всеми артефактами из прошлого. Включение со свистом высоковольтных цепей, постепенное нарастание яркости изображения по мере прогрева. Даже отсутствие пульта не мешает — хочешь поставить на паузу, подойди и поставь! Больше всего досаждает то самое мерцание с частотой 50 герц: мы от него совсем отвыкли. Хотя если смотреть старый ТВ хотя бы час, перестаешь замечать.
Старый контент
Отличный компаньон для старого телевизора — DVD-рекордер, они сейчас тоже продаются очень дешево. Прежде всего я отметил, насколько все же качественнее картинка с DVD, по сравнению со встроенным VHS. Но дело не только в DVD: рекордер способен конвертировать любой вид аналогового сигнала в требуемый для этого ТВ композитный. Например, можно по S-Video подключить мой ретрокомпьютер на базе Pentium 4:
Но это полумеры. Я подключаю к телевизору микрокомпьютер Raspberry Pi 3. У всех версий Pi есть композитный видеовыход, способный работать со старыми телевизорами. Устанавливаю медиаплеер Kodi. Получаю ретротелевизор с возможностью стриминга с Ютюба, управляемый со смартфона. Но тут будет более уместен древний, соответствующий эпохе, контент:
Персональная машина времени оформлена, но самое интересное впереди.
Безудержный ретрогейминг на эмуляторе
По-хорошему, если у вас есть аутентичный телевизор, надо не останавливаться и покупать оригинальную игровую приставку или восьмибитный компьютер. Ассортимент тут огромный, и я пока даже не знаю, с чего начать — то ли со Спектрума, то ли с «Денди». Эмуляция на Raspberry Pi — вполне достойный способ сначала попробовать, понравится ли. Я пользуюсь заточенным под ретроигры дистрибутивом RetroPie (точнее форком CRTPi с оптимизацией под композит) и подключаю беспроводной джойстик Logitech F710.
Здесь мне пришлось отвлечься и изучить феномен, известный как 240p. Те самые консоли из 80-х и 90-х (вплоть до шестого поколения игровых приставок на рубеже веков) вместо 480 ТВ-линий чересстрочно выводят картинку по-другому: 240 линий с прогрессивной разверткой, то есть пропускают каждую вторую строку. По факту рабочих линий в изображении разных приставок в разных регионах может быть меньше (192 или 224, например), важен именно принцип их отображения. Любые аналоговые стандарты передачи видеосигналов поддерживают 240p без проблем. Проблемы начинаются при попытке подключить старую консоль к новому ТВ, который по сути оцифровывает аналоговый сигнал. Зачастую он пытается сконвертировать 240p в 480i, и портит картинку, теряет строки, а некоторые спецэффекты ломаются совсем.
Режим 480i или 576i вполне подходит для кино, но для компьютерной картинки он не идеальный: на контрастных горизонтальных линиях, которых в таком изображении много, наблюдается нечеткость и мерцание, как видно на фото выше — интерфейс RetroPie выводится в 480i. Читать элементы меню того же Kodi нелегко, особенно мелкие.
Зато в эмуляторе с правильными настройками на ЭЛТ — прекрасное четкое изображение. Для настоящих консолей и для эмуляторов есть современное ПО 240p Test Suite, которое позволяет убедиться, что у вас действительно «правильный» режим. В том числе можно оценить геометрию экрана:
И на моем телевизоре на удивление все хорошо, что вообще-то не гарантируется. Хорошо — не в смысле идеально, а «бывает гораздо хуже». Заметно плохое сведение лучей в верхнем правом углу, и это я переживу. Самое главное: игры для старых приставок разрабатывали под старые телевизоры, с учетом их особенностей. На ЭЛТ они выглядят более «правильно», чем в эмуляторе на современном дисплее. Посмотрите:
Относительная нечеткость изображения, непопадание лучей в конкретные точки на экране, искажения композитного видеосигнала придают кирпичам в Super Mario дополнительную текстуру и объем. Мыльноватым изображение кажется на фотоснимке, в реальности все нормально. Еще один пример из игры Metroid для NES:
Ретрокартинка здорового человека. Насколько это мешает играть в старые игры на эмуляторе с разрешением 4К? Нисколько не мешает. Но при помощи старого телевизора я теперь играю в Super Mario Bros аутентично
.
