Как работает водородная ячейка
Перейти к содержимому

Как работает водородная ячейка

  • автор:

Опишите принцип действия водородно кислородного топливного элемента кратко

Топливный элемент — устройство, эффективно вырабатывающее тепло и постоянный ток в результате электрохимической реакции и использующее богатое водородом топливо. По принципу работы он схож с батареей. Конструктивно топливный элемент представлен катодом, анодом и электролитом. Но в отличие от батарей, топливные элементы на водороде не накапливают электрическую энергию, не нуждаются в электричестве для повторной зарядки и не разряжаются. Выработка электроэнергии ячейками продолжается до тех пор, пока у них имеется запас воздуха и топлива.

Особенности

Отличием топливных ячеек от прочих генераторов электроэнергии является то, что за время работы они не сжигают топливо. Ввиду такой особенности они не нуждаются в роторах высокого давления, не издают громкого шума и вибраций. Электричество в топливных элементах вырабатывается в результате бесшумной электрохимической реакции. Химическая энергия топлива в таких устройствах преобразуется напрямую в воду, тепло и электричество.

Топливные элементы отличаются высокой эффективностью и не производят большого количества парниковых газов. Продуктом выброса при работе ячеек являются небольшое количество воды в виде пара и углекислого газа, который не выделяется в случае, если в качестве топлива выступает чистый водород.

Принцип работы

Тепло и электроэнергия вырабатываются топливным ячейками в результате электрохимической реакции, проходящей с использованием катода, анода и электролита. Катод и анод разделены проводящим протоны электролитом. После поступления кислорода на катод и водорода на анод запускается химическая реакция, результатом которой становятся тепло, ток и вода.

Молекулярный водород диссоциирует на катализаторе анода, что приводит к потере им электронов. Ионы водорода поступают к катоду через электролит, одновременно электроны проходят по внешней электрической сети и создают постоянный ток, который используется для питания оборудования. Молекула кислорода на катализаторе катода объединяется с электроном и поступившим протоном, образуя в итоге воду, являющуюся единственным продуктом реакции.

Все топливные элементы подразделяются на две основные категории — высокотемпературные и низкотемпературные. Вторые в качестве топлива используют чистый водород. Подобные устройства, как правило, требуют переработки первичного топлива в чистый водород. Процесс осуществляется с использованием специального оборудования.

Высокотемпературные топливные элементы не нуждаются в подобном, поскольку они преобразуют топливо при повышенных температурах, что исключает необходимость создания водородной инфраструктуры.

Принцип работы топливных элементов на водороде основан на превращении химической энергии в электрическую без малоэффективных процессов горения и трансформации тепловой энергии в механическую.

Преимущества водородных топливных ячеек

  • Повышенная удельная теплоемкость.
  • Широкий температурный диапазон эксплуатации.
  • Отсутствие вибрации, шума и теплового пятна.
  • Надежность при холодном запуске.
  • Отсутствие саморазряда, что обеспечивает длительный срок хранения энергии.
  • Неограниченная автономность благодаря возможности корректировки энергоемкости за счет изменения числа топливных баллончиков.
  • Обеспечение практически любой энергоемкости благодаря изменению емкости хранилища водорода.
  • Длительный срок эксплуатации.
  • Бесшумность и экологичность работы.
  • Высокий уровень энергоемкости.
  • Толерантность к сторонним примесям в водороде.

Область применения

  • Портативные зарядные устройства.
  • Энергоснабжающие системы для БПЛА.
  • Источники бесперебойного питания.
  • Прочие устройства и оборудование.

Как собрать топливный элемент на водороде?

Топливную ячейку небольшой мощности можно создать самостоятельно в условиях обычной домашней или школьной лаборатории. В качестве материалов используется старый противогаз, куски оргстекла, водный раствор этилового спирта и щелочь.

Корпус топливного элемента на водороде своими руками создается из оргстекла толщиной не менее пяти миллиметров. Перегородки между отсеками могут быть меньшей толщины — порядка 3 миллиметров. Оргстекло склеивается специальным клеем, изготавливаемым из хлороформа либо дихлорэтана и стружки из оргстекла. Все работы производятся только при работающей вытяжке.

В наружной стенке корпуса просверливается отверстие диаметром 5-6 сантиметров, в которое вставляется резиновая пробка и сливная стеклянная трубка. Активированный уголь из противогаза засыпается во второе и четвертое отделение корпуса топливного элемента — он будет использоваться в качестве электрода.

Циркуляция топлива будет осуществляться в первой камере, в то время как пятая заполняется воздухом, из которого будет поставляться кислород. Электролит, засыпающийся между электродами, пропитывается раствором парафина и бензина во избежание его попадания в воздушную камеру. На слой угля кладутся медные пластины с припаянными к ним проводами, через которые будет отводиться ток.

Собранный топливный элемент на водороде заряжается водкой, разбавленной водой в соотношении 1:1. В полученную смесь аккуратно добавляется едкий калий: в 200 граммах воды растворяется 70 граммов калия.

Перед испытанием топливного элемента на водороде в первую камеру заливается топливо, в третью — электролит. Показания вольтметра, подключенного к электродам, должны варьироваться от 0,7 до 0,9 вольт. Для обеспечения непрерывной работы элемента отработанное топливо должно отводиться, а через резиновую трубку — заливаться новое. Сжиманием трубки регулируется скорость подачи топлива. Подобные топливные элементы на водороде, собранные в домашних условиях, обладают небольшой мощностью.

Как работает ячейка топливного элемента?

Когда водород попадает в катализатор и расщепляется на протоны и электроны, протоны направляются прямиком к стороне катода, а электроны следуют через внешнюю электрическую цепь.

По пути электроны выполняют полезную работу:

  • зажигают электрическую лампу,
  • вращают вал электродвигателя,
  • заряжают аккумуляторную батарею и т.д.

Только проследовав такой путь, электроны объединяются с протонами и кислородом на другой стороне ячейки с последующим производством воды.

Полноценная система из нескольких топливных ячеек: 1 – газовый ресивер; 2 – радиатор охлаждения с вентилятором; 3 – компрессор; 4 – опорный фундамент; 5 – топливный элемент в сборе из нескольких ячеек; 6 – модуль промежуточного хранилища

Все эти реакции происходят в так называемом стеке одной ячейке. На практике обычно используется целая системы вокруг основного компонента, которая представляет собой стек из нескольких ячеек.

Стек встраивается в модуль, состоящий из частей:

  • управление топливом, водой и воздухом,
  • холодильное оборудование,
  • программное обеспечение для управления хладагентом.

Этот модуль затем интегрируется в полную систему, которую допустимо использовать для разных применений.

По причине высокого энергетического содержания водорода и высокой эффективности топливных элементов (55%), технологию допустимо использовать в разных областях.

Например, в качестве резервного питания для производства электроэнергии, когда нарушается работа основной электрической сети.

Как заправлять автомобиль топливным элементом

Заправка водородом является очень дорогим процессом. Водородных заправок мало. Но в связи с появлением новых автомобилей количество заправок постепенно растёт.

Топливные элементы для привода автомобилей

Принцип действия топливных элементов

Принцип действия топливного элемента типа Принцип действия топливного элемента типа РЕМ

Принцип действия топливного элемента типа РЕМ

В топливном элементе типа РЕМ водород на­правляется к аноду, где он окисляется. При это образуются ионы Н+ (протоны) и электроны (см. рис. 1, а).

Катод: O2 + 4 е — —> 2 О 2-

На следующей стадии реакции ионы О 2- реа­гируют с протонами с образованием воды.

Катод: 4 Н + + 2 О 2- —> 2 Н2O

Описанные выше реакции протекают на ка­талитических покрытиях электродов. В каче­стве катализатора чаще всего используется платина.

Теоретическое напряжение одного эле­мента

. Структура батареи топливных элементов

Высокие значения электрического тока до­стигаются за счет соответствующей площади поверхности мембраны. Значения выходного тока батарей топливных элементов для авто­мобилей достигает 500 А.

Принцип действия системы топливных элементов

Электропривод с системой топливных элементов

Система подачи водорода в топливные элементы

Запас водорода хранится в баллоне высокого давления (700 бар). При помощи редуктора давление водорода понижается приблизи­тельно до 10 бар, и водород поступает в га­зовый инжектор.

Инжектор представляет собой электромаг­нитный клапан, при помощи которого дав­ление водорода устанавливается на стороне анода. В отличие от топливных форсунок двигателей внутреннего сгорания инжектор водорода должен обеспечивать постоянный массовый расход. Типичное значение рас­хода водорода при мощности 100 кВт состав­ляет 2,1 г/с. Максимальное значение давле­ния водорода составляет 2,5 бар.

Для работы батареи топливных элементов требуется постоянный сквозной поток водо­рода на стороне анода (мера гомогенизации). С этой целью в системе организована рецир­куляция водорода.

Разрушающие анод инородные газы на стороне анода непрерывно удаляются через электромагнитный спускной клапан. Это предотвращает накопление инородных газов, выходящих из баллона, или диффузионных газов (азота, водяных паров) со стороны ка­тода. Клапан установлен на выпуске батареи, на стороне анода. Для слива избытка воды в тракте анода используется клапан, открытый при нулевом электрическом токе.

Водород, неизбежно выходящий во время слива воды, либо сильно разбавляется воз­духом, либо каталитически преобразуется в воду.

Подача кислорода в топливные элементы

Требуемый для электрохимической реакции кислород берется из окружающего воздуха. Необходимый массовый расход кислорода, составляющий, в зависимости от требуемой мощности батареи, до 100 г/с, подается компрессором. Кислород сжимается компрессо­ром максимум до 2,5 бар и подается на сто­рону катода топливного элемента. Давление в топливном элементе регулируется клапаном динамического регулирования давления, установленным в тракте выпуска отходящих газов на выходе топливного элемента.

Для обеспечения достаточного увлажне­ния полимерной мембраны, подаваемый в элемент воздух увлажняется либо при помощи дополнительной мембраны, либо пу­тем впрыска сконденсированной воды.

Тепловой баланс топливных элементов

Электрический КПД топливных элементов составляет приблизительно 50%. Другими словами, в процессе преобразования химиче­ской энергии генерируется приблизительно такое же количество тепловой энергии, что и количество электрической энергии. Это тепло необходимо рассеивать. Рабочая темпера­тура топливных элементов типа РЕМ состав­ляет приблизительно 85 °С, что меньше тем­пературы двигателей внутреннего сгорания. Несмотря на более высокий КПД, радиатор и вентилятор радиатора, при использовании на автомобиле топливных элементов, должны быть увеличены.

Поскольку используемая охлаждающая жидкость находится в прямом контакте с топливными элементами, она должна быть электрически непроводящей (деионизован­ной). Циркуляция охлаждающей жидкости обеспечивается электрическим насосом. Расход охлаждающей жидкости составляет до 12 000 л/ч. Клапан регулирования темпе­ратуры распределяет поток охлаждающей жидкости между радиатором и перепускным каналом.

В системе используется охлаждающая жидкость, представляющая собой смесь деионизованной воды и этиленгликоля. Охлаждающую жидкость необходимо деиониозировать на автомобиле. С этой целью она пропускается через ионообменник, запол­ненный специальной смолой, и очищается в процессе удаления ионов. Проводимость охлаждающей жидкости должна составлять менее 5 мкСм/см.

Коэффициент полезного действия системы топливных элементов

Коэффициент полезного действия батареи топливных элементов и системы топливных элементов

В дополнение к быстрой готовности батареи топливных элементов к отдаче энергии при большинстве оптимальных рабочих условий важно обеспечить высокий КПД системы.

Безопасность топливных элементов автомобиля

В целях обеспечения безопасности на авто­мобиле установлено несколько датчиков кон­центрации водорода. Водород представляет собой газ без цвета и запаха, который при объемной концентрации порядка 4% превра­щает воздух в горючую смесь. Датчики могут определять концентрацию водорода, начиная с 1%.

Принцип действия привода автомобилей на топливных элементах

Автомобили на топливных элементах пред­ставляют собой электромобили, в которых электроэнергия для питания электропривода генерируется системой топливных элементов.

По ряду причин целесообразно включить в систему тяговую аккумуляторную батарею:

  • Это позволяет запасать энергию во время рекуперативного торможения;
  • Это способствует повышению динамиче­ских характеристик привода;
  • Изменяя распределение нагрузки между системой топливных элементов и тяговой аккумуляторной батареей, можно еще бо­лее увеличить к.п.д. привода.

Поскольку тяговая аккумуляторная батарея явля­ется дополнительным источником энергии, такие автомобили известны под названием гибридизи­рованных автомобилей на топливных элементах. Отношение мощности тяговой аккумуляторной батареи к общей мощности (степень ги­бридизации) варьируется в зависимости от применения системы.

Обычно в качестве основного источника энергии для привода используются системы топливных элементов. Такие автомобили из­вестны под названием гибридных автомоби­лей на топливных элементах (FCHV). Обычно системы топливных элементов имеют номи­нальную мощность 60-100 кВт. Тяговые ак­кумуляторные батареи имеют номинальную мощность до 30 кВт при емкости 1-2 кВтч.

В качестве альтернативного варианта тяговая аккумуляторная батарея может иметь значительно более высокую номинальную мощность и емкость и при необходимости заряжаться от системы то­пливных элементов. При этом достаточно иметь батарею топливных элементов с номинальной мощностью от 10 до 30 кВт. Автомобили с такой конфигурацией источников энергии известны под названием автомобилей на топливных элементах с расширенным диапазоном (FC-REX).

Конфигурации преобразователей напряжения в системах привода на топливных элементах

Система электропривода

Во время торможения автомобиля электро­двигатель переходит в генераторный режим и генерирует электрический ток. Электроэнергия запасается в тяговой аккумуляторной батарее.

При помощи преобразователя высокое на­пряжение постоянного тока преобразуется в многофазное переменное напряжение, амплитуда которого регулируется в зависи­мости от требуемого крутящего момента. Как правило, используются преобразователи с выходными каскадами на биполярных тран­зисторах с изолированным затвором (IGBT).

Тяговая аккумуляторная батарея

В зависимости от степени гибридизации использу­ются аккумуляторные батареи высокой емкости или высокой энергии с напряжением от 150 до 400 В. В качестве аккумуляторной батареи высокой емкости используются никель-металлгидридные или литий-ионные аккумуляторные батареи, в то время как в качестве аккумуляторных батарей высо­кой энергии — только литий-ионные аккумуляторы. Система мониторинга тяговой аккумулятор­ной батареи контролирует степень зарядки и емкость аккумуляторной батареи.