Хочу ли я порекомендовать всем покупать старые телевизоры, пока не поздно, вытаскивать ненужные тяжелые ящики из чулана? Не обязательно, хотя если у вас стоит старый телек на даче, небольшие затраты на микрокомпьютер с композитным выходом дадут ему вторую жизнь. Более того, мой конкретный ТВ покупался в основном за стильный вид и компактные размеры. На 20-27 дюймах большого ЭЛТ может получиться еще лучше. Тут есть масса способов реализовать идеальное «аналоговое» изображение. Путем моддинга Raspberry Pi для вывода более качественного компонентного RGB-сигнала, или же подключением к компьютерному ЭЛТ-монитору по VGA с заведомо лучшими характеристиками. Либо путем модификации старых консолей или использования нативного компонентного выхода в приставках поздних времен (Playstation 2/3 или Xbox 360S). Даже телевизор без RGB-входа можно модифицировать — все равно сигнал внутри раскладывается на красную, зеленую и синюю компоненты, почему бы не подать на него изображение лучшего качества? Есть много ступеней в этой кроличьей норе. Когда-нибудь я этим улучшайзингом обязательно займусь, но не на этом телеке, он хорош и так, без модификаций. Или плох, это зависит от вашей точки отсчета.
Такой ренессанс ЭЛТ в отдельно взятой квартире. Детство не вернешь — я это понял, когда проходил Super Mario Bros на эмуляторе Nintendo. Прошел исключительно благодаря возможности сохраняться в любой момент, а на последних уровнях — еще и с помощью подсказок в интернете. Оттачивать честное мастерство прыжка по кирпичам — для этого мне больше не хватает ни времени, ни нервов. Но с возрастом часто возникает ощущение, будто твои школьные годы — они и не про тебя вовсе, а про какого-то другого человека. Мой ламповый ТВ с каждым включением делает мне «как тогда», восстанавливает условную связь между прошлым и настоящим. Я рад, что у меня теперь есть выбор — когда я сделаю свои взрослые дела, решу (или отложу) взрослые проблемы, я могу отвлечься от всего этого в современном ААА-релизе с разрешением 4К. А могу вот так — в атмосфере нечеткой, но для меня не менее прекрасной восьмибитной графики ушедших времен. С полным погружением в прошлое, вплоть до проникающих в звук помех от видеосигнала.
Разъемы в кинескопных телевизорах
На кинескопных телевизорах устанавливали только аналоговые типы разъемов. Современное ЖК оборудование дополнительно оснащают цифровыми входами.
- RF вход. Разъём используют, чтобы подключать к телевизору антенну, спутниковые коробки или DVD. Качество приема сигнала не самое высокое.
- A/V вход. Такое оборудование часто называют тюльпанами. Обычно производители устанавливать специальные цветовое обозначение на портах – жёлтый, белый и красный. Аудио и видео сигнал передается отдельно по каждому кабелю.
- S-Video. Такой вариант довольно часто применяют и в современных условиях, поскольку через такие порта удобно подключать различные DVD аппараты и игровые приставки.
- SCART. Это длинный и плоский порт, имеющий 21 контакт. Через такой выход можно передавать видео и звук и даже цифровые телеканалы.
Возможные проблемы
При работе кинескопного телевизора могут возникать разные неполадки. Причина их возникновения кроется в поломке деталей электронно-лучевого механизма.