Преобразователь постоянного напряжения тяговой АКБ

Преобразователь постоянного напряжения тя­говой аккумуляторной батареи осуществляет регулирование тока зарядки тяговой аккуму­ляторной батареи и выходного тока (до 300 А). Некоторые конфигурации системы позволяют обойтись без этого преобразователя.

Преобразователь постоянного напряжения батареи топливных элементов

Еще одним преобразователем постоянного напряжения является преобразователь на­пряжения батареи топливных элементов, осуществляющий регулирование выходного тока в пределах до 500 А. Некоторые конфи­гурации системы позволяют обойтись без этого преобразователя.

Преобразователь постоянного напряжения 12 В

Так же как на обычных автомобилях, на ав­томобилях на топливных элементах имеется электрическая система напряжением 12 В. Напряжение 12 В преобразуется из высокого напряжения. Для этой цели служит преобразо­ватель постоянного напряжения, включенный между двумя системами. Из соображений без­опасности этот преобразователь электрически изолирован. Он работает однонаправленно или двунаправленно и имеет номинальную мощность до 3 кВт.

Перспективы системы приводов на топливных элементах

Системы приводов на топливных элементах уже продемонстрировали свою пригодность в повседневной эксплуатации. Однако, для коммерческого использования в системах приводов автомобилей топливные элементы должны быть усовершенствованы в отноше­нии экономичности и возможности серий­ного производства.

Упрощение системы дает снижение затрат и повышение надежности. Одним из направ­лений является разработка новых полимер­ных мембран для топливных элементов, не требующих увлажнения образующихся в ходе реакции газов и в то же время позволяющих повысить рабочую температуру.

Кроме того, необходимо значительно сни­зить стоимость всех компонентов. В этом отношении большой потенциал заключается в уменьшении количества платины в катали­тическом слое топливного элемента.

РЕКОМЕНДУЮ ЕЩЁ ПОЧИТАТЬ:

Эта статья размещена в главе Альтернативные виды приводов и называется Топливные элементы для привода. Добавьте в закладки ссылку.

Найти новый источник энергии и перестать зависеть от нефти — такова задача, которую автомобильные инженеры решают уже не первый десяток лет. Современность предлагает много вариантов: более экологичный газ, продвинутый электромобиль или компромиссный гибрид. Но сегодня речь пойдет о другом решении — технологии водородных топливных ячеек.

Вода из выхлопной трубы?

Итак, есть еще один вариант того, что можно сжигать в ДВС вместо бензина или дизельного топлива, — это водород. Известно, что продуктом окисления водорода является вода. Сжигаем водород в кислороде, получаем энергию для работы поршней, а на выходе — водяной пар. Ну не прекрасно ли? И все же есть свои нюансы: водород при сгорании выделяет больше тепла, чем нефтепродукты, тем самым чересчур раскаляя двигатель. Кроме того, сгорая с воздухом, а не с чистым кислородом, он создает ряд вредных примесей. Все это не позволяет просто так сжигать водород в ДВС.

Из космоса в автомобиль

Топливный элемент такого типа удалось приспособить и для автомобиля, причем один из первых вариантов предложили отечественные конструкторы. Компактный водородный генератор состоит из множества ячеек, принцип работы которых описан выше. Напряжение каждой ячейки низкое — от 0.6 до 1.0 В, но, если соединить ячейки последовательно, можно получить необходимое высокое напряжение.

Дальше всех в этом направлении продвинулись японские инженеры. Совместными усилиями специалистов Toyota и DENSO удалось создать эффективный водородно-воздушный генератор, который стал основой для серийной Toyota Mirai.

Система топливных ячеек вырабатывает энергию, комбинируя водород с кислородом из наружного воздуха. Японским инженерам удалось создать наиболее эффективную систему топливных элементов, достигшую высокой выходной мощности при относительной компактности и малом весе, благодаря использованию композитных баков и компактного силового оборудования.

Блок управления мощностью (PCU) Toyota Mirai производства DENSO решает, когда и как использовать производимую водородным генератором электроэнергию: часть ее система перенаправляет для хранения в литий-ионную батарею. Эта же батарея дополнительно заряжается и при рекуперации энергии торможения. При необходимости выдачи пиковой мощности (во время старта и разгона) используется как энергия водородного генератора, так и запасы батареи.

Во время работы силовой установки Mirai из трубы действительно идет дистиллированная вода — вообще никаких выбросов! Специалистам DENSO также удалось решить вопрос с быстрой и безопасной заправкой автомобиля водородом благодаря внедрению беспроводной связи с заправочной станцией, по которой передается вся информация о состоянии топлива в баках (о температуре и давлении водорода).

Запас хода Toyota Mirai второго поколения составляет внушительные 800 км (по циклу NEDC); при этом время полной заправки длится от 3 до 5 минут, что несравнимо быстрее, чем у электромобиля. Второе поколение Mirai с усовершенствованными топливными ячейками дебютировало на Токийском автосалоне два месяца назад, а уже в 2020 году этот автомобиль поступит в серийное производство.

Когда-нибудь — возможно, и не в столь отдаленном, как нам кажется, будущем — в каталоге DENSO для рынка послепродажного обслуживания автомобилей появятся, например, компоненты управления водородной силовой установкой. А пока в нем представлены более традиционные запчасти, обладающие, тем не менее, оригинальным качеством, надежностью и отличными рабочими характеристиками. Подобрать подходящие запчасти можно в нашем электронном каталоге.

Ранее мы рассказывали про то, каким экологичным видом транспорта являются электробусы. Однако не упомянули один важный момент: c ростом числа электротранспорта городам потребуется больше электричества, которое зачастую получают экологически небезопасными способами. К счастью, сегодня мир научился получать энергию при помощи ветра, солнца и даже водорода. Новый материал мы решили посвятить последнему из источников и рассказать об особенностях водородной энергетики.

На первый взгляд, водород — идеальное топливо. Во-первых, он является самым распространенным элементом во Вселенной, во-вторых, при его сгорании высвобождается большое количество энергии и образуется вода без выделения каких-либо вредных газов. Преимущества водородной энергетики человечество осознало уже давно, однако применять ее в больших промышленных масштабах пока не спешит.

Водородные топливные элементы

Первый водородный топливный элемент был сконструирован английским ученым Уильямом Гроувом в 30-х годах XIX века. Гроув пытался осадить медь из водного раствора сульфата меди на железную поверхность и заметил, что под действием электрического тока вода распадается на водород и кислород. После этого открытия Гроув и работавший параллельно с ним Кристиан Шенбейн продемонстрировали возможность производства энергии в водородно-кислородном топливном элементе с использованием кислотного электролита.

Сейчас топливный элемент на водороде напоминает традиционный гальванический элемент с одной лишь разницей: вещество для реакции не хранится в элементе, а постоянно поставляется извне. Просачиваясь через пористый анод, водород теряет электроны, которые уходят в электрическую цепь, а сквозь мембрану проходят катионы водорода. Далее на катоде кислород ловит протон и внешний электрон, в результате чего образуется вода.

С одной топливной ячейки снимается напряжение порядка 0,7 В, поэтому ячейки объединяют в массивные топливные элементы с приемлемым выходным напряжением и током. Теоретическое напряжение с водородного элемента может достигать 1,23 В, но часть энергии уходит в тепло.

Как мы видим, по этому параметру водородная энергетика является наиболее привлекательным источником энергии, но все же существует ряд проблем, мешающих ее массовому применению. Самая главная из них — процесс добычи водорода.

Проблемы добычи

Водородная энергетика экологична, но не автономна. Для работы топливному элементу нужен водород, который не встречается на Земле в чистом виде. Водород нужно получать, но все существующие сейчас способы либо очень затратны, либо малоэффективны.

Самым эффективным с точки зрения объёма полученного водорода на единицу затраченной энергии считается метод паровой конверсии природного газа. Метан соединяют с водяным паром при давлении 2 МПа (около 19 атмосфер, т. е. давление на глубине около 190 м) и температуре около 800 градусов, в результате чего получается конвертированный газ с содержанием водорода 55-75%. Для паровой конверсии необходимы огромные установки, которые могут быть применимы лишь на производстве.

Трубчатая печь для паровой конверсии метана — не самый эргономичный способ добычи водорода. Источник: ЦТК-Евро

Мобильная электростанция Toshiba H2One

Мы разработали мобильную мини-электростанцию H2One, преобразующую воду в водород, а водород в энергию. Для поддержания электролиза в ней используются солнечные батареи, а излишки энергии накапливаются в аккумуляторах и обеспечивают работу системы в отсутствие солнечного света. Полученный водород либо напрямую подается на топливные ячейки, либо отправляется на хранение во встроенный бак. За час электролизер H2One генерирует до 2 м 3 водорода, а на выходе обеспечивает мощность до 55 кВт. Для производства 1 м 3 водорода станции требуется до 2,5 м 3 воды.

Пока станция H2One не способна обеспечить электричеством крупное предприятие или целый город, но для функционирования небольших районов или организаций ее энергии будет вполне достаточно. Благодаря своей мобильности она может использоваться также как и временное решение в условиях стихийных бедствий или экстренного отключения электричества. К тому же, в отличие от дизельного генератора, которому для нормального функционирования необходимо топливо, водородной электростанции достаточно лишь воды.

Сейчас Toshiba H2One используется лишь в нескольких городах в Японии — к примеру, она снабжает электричеством и горячей водой железнодорожную станцию в городе Кавасаки.

Монтаж системы H2One в городе Кавасаки

Водородное будущее

Сейчас водородные топливные элементы обеспечивают энергией и портативные пауэр-банки, и городские автобусы с автомобилями, и железнодорожный транспорт (более подробно об использовании водорода в автоиндустрии мы расскажем в нашем следующем посте). Водородные топливные элементы неожиданно оказались отличным решением для квадрокоптеров — при аналогичной с аккумулятором массе запас водорода обеспечивает до пяти раз большее время полета. При этом мороз никак не влияет на эффективность. Экспериментальные дроны на топливных элементах производства российской компании AT Energy применялись для съемок на Олимпиаде в Сочи.

Водородные топливные элементы принцип работы и устройство

Поток электронов и ионов поддерживает баланс заряда и вещества в электролите. Образующаяся в результате реакции вода частично разбавляет электролит. В любом топливном элементе часть энергии химической реакции превращается в тепло. Поток электронов во внешней цепи представляет собой постоянный ток, который используется для совершения работы. Большинство реакций в топливных элементах обеспечивают ЭДС около 1 В. Размыкание цепи или прекращение движения ионов останавливает работу топливного элемента.

ТОПЛИВНЫЙ ЭЛЕМЕНТ, электрохимический генератор, устройство, обеспечивающее прямое преобразование химической энергии в электрическую. Хотя то же самое происходит в электрических аккумуляторах, топливные элементы имеют два важных отличия: 1) они функционируют до тех пор, пока топливо и окислитель поступают из внешнего источника; 2) химический состав электролита в процессе работы не изменяется, т.е. топливный элемент не нуждается в перезарядке. См. также БАТАРЕЯ ЭЛЕКТРОПИТАНИЯ.

Таблица 5: Преимущества и недостатки различных систем топливных элементов.
Разработки и улучшения в сфере топливных элементов происходят постепенно, малый показатель удельной мощности не позволяет быть прямым конкурентом электрическим батареям.

1. Топливный элемент с мембраной обмена протонов (МОПТЭ)

Топливный элемент чувствителен к низким температурам, ведь это может привести к образованию льда. Это вынуждает добавлять в конструкцию нагревательные элементы, которые увеличивают конечную стоимость. Запуск в холодную погоду занимает больше времени, а производительность заметно ниже. Избыточное теплообразование также может привести к повреждению ячейки. Системы контроля температуры и подачи кислорода потребляют около 30% генерируемой электроэнергии.

2. Щелочной топливный элемент (ЩТЭ)

3. Твердооксидный топливный элемент (ТОТЭ)

4. Топливный элемент с прямым окислением метанола (ПОМТЭ)

На рисунке 2 показан топливный элемент от Toshiba, а на рисунке 3 – процесс его дозаправки метанолом чистотой 99.5%.

Рисунок 2: Микротопливный элемент. Этот прототип микротопливного элемента способен обеспечивать 300 мВт непрерывной мощности.

Рисунок 3: Топливный элемент Toshiba с заправочным картриджем. Картридж емкостью 10 мл содержит метанол чистотой 99,5%.

Также такие элементы интересны для использования в военной и рекреационной сферах. На рисунке 4 показан портативный топливный элемент кампании SFC (Smart Fuel Cell), поставляемый с различными мощностными характеристиками — от 600 до 2160 Вт*ч в день.

Рисунок 4: Портативный топливный элемент потребительского сегмента. Топливный элемент преобразует водород и кислород в электричество с единственным побочным продуктом — чистой водой. Топливные элементы могут использоваться в помещении в качестве генератора электроэнергии.

В таблице 5 описаны сферы применения, преимущества и ограничения обычных топливных элементов. Таблица включает в себя не рассмотренные выше технологии на основе фосфорной кислоты (ФКТЭ) и на основе расплава карбоната (РКТЭ).

Таблица 5: Преимущества и недостатки различных систем топливных элементов.
Разработки и улучшения в сфере топливных элементов происходят постепенно, малый показатель удельной мощности не позволяет быть прямым конкурентом электрическим батареям.

Рисунок 6: Диапазон мощности портативного топливного элемента. Высокое внутреннее сопротивление приводит к быстрому падению напряжения при подключении нагрузки. Диапазон мощности ограничен значениями от 300 до 800 мА.

Топливные элементы лучше всего работают при нагрузке 30%, более высокие значения снижают эффективность. Это вкупе с плохой чувствительностью дросселя ограничивают эффективное использование топливных элементов сферой вспомогательного электропитания и зарядных устройств. Роль автономного источника питания, изначально предназначаемая топливным элементам, пока что остается непокоренной ими.

5. Парадокс топливной ячейки

Пик популярности топливных элементов пришелся на 1990-е годы, когда ученые и инженеры были увлечены идеей о экологически чистом и неиссякаемом топливе — водороде. Предсказывалось, что каждый автомобиль и домохозяйство вскоре будут работать на топливных элементах. Акции профильных компаний взлетели до небес, но вскоре индустрия уперлась в грань — была достигнута предельная производительность, а высокие производственные затраты и ограниченный срок службы весьма ограничивали применение топливных элементов.