Выход из строя питающего блока приведёт к тому, что прибор не будет включаться. Для проверки его работоспособности нужно сначала отключить каскад строчной развёртки, выполняющий роль нагрузки, затем впаять в схему бытовую лампу. Отсутствие света в лампе говорит о том, что блок питания неисправен.
Выявление проблем в строчной развёртке осуществляется с применением такой же лампы. Постоянное её свечение сигнализирует о неисправности выходного транзистора. В нормальном состоянии лампа должна вспыхивать и гаснуть.
При светящейся горизонтальной полосе следует обратить внимание на развёртку кадров. Чтобы восстановить её работу, потребуется снизить уровень яркости, тем самым защитив люминофорный слой. Дополнительно нужно проверить исправность задающего генератора и выходного каскада. При этом обязательно следует учитывать, что их рабочее напряжение находится в диапазоне 24—28 вольт.
Полное отсутствие свечения чаще всего может быть вызвано проблемами с питанием кинескопа. В процессе диагностики потребуется проверить нить накала и уровень напряжения на ней. Если целостность нити не нарушена, тогда выходом станет наматывание обмотки. Замены трансформатора в этом случае не потребуется.
При проблемах с блоком цветности и видеоусилителем пропадает звук. Противоположная ситуация, когда при наличии звука не будет изображения, означает наличие неполадки в низкочастотном усилителе. Если вместе со звуком исчезнет изображение, тогда причину стоит искать в неисправно работающем радиоканале, запускающем видеопроцессор и тюнер.
Услуги по ремонту телевизоров
Для устранения неполадок в работе телевизионного приёмника своими силами необходимо иметь соответствующие знания об устройстве и работе кинескопа. Если таких знаний нет, лучше всего обратиться к квалифицированным специалистам. Найти фирму, производящую ремонт ЭЛТ телевизоров, не составит труда.
Большинство таких фирм предоставляет клиентам удобный способ ремонта (в мастерской или на дому) и бесплатную диагностику. Опытные мастера быстро диагностируют проблему и устраняют её, используя для этого качественные детали, рекомендованные производителями телевизоров, и современное оборудование. На все проведённые работы даётся гарантия. Все проблемы, возникшие в период действия гарантийного срока, устраняются бесплатно
Как работает телевизор: устройство и принцип работы
Вся техника периодически может выходить из строя, и телевизор, который имеется практически в каждом доме, тому не исключение. Для возможности своевременной его починки собственными силами необходимо разбираться в схеме работы каскадов, их предназначении и взаимодействии друг с другом, а также представлять основы работы ТВ-приемника.
Основной принцип (технология) работы телевизора
Одним из главных устройств любого телевизора, обеспечивающим прием сигнала, является телевизионная антенна (ТА), причем главным параметром ее работы является правильное согласование выходного R активного вибратора с сопротивлением, присущим кабелю снижения (КС). Он необходим для того, чтобы передавать входящий импульс, принятый ТА и является коаксиальным кабелем высокой частоты, имеющим достаточный КПД (фидер).
Согласование необходимо для достижения более высокого КБВ (коэффициента бегущей волны) в самом кабеле снижения. Устройство согласования предназначено для преобразования R в величину, близкую по значению сопротивлению, которым обладает фидер.
Также ТА обязана иметь определенные значения по полосе пропускания, это является важным параметром, так как ее ширина напрямую определяет равномерность ее амплитудно-частотной характеристики (АЧХ).
Структурную схему обычного, черно-белого телевизора можно представить:
Сигнал, поступающий с антенны, попадает на входное избирательное устройство (ВИУ), которое выделяет тот телевизионный сигнал, требующийся в определенный момент. С учетом того, что его U достаточно мало, далее следует его усиление посредством высокочастотного усилителя (УВЧ).
После усиления он идет на частотный преобразователь (ПЧ), представляющий собой смеситель с гетеродином, точность настройки которого необходима для получения высококачественного изображения (четкости, отсутствия любых искажений по фазе и качеству звука). Плюс, правильная и четкая подстройка способствует сглаживанию имеющихся помех, поступающих от других ТВ-каналов.