Ожидалось, что топливные элементы окажут на мир такое же влияние, как оказали микропроцессорные технологии в 1970-е годы. Этот экологически чистый и неисчерпаемый источник энергии должен был решить проблему ископаемого топлива с его ограниченными запасами и экологическими проблемами. С 1999 по 2001 год более 2000 компаний активно взялись за разработку топливных элементов, четырем крупнейшим из них удалось привлечь инвестиции в размере 4 миллиардов долларов. Но что пошло не так?

Топливные элементы вырабатывают электроэнергию за счет химической реакции газообразного водорода и кислорода. Каждый отдельный топливный элемент в блоке осуществляет превращение химической энергии топлива в электричество в процессе электрохимической реакции, в которой водород используется со стороны анода и кислород на стороне катода. Единственным побочным продуктом реакции является обычная вода.

Тойота готовится к созданию водородных топливных элементов нового поколения

  • В научно-исследовательском центре Тойота был изобретен инновационный метод наблюдения за поведением наночастиц.
  • Разработка позволит в ближайшем будущем создать более эффективные блоки водородных топливных элементов нового поколения.

«Тойота Мотор Корпорэйшн» и Японский центр тонкой керамики (JFCC) совместно разработали новую методику наблюдения за поведением наночастиц платины в процессе химической реакции, происходящей в топливных элементах. Новая методика позволила исследователям, в частности, отследить процессы, приводящие к снижению химической активности платинового каталитизатора, входящего в состав блока топливных элементов.

Топливные элементы вырабатывают электроэнергию за счет химической реакции газообразного водорода и кислорода. Каждый отдельный топливный элемент в блоке осуществляет превращение химической энергии топлива в электричество в процессе электрохимической реакции, в которой водород используется со стороны анода и кислород на стороне катода. Единственным побочным продуктом реакции является обычная вода.

В процессе реакции молекулы водорода разделяются на электроны и катионы водорода на стороне анода. На платиновом катализаторе анода молекулярный водород теряет электроны. Поток электронов движется к катоду кислорода, вырабатывая электроэнергию для питания электродвигателя. Между тем, катионы водорода проводятся через полимерную мембрану на сторону катода, где при соединении с кислородом образуется вода. Для этой реакции в качестве катализатора также используется платина

Обычный способ наблюдения за поведением наночастиц платины заключается в сравнении размеров частиц в фиксированной точке до и после реакции. С помощью этого традиционного метода было обнаружено, что наночастицы платины после реакции укрупняются, а их химическая активность снижается. Однако причины этого снижения оставались предположительными из-за невозможности наблюдать за процессами, приводящими к укрупнению, в режиме реального времени.

2. Твердополимерные метанольные топливные элементы.

Обычных аккумуляторов и батарей становится явно недостаточно для питания последних достижений электронной индустрии в течение сколько-нибудь существенного времени. А без надежных и емких батарей теряется весь смысл мобильности и беспроводности. Так что компьютерная индустрия все активнее и активнее трудится над проблемой альтернативных источников питания. И наиболее перспективным, на сегодняшний день, направлением здесь являются топливные элементы.

Сам термин «топливный элемент» (Fuel Cell) появился позднее — он был предложен в 1889 году Людвигом Мондом и Чарльзом Лангером, пытавшимися создать устройство для выработки электричества из воздуха и угольного газа.

При обычном горении в кислороде протекает окисление органического топлива, и химическая энергия топлива неэффективно переходит в тепловую энергию. Но оказалось возможным реакцию окисления, например водорода с кислородом, провести в среде электролита и при наличии электродов получить электрический ток. Например, подавая водород к электроду, находящемуся в щелочной среде, получим электроны:

2H2 + 4OH- → 4H2O + 4e-

которые, проходя по внешней цепи, поступают на противоположный электрод, к которому поступает кислород и где проходит реакция: 4e- + O2 + 2H2O → 4OH-

Видно, что результирующая реакция 2H2 + O2 → H2O — такая же, что и при обычном горении, но в топливном элементе, или иначе — в электрохимическом генераторе, получается электрический ток с большой эффективностью и частично тепло. Отметим, что в топливных элементах в качестве горючего могут также применяться уголь, окись углерода, спирты, гидразин, другие органические вещества, а в качестве окислителей — воздух, перекись водорода, хлор, бром, азотная кислота и т.д.

Развитие топливных элементов энергично продолжалось как за рубежом, так и в России, а далее и в СССР. Среди ученых, сделавших большой вклад в изучение топливных элементов, отметим В. Жако, П. Яблочкова, Ф. Бэкона, Э. Бауэра, Э. Юсти, К. Кордеша. В середине прошлого столетия начался новый штурм проблем топливных элемент. Частично это объясняется появлением новых идей, материалов и технологий в результате оборонных исследований.

Одним из ученых, сделавших крупный шаг в развитие топливных элементов, был П. М. Спиридонов. Водород-кислородные элементы Спиридонова давали плотность тока 30 мА/см2, что для того времени считалось большим достижением. В сороковые годы О. Давтян создал установку для электрохимического сжигания генераторного газа, получаемого газификацией углей. С каждого кубометра объема элемента Давтян получил 5 кВт мощности.

В последующие годы время одиночек прошло. Топливными элементами заинтересовались создатели космических аппаратов. С середины 60-ых миллионы долларов вкладывались в исследования топливных элементов. Работа тысяч ученых и инженеров позволила выйти на новый уровень, и в 1965г. топливные элементы был испытан в США на космическом корабле «Джемини-5», а в дальнейшем — на кораблях «Аполлон» для полетов на Луну и по программе «Шатл».

В СССР топливные элементы разрабатывали в НПО «Квант», тоже для использования в космосе. В те годы уже появились новые материалы — твердополимерные электролиты на основе ионообменных мембран, новые типы катализаторов, электродов. И все-таки рабочая плотность тока была небольшой — в пределах 100-200 мА/см2, а содержание платины на электродах — несколько г/см2. Существовало много проблем, связанных с долговечностью, стабильностью, безопасностью.

В качестве окислителя в топливных элементах применяется кислород. Причем, поскольку кислорода вполне достаточно в воздухе, то волноваться о подаче окислителя не надо. Что касается топлива, то им является водород. Итак, в топливном элементе протекает реакция:

2H2 + O2 → 2H2O + электричество + тепло.

Рис.1. Принцип действия топливного элемента

И тут мы приходим именно к тому устройству, разработкой которого со страшной силой занимаются практически все крупнейшие производители электроники — метаноловому топливному элементу (рисунок 2).

Рис.2. Принцип действия топливного элемента на метаноле

Рис. 3. Метанольный топливный элемент

Самый заманчивый вариант — использовать в качестве топлива этиловый спирт, благо производство и распространение алкогольных напитков любого состава и крепости хорошо налажено по всему земному шару. Однако эффективность этаноловых топливных элементов, к сожалению, еще ниже, чем у метаноловых.

Как уже отмечалось за много лет разработок в области топливных элементов, построены различные типы топливных элементов. Топливные элементы классифицируются по электролиту и виду топлива.

1. Твердополимерные водород-кислородные электролитные.

2. Твердополимерные метанольные топливные элементы.

3. Элементы на щелочном электролите.

4. Фосфорно-кислотные топливные элементы.

5. Топливные элементы на расплавленных карбонатах.