По количеству колебательных контуров гетеродин полностью аналогичен ВИУ. После настройки сигнала в гетеродине, он идет на смеситель, куда также приходит и параметр от ВИУ.
Согласно принципу работы смесителя, который переносит принимаемую частоту на промежуточную, в нем происходит умножение частоты имеющегося изображения и частоты звука на частотную составляющую гетеродина.
В результате этого на выходе получаются колебания частоты изображения i, а также звука f (все они — промежуточные).
Таким образом, на выходе ПЧ имеются промежуточная i изображения и звука, при этом первая должна быть на 6,5 МГц выше второй.
Независимо от того, какой канал настраивается, эти значения являются постоянной величиной и имеют следующие значения:
- i изображения = 38 МГц.
- f звука = 31,5 МгЦ.
Данные колебания хотя и являются высокочастотными, однако содержат меньшие f принятых сигналов. Если требуется точно его подстроить, в подобных ситуациях параметры гетеродина возможно регулировать посредством изменения С (емкости) в цепи колебательного контура.
Как правило, в современных моделях имеется блок АПЧГ, который автоматически подстраивает гетеродин.
Проходя через СК (селектор каналов телевизора), промежуточные частоты попадают в БУ, преобразующего промежуточную частоту получаемой картинки (УПЧИЗ).
После него усиленный импульс идет на детектор (ВД).
ВД осуществляет два основных предназначения:
- Выделение видеосигнала.
- Получение новой, 2-ой промежуточной частоты звуковой составляющей, которая представляет собой разницу между промежуточными частотными составляющими картинки и звуковой составляющей и равна 6,5 МГц.
Таким образом, ВД является ничем иным, как ПЧ.
После ВД сигнал видео идет на усилитель (УВС), а после — на модулятор самого кинескопа (МК).
Полученное значение(6,5 МГц) идет на УПЧЗ, после чего она передается на детектор (ЧД), выделяющий непосредственно сам звук, после чего отправляет его на УЧЗ и впоследствии – на громкоговоритель (ГР).
Синхронизирующий сигнал выделяется из УВС посредством блока синхронизации (БС) и, не претерпевая видоизменений, проходит все имеющиеся блоки.
В БС происходит его разделение на строчные и также кадровые импульсы при помощи блоков, осуществляющих развертку (БКР, БСР), после чего они идут на ОС.
После БС все импульсы, получаемые посредством БКР и БСР идут на выпрямитель высокого U (ВВ), необходимый для запитки одного из анодов кинескопа (К). Изначально напряжение на схему U подается из блока питания (БП).
Как уже было сказано, после УВС строчные, а также кадровые импульсы составляют полный готовый видеосигнал. Благодаря этому на экране К электронный луч двигается синхронно и с той же фазой, что и луч, который передается с трубки телецентра.
Видеосигнал содержит импульсы, гасящие луч в К, требуемые на обратный код указанных разверток (кадровых, строчных).
Чтобы выделить непосредственно синхроимпульсы, имеется селектор (ССИ), который находится всегда в запертом состоянии и переходит в открытое состояние из-за импульсов синхронизации. Так как амплитуда синхроимпульсов всегда выше амплитуды сигнала изображения для самых черных элементов, и происходит их выделение. При этом их значение будет соответствовать понятию «чернее черного».
Также ССИ обладает функцией разделения на строчные и кадровые синхроимпульсы посредством измерения разницы по длительности между строчными и кадровыми импульсами (длительность последних выше).
Таким образом, посредством процедуры дифференцирования получают строчные синхроимпульсы, а при помощи интегрирования – кадровые синхроимпульсы.
После ССИ кадровые синхроимпульсы идут на ГКР (генератор кадровой развертки), где на выходном каскаде из отклоняющих катушек получается напряжение пилообразной формы, что и продуцирует линейный ток I пилообразной формы.
Отклоняющие катушки ОС, обеспечивающие кадровку, соединяются с ГКР при помощи выходного кадрового трансформатора (ВТК), обеспечивающего полное согласование R каскада (лампового) с R отклоняющих катушек. Как вариант, подсоединение может быть выполнено полупроводниками ГКР, так как их R значительно меньше.
Посредством ОС, установленной на горловину трубки кинескопа (К), происходит управление электронным лучом, при этом воздействие на него осуществляется с помощью магнитного поля соленоидов ОС.
Строчные синхроимпульсы проходят на устройство, обеспечивающее автоматическую частотную и фазовую подстройку самой строчной развертки (АПЧиФ). Там же происходит сравнение по длительности строчных синхроимпульсов и импульсов обратного хода самой строчной развертки, которые приходят с ГСР.
Если длительность строчных синхроимпульсов и импульсов обратного хода с ГСР совпадает, на выходе АПЧиФ U будет равняться нулю.
Если по длительности наблюдаются отклонения в ту или иную сторону, на выходе получается U, пропорциональное величине данного отклонения. При этом, полярность напряжения будет зависеть от времени поступления импульсов с ССИ и ГСР.
За счет имеющейся инерционности АПЧиФ, импульсные помехи, также попадающие вместе с входящим сигналом, не оказывают никакого влияния на его работу.
Выходное напряжение с АПЧиФ идет на ГСР, который в свою очередь меняет частотную составляющую напряжения развертки.
Упрощенная электрическая принципиальная (структурная) схема телевизора
Согласно представленной в предыдущем подпункте структурной схеме, становится понятным расположение и взаимодействие отдельных блоков между собой.
С учетом развития технологий, принципы построения схем и работы значительно видоизменились, так как с течением времени телевизоры с черно-белым экраном сменились вначале цветными, а затем и ЖК и плазменными.
В связи с этим, в классическую структурную схему в связи с переходом на цветное вещание были добавлены новые элементы, такие как:
- БЦ – блок цветности.
- БДУ – блок, обеспечивающий управление на расстоянии.
- БКВУ – блок, обеспечивающий коммутацию всех внешних устройств.
Что касается современных, ЖК и плазменных панелей, количество различных блоков в них значительно больше.
Устройство, принципы работы черно-белых моделей (аналоговых)
Все черно-белые телевизоры, относящиеся как к ламповым, так и полупроводниковым моделям, имеют схожую структурную компоновку.
Как видно из представленного рисунка, добавлены следующие устройства:
- Метровый селектор каналов (СКМ).
- Дециметровый селектор каналов (СКД).
- Усилитель промежуточной f изображения (УПЧИ).
Сигналы звука и картинки, усиленные и преобразованные в блоке, переключающем каналы телевизора (ПТК), поступают в УПЧИ.
С учетом того, что частота колебаний гетеродина отличается по значению от f поступающего импульса (выше), как уже указывалось, разница между промежуточной i картинки и звука составляет 6, 5 МГц.
Для получения изображения самого высшего качества, требуется точно настроить гетеродин на входе на нужную частоту, которая обеспечивает четкость видеоизображения и чистоту звукового сигнала, а также отсутствие искажений по фазе.
Все подобные телевизоры имеют функцию как ручной, так и автоматической подстройки
Ручная настройка помогает обеспечить правильную подстройку при приеме тестовой таблицы.
Автоматическая настройка крайне необходимо при различных коммутациях, таких как включение и прогрев самого устройства (меняется частотная составляющая гетеродина), скачка напряжения в электросети, внешних помехах или переключении требуемых каналов.
АПЧГ (автоматическая частотная подстройка гетеродина)
АПЧГ выполняется с ОС и содержит в себе различитель и элемент управления.