6. Твердооксидные топливные элементы.

В идеале КПД топливных элементов очень высок, но в реальных условиях имеются потери, связанные с неравновесными процессами, такими как: омические потери вследствие удельной проводимости электролита и электродов, активационная и концентрационная поляризация, диффузионные потери. Вследствие этого часть энергии, вырабатываемой в топливных элементах, превращается в тепловую. Усилия специалистов направлены на уменьшение указанных потерь.

При конструировании топливных элементов большое внимание уделяют системе теплоотвода, так как при высоких плотностях тока (до 1А/см2) происходит саморазогрев системы. Для охлаждения применяют циркулирующую в топливном элементе по специальным каналам воду, а при небольших мощностях — обдув воздухом.

Не отстает от Toshiba и другая японская компания — Fujitsu. В 2004-м году она тоже представила элемент, действующий на 30% водном растворе метанола. Этот топливный элемент работал на одной заправке в 300мл на протяжении 10 часов и при этом выдавал мощность 15 Вт.

Casio разрабатывает топливный элемент, в котором метанол сперва перерабатывается в смесь газообразных H2 и CO2 в миниатюрном топливном преобразователе, а потом уже подается в топливный элемент. Во время демонстрации прототип Casio обеспечивал энергией ноутбук в течение 20 часов.

Компания Samsung тоже отметилась на ниве топливных элементов — в 2004-м году она демонстрировала свой прототип мощностью 12 Вт, предназначенный для питания ноутбука. Вообще же, Samsung предполагает применять топливные элементы, в первую очередь, в смартфонах четвертого поколения.

В общем, топливные элементы уже практически вышли на рынок мобильной электроники. Производителям осталось решить последние технические задачи перед тем, как начать массовый выпуск.

Вторая важная проблема, требующая решения — это цена. Ведь в качестве катализатора в большинстве топливных элементов применяется очень дорогая платина. Опять же, некоторые из производителей пытаются по максимуму использовать уже хорошо отработанные кремниевые технологии.

Топливные элементы идут на смену традиционным гальваническим элементам и аккумуляторам

Топливные элементы идут на смену традиционным гальваническим элементам и аккумуляторам

Схема базового топливного элемента

Таким образом, несмотря на то что производители электроники добились значительных успехов, заставляя свои устройства обходиться меньшими запасами энергии, одной из главных причин недовольства потребителей по-прежнему остается малый срок службы источников питания, особенно в портативных устройствах. При этом функциональность мобильных устройств в последние годы растет просто взрывными темпами и приближается к функциональности обычных, стационарных решений.

Что такое «топливный элемент»

Дальнейшие исследования выявили преимущества такого необычного элемента перед простыми химическими источниками тока (гальваническими элементами и аккумуляторами). Дело в том, что топливные элементы обладали в 5-10 раз большей энергоемкостью. К тому же во время реакции не происходило изменений материала электродов и электролита. Топливный элемент теоретически может работать неограниченно долго — необходимо лишь регулярно подавать исходные газовые компоненты.

Всплеск развития топливных элементов пришелся на середину прошлого столетия, когда специалисты НАСА обратились к ним в связи с возникшей потребностью в компактных электрогенераторах для использования во время космических полетов. В частности, космические корабли Apollo и Gemini были оснащены подобными источниками энергии.

Как это работает

— они функционируют до тех пор, пока топливо и окислитель поступают из внешнего источника;

— химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке).

где H2 — двухатомная молекула водорода (форма, в которой водород присутствует в виде газа); H+ — ионизированный водород (протон); е- — электрон.

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны — нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка).

Ноутбук Portege M100 с топливным элементом DMFC

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

Суммарная реакция в топливном элементе записывается так:

В своей работе топливные элементы используют водородное топливо и кислород из воздуха. Водород может подаваться непосредственно или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта — метанола. В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

По отдельности топливные элементы создают электродвижущую силу около 1 В каждый. Чтобы увеличить напряжение, элементы соединяют последовательно. Если требуется выдать больший ток, наборы каскадных элементов соединяют параллельно.

Технология Mobion и другие

Стоит также отметить, что в конце прошлого года топливные элементы Mobion получили сертификаты безопасности от Underwriter’s Laboratories и CSA International. Иными словами, это означает, что MTI MicroFuel Cells теперь может поставлять свои топливные элементы Mobion для военных и промышленных предприятий.

Принцип действия топливных элементов был открыт еще в 1839 г. английским ученым Уильямом Робертом Грове, который обнаружил, что процесс электролиза обратим, то есть водород и кислород можно объединить в молекулы воды без горения, но с выделением тепла и электричества.

Принцип действия топливных элементов был открыт еще в 1839 г. английским ученым Уильямом Робертом Грове, который обнаружил, что процесс электролиза обратим, то есть водород и кислород можно объединить в молекулы воды без горения, но с выделением тепла и электричества.

Топливные элементы (ТЭ) – это электрохимические устройства, использующие водород, моноксид углерода либо газообразные органические топлива и кислород воздуха для производства электрической и тепловой энергии.Процесс производства электроэнергии в топливных элементах значительно более эффективен, чем в тепловых машинах. Кроме того, в ТЭ нет движущихся частей и минимизирована роль сжигания топлива, что делает процесс бесшумным и экологически чистым.

Сложились три основных направления использования топливных элементов:

1) стационарная энергетика: энергетические установки для централизованного и распределенного электро- и теплоснабжения, источники бесперебойного питания;
2) транспортная энергетика: энергетические установки транспортных средств, вспомогательные силовые установки;
3) портативная энергетика: источники тока в мобильных устройствах, зарядные устройства, питание разнообразных вспомогательных устройств т.п.

Таким образом, эксплуатация ТЭ на жидком топливе неизбежно связана с очисткой либо переработкой продуктов реакции.

В своей работе топливные элементы используют водородное топливо и кислород из воздуха. Водород может подаваться непосредственно или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта — метанола. В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

Топливные элементы идут на смену традиционным гальваническим элементам и аккумуляторам

Схема базового топливного элемента

Таким образом, несмотря на то что производители электроники добились значительных успехов, заставляя свои устройства обходиться меньшими запасами энергии, одной из главных причин недовольства потребителей по-прежнему остается малый срок службы источников питания, особенно в портативных устройствах. При этом функциональность мобильных устройств в последние годы растет просто взрывными темпами и приближается к функциональности обычных, стационарных решений.

Что такое «топливный элемент»

Дальнейшие исследования выявили преимущества такого необычного элемента перед простыми химическими источниками тока (гальваническими элементами и аккумуляторами). Дело в том, что топливные элементы обладали в 5-10 раз большей энергоемкостью. К тому же во время реакции не происходило изменений материала электродов и электролита. Топливный элемент теоретически может работать неограниченно долго — необходимо лишь регулярно подавать исходные газовые компоненты.

Всплеск развития топливных элементов пришелся на середину прошлого столетия, когда специалисты НАСА обратились к ним в связи с возникшей потребностью в компактных электрогенераторах для использования во время космических полетов. В частности, космические корабли Apollo и Gemini были оснащены подобными источниками энергии.

Как это работает

— они функционируют до тех пор, пока топливо и окислитель поступают из внешнего источника;

— химический состав электролита в процессе работы не изменяется (топливный элемент не нуждается в перезарядке).

где H2 — двухатомная молекула водорода (форма, в которой водород присутствует в виде газа); H+ — ионизированный водород (протон); е- — электрон.

Работа топливного элемента основана на том, что электролит пропускает через себя протоны (по направлению к катоду), а электроны — нет. Электроны движутся к катоду по внешнему проводящему контуру. Это движение электронов и есть электрический ток, который может быть использован для приведения в действие внешнего устройства, подсоединенного к топливному элементу (нагрузка, например, лампочка).

Ноутбук Portege M100 с топливным элементом DMFC

С катодной стороны топливного элемента протоны (прошедшие через электролит) и электроны (которые прошли через внешнюю нагрузку) воссоединяются и вступают в реакцию с подаваемым на катод кислородом с образованием воды:

Суммарная реакция в топливном элементе записывается так:

В своей работе топливные элементы используют водородное топливо и кислород из воздуха. Водород может подаваться непосредственно или путем выделения его из внешнего источника топлива (природного газа, бензина или метилового спирта — метанола. В случае внешнего источника его необходимо химически преобразовать, чтобы извлечь водород. В настоящее время большинство технологий топливных элементов, разрабатываемых для портативных устройств, задействуют именно метанол.

По отдельности топливные элементы создают электродвижущую силу около 1 В каждый. Чтобы увеличить напряжение, элементы соединяют последовательно. Если требуется выдать больший ток, наборы каскадных элементов соединяют параллельно.

Технология Mobion и другие

Стоит также отметить, что в конце прошлого года топливные элементы Mobion получили сертификаты безопасности от Underwriter’s Laboratories и CSA International. Иными словами, это означает, что MTI MicroFuel Cells теперь может поставлять свои топливные элементы Mobion для военных и промышленных предприятий.

В отличие от современных нефтяных источников энергии, водород не даёт никаких вредных выбросов в атмосферу и является самым экологически чистым. Поскольку в самих топливных элементах нет движущихся частей, их отличает надёжность, долговечность и простота эксплуатации. КПД топливных элементов уже сейчас составляет 50-70%, что намного больше, чем 10-15% у ДВС. Это очень важные преимущества перед современными двигателями. Рассмотрим принцип работы водородных топливных элементов.

Донсков А.В. 1 , Попов А.В. 2

1 Студент; 2 Асистент, Волжский политехнический институт (филиал) ВолгГТУ

ПРИМЕНЕНИЕ ВОДОРОДНЫХ ТОПЛИВНЫХ ЭЛЕМЕНТОВ НА АВТОМОБИЛЬНОМ ТРАНСПОРТЕ

Рассмотрены современные проблемы применимости водородных топливных элементов на транспорте.

Топливные элементы, водород, транспорт.

Donskov A.V. 1 , , Popov A.V. 2

1 Student, 2 Assistant,

Volzhsky Polytechnical Institute (branch) VSTU

THE USE OF HYDROGEN FUEL CELLS FOR ROAD TRANSPORT

Modern problems of applicability of fuel cells in transport.

Fuel cells, hydrogen, transport.

За последние 50-60 лет по оценкам экспертов выбросы CO2 в атмосферу возросли, в 4-5раз и составляют величину равную 20 х 10 12 м 3 /год. Основная проблема заключается в том, что основные имеющиеся на планете источники энергии ограничены. По некоторым подсчетам газа и нефти и хватит не более чем на 100 лет, угля – примерно на 360-400 лет, ядерного топлива – немногим более чем на 1000лет.

Поэтому в последнее время наиболее остро стоит вопрос о переходе к новым источникам энергии, в основе которой должна быть заложена экологическая составляющая. Большие надежды возлагаются на водородную энергетику: использование водорода, как одного из основных видов энергоносителя, а топливных элементов, как генераторов электроэнергии. Такой вид энергетики предполагает резкое сокращение добычи и потребления ископаемых видов топлива.

В отличие от современных нефтяных источников энергии, водород не даёт никаких вредных выбросов в атмосферу и является самым экологически чистым. Поскольку в самих топливных элементах нет движущихся частей, их отличает надёжность, долговечность и простота эксплуатации. КПД топливных элементов уже сейчас составляет 50-70%, что намного больше, чем 10-15% у ДВС. Это очень важные преимущества перед современными двигателями. Рассмотрим принцип работы водородных топливных элементов.

Химические реакции в топливном элементе идут на пористых электродах (аноде и катоде), активированных катализатором (обычно на основе платины или других металлов платиновой группы), по следующей схеме. Водород поступает на анод топливного элемента, где его атомы разлагаются на электроны и протоны:

Электроны поступают во внешнюю цепь, создавая электрический ток. Протоны, в свою очередь, проходят сквозь протонообменную мембрану на катодную сторону, где с ними соединяется кислород и электроны из внешней электрической цепи с образованием воды:

4H+ + 4e- + O2 = 2H2O

Рисунок 1 – Устройство водородного топливного элемента

Если в мембране присутствует вода, она собирается вблизи кислотных групп и образует гидратную область с линейным размером порядка 1 нм. Именно в этой области и образуются различные гидратированные формы протона, способные свободно перемещаться. Гидрофобная же часть полимера содержит алифатические, ароматические, фторированные или нефторированные фрагменты и образует прочный каркас, обеспечивающий механическую прочность мембраны.

1. Багоцкий В.С., Скундин А.М. Химические источники тока. – М:Энергоиздат, 1981.-360с.

Химические процессы в топливном элементе

Химические процессы в топливном элементе

Схема устройства топливного элемента с протонно-обменной мембраной:
1 — анод;
2 — протонно-обменная мембрана (РЕМ);
3 — катализатор (красный);
4 — катод

Протонно-обменная мембрана топливного элемента (PEMFC) использует одну из самых простых реакций любого топливного элемента.

Отдельная ячейка топливного элемента

Автомобиль на топливных элементах, использует силовую установку, расположенную под полом автомобиля

Концептуальный автомобиль Hy Wire компании General Motors имеет силовую установку на топливных элементах

Большие исследования по разработке и созданию автомобилей на топливных элементах проводит компания General Motors.

Шасси автомобиля Hy Wire

Конструкция «безопасного» топливного бака для сжиженного водорода:
1 — заправочное устройство;
2 — наружный бак;
3 — опоры;
4 — датчик уровня;
5 — внутренний бак;
6 — заправочная линия;
7 — изоляция и вакуум;
8 — нагреватель;
9 — крепежная коробка

Проблеме использования водорода в качестве топлива для автомобилей уделяет много внимания компания BMW. Совместно с фирмой Magna Steyer, известной своими работами по использованию сжиженного водорода в космических исследованиях, BMW разработала топливный бак для сжиженного водорода, который может использоваться на автомобилях.

Испытания подтвердили безопасность использования топливного бака с жидким водородом

Компания провела серию испытаний на безопасность конструкции по стандартным методикам и подтвердила ее надежность.
В 2002 г. на автосалоне во Франкфурте-на-Майне (Германия) был показан автомобиль Mini Cooper Hydrogen, который использует в качестве топлива сжиженный водород. Топливный бак этого автомобиля занимает такое же место, как и обычный бензобак. Водород в этом автомобиле используется не для топливных элементов, а в качестве топлива для ДВС.

Первый в мире серийный автомобиль с топливным элементом вместо аккумуляторной батареи

В 2003 г. фирма BMW объявила о выпуске первого серийного автомобиля с топливным элементом BMW 750 hL. Батарея топливных элементов используется вместо традиционного аккумулятора. Этот автомобиль имеет 12-цилиндровый двигатель внутреннего сгорания, работающий на водороде, а топливный элемент служит альтернативой обычному аккумулятору, обеспечивая возможность работы кондиционера и других потребителей электроэнергии при длительных стоянках автомобиля с неработающим двигателем.

Заправка водородом производится роботом, водитель не участвует в этом процессе

Состоит из двух электродов: анод и катод, изготовленные из угольной пластины покрытой платиной. На аноде поданный водород распадается с потерей электрона, на катоде поданный кислород соединяется с пришедшим протоном.

Как работают автомобили на топливных элементах?

Топливный элемент использует водород подаваемый извне для выработки электроэнергии.

Состоит из двух электродов: анод и катод, изготовленные из угольной пластины покрытой платиной. На аноде поданный водород распадается с потерей электрона, на катоде поданный кислород соединяется с пришедшим протоном.

Основным преимуществом водородных двигателей является их способность работать при относительно низких температурах (что сокращает время запуска). Ячейки изготовлены из графита покрытого канавками, которые позволяют легко проходить реагентам при сохранении электрического контакта с электролитом.

Топливный элемент образовывает ионы водорода имеющие высокое содержание энергии. Однако низкая плотность водорода представляет технические трудности проектирования систем хранения водорода на машине. При комнатной температуре и обычном давлении для хранения эквивалентного количества энергии, содержащегося в типичном бензобаке потребуется бак с водородом объемом более чем в 800 раз больше обычного бака.

Однако были разработаны три основных решения для хранения водорода:

  • сжатие – газ хранится в баллонах при атмосферном давлении до 7000 раз;
  • криогенные системы – это сохранить газ при низкой температуре, необходимой для сжижения водорода (-253 C);
  • металл гидриды – специальные металлические сплавы поглощающие водород под давлением.

Один из подходов, который позволяет избежать проблемы хранения водорода в машине является генерация газа по требованию.

1. Водород в природе. Строение атома и молекулы. Изотопия и изомерия. Физические, термодинамические, теплофизические и теплотехнические свойства.
2. Сжижение и хранение жидкого водорода.
3. Изомерия водорода. Проблема пара и орто-воды.
4. Водород в твердом состоянии.
5. Проблема металлического водорода.

II. Водород: общие сведения.

1. Водород в природе. Строение атома и молекулы. Изотопия и изомерия. Физические, термодинамические, теплофизические и теплотехнические свойства.
2. Сжижение и хранение жидкого водорода.
3. Изомерия водорода. Проблема пара и орто-воды.
4. Водород в твердом состоянии.
5. Проблема металлического водорода.

III. Химия водорода

V. Электрохимические генераторы и топливные элементы.

VI. Детекторы и сенсоры водорода

Особенности и основные типы газовых сенсоров. Физические принципы детектирования водорода: полупроводниковые сенсоры и МДП-структуры, сенсоры теплопроводности. Химические принципы детектирования: каталитические и электрохимические сенсоры. Сенсорные системы на основе твердых электролитов. Основные характеристики сенсоров – быстродействие, селективность, время жизни и пути управления ими. Конструкционные особенности сенсоров.

VII. Перспективы использования водорода как электроносителя

Химия и ток

В современной жизни химические источники тока окружают нас повсюду: это батарейки в фонариках, аккумуляторы в мобильных телефонах, водородные топливные элементы, которые уже используются в некоторых автомобилях. Бурное развитие электрохимических технологий может привести к тому, что уже в ближайшее время вместо машин на бензиновых двигателях нас будут окружать только электромобили, телефоны перестанут быстро разряжаться, а в каждом доме будет свой собственный электрогенератор на топливных элементах. Повышению эффективности электрохимических накопителей и генераторов электроэнергии посвящена одна из совместных программ Уральского федерального университета с Институтом высокотемпературной электрохимии УрО РАН, в партнерстве с которыми мы публикуем эту статью.

На сегодняшний день существует множество разных типов батареек, среди которых все сложнее ориентироваться. Далеко не каждому очевидно, чем аккумулятор отличается от суперконденсатора и почему водородный топливный элемент можно использовать, не опасаясь нанести вред окружающей среде. В этой статье мы расскажем о том, как для получения электроэнергии используются химические реакции, в чем разница между основными типами современных химических источников тока и какие перспективы открываются перед электрохимической энергетикой.

Химия как источник электричества

Сначала разберемся, почему химическую энергию вообще можно использовать для получения электричества. Все дело в том, что при окислительно-восстановительных реакциях происходит перенос электронов между двумя разными ионами. Если две половины химической реакции разнести в пространстве, чтобы окисление и восстановление проходили отдельно друг от друга, то можно сделать так, чтобы электрон, который отрывается от одного иона, не сразу попадал на второй, а сначала прошел по заранее заданному для него пути. Такую реакцию можно использовать как источник электрического тока.

Впервые эта концепция была реализована еще в XVIII веке итальянским физиологом Луиджи Гальвани. Действие традиционного гальванического элемента основано на реакциях восстановления и окисления металлов с разной активностью. Например, классической ячейкой является гальванический элемент, в котором происходит окисление цинка и восстановление меди. Реакции восстановления и окисления проходят, соответственно, на катоде и аноде. А чтобы ионы меди и цинка не попадали на «чужую территорию», где они могут прореагировать друг с другом непосредственно, между анодом и катодом обычно помещают специальную мембрану. В результате между электродами возникает разность потенциалов. Если соединить электроды, например, с лампочкой, то в получившейся электрической цепи начинает течь ток и лампочка загорается.

Помимо материалов анода и катода, важной составляющей химического источника тока является электролит, внутри которого движутся ионы и на границе которого с электродами протекают все электрохимические реакции. При этом электролит не обязательно должен быть жидким — это может быть и полимерный, и керамический материал.

Основным недостатком гальванического элемента является ограниченное время его работы. Как только реакция пройдет до конца (то есть будет полностью израсходован весь постепенно растворяющийся анод), такой элемент просто перестанет работать.

Возможность перезарядки

Первым шагом к расширению возможностей химических источников тока стало создание аккумулятора — источника тока, который можно перезаряжать и поэтому использовать многократно. Для этого ученые просто предложили использовать обратимые химические реакции. Полностью разрядив аккумулятор в первый раз, с помощью внешнего источника тока прошедшую в нем реакцию можно запустить в обратном направлении. Это восстановит исходное состояние, так что после перезарядки батарею можно будет использовать заново.

На сегодня создано много различных типов аккумуляторов, которые отличаются типом происходящей в них химической реакции. Наиболее распространенными типами аккумуляторов являются свинцово-кислотные (или просто свинцовые) аккумуляторы, в основе которых лежит реакция окисления-восстановления свинца. Такие устройства обладают довольно длительным сроком службы, а их энергоемкость составляет до 60 ватт-часов на килограмм. Еще более популярными в последнее время являются литий-ионные аккумуляторы, основанные на реакции окисления-восстановления лития. Энергоемкость современных литий-ионных аккумуляторов сейчас превышает 250 ватт-часов на килограмм.

Основными проблемами литий-ионных аккумуляторов являются их небольшая эффективность при отрицательных температурах, быстрое старение