Различитель представляет собой не что иное, как дискриминатор фаз, где на вход идет U промежуточной частоты. Таким образом, если телевизор подстроен точно, U на выходе будет равняться нулю.
При имеющемся отклонении частоты гетеродина (от 38 МГц, номинальной), на выходе появляется управляющее U расстройки.
U расстройки идет на устройство, называемое варикапом, который соединено с контуром гетеродина в ПТК. Таким образом, данное U меняет f гетеродина ту сторону, которая противоположна расстройке.
Но полностью устранить имеющуюся расстройку АПЧГ не в состоянии, потому в наличии всегда имеется ее остаточные значения. При этом, чем выше коэффициент автоподстройки, тем меньше будет значение остаточной расстройки.
Зачастую, стандартным решением в устройствах подобного типа является использование АПЧГ по промежуточной f и УПТ (усилителем постоянного I). При такой схеме остаточная расстройка составляет порядка 50 кГц (изначально присутствует в 1,2 МГЦ).
Также многие модели первого поколения комплектуются следующими блоками:
- Автоматической регулировкой усиления (АРУ), обеспечивающим постоянное поддержание каких-либо значений.
- Автоматической постройкой по f и фазе (АПЧиФ).
В данных моделях за счет АПЧиФ в ГСР предусмотрена частотная и фазовая автосинхронизация с подобными параметрами синхроимпульсов от телецентра. Также обеспечивается надежная синхронизация строчной развертки сигнала на входе, если он ослаблен или присутствуют импульсные помехи, что актуально для моделей с большой диагональю экрана.
Далее, на выходе ФД (фазового детектора), который в обязательном порядке имеется в подобных моделях, будет присутствовать постоянное U, при этом его полярность и значение будут находиться в прямо пропорциональной зависимости от угла сдвига фаз импульсов.
Если данный угол будет нулевым, напряжение на выходе ФД также будет иметь нулевое значение. При других его величинах, данное U идет на управляющую сетку ЗРГ (задающий релаксационный генератор) через фильтр низких частот (НЧФ).
Если напряжение начинает меняться, происходят изменения также и в частоте собственных колебаний ЗРГ. Таким образом, данные колебаний затухнут лишь тогда, когда их расхождение с углом сдвига фаз и f синхроимпульсов также сведется к нулю.
В зависимости от схемы построения, АПЧиФ не всегда способен компенсировать все возможные отклонения f ЗРГ. Во избежание подобной проблемы в таких телевизорах с простой схемой АПЧиФ устанавливается ручная регулировка.
Что касается моделей первого класса, за счет правильного выбора схемы АПЧиФ с широким диапазоном полосы, захватывающей f ЗРГ, отпадает необходимость в установке возможности ручной подстройки. Это достигается за счет контроллера, фазового дискриминатора, который запоминает последнюю величину пикового U разностной f.
Устройство, принципы работы цветных телевизоров (аналоговых)
Данные модели являются аналоговыми и выполнены на полупроводниках.
В отличие от предыдущего изображения, в составе цветного телевизора на полупроводниках добавлены такие новые составляющие:
- Плата дистанционного управления (ДУ).
- Видеопроцессор, укомплектованный декодером цветности.
- Декодер, обеспечивающий телетекст.
- Плеер DVD.Плеер-USB.
Схема, устройство, принципы работы ЖК и плазменных панелей
В данных моделях схема значительно изменена, так как в отличие от аналогового, сигнал обрабатывается цифровым способом.
Основные блоки, присущие подобным устройствам, следующие:
- Инвертор. Благодаря ему обеспечивается напряжение, необходимое для запитки светодиодов или ламп подсветки.
- Память, в которой хранятся данные о настройках – ПЗУ.
- Оперативная память, которая принимает непосредственное участие в их обработке – ОЗУ.
Таким образом, принцип действия телевизора во всех моделях остается одним и тем же, однако за счет развития современных технологий составляющие элементы претерпели значительные изменения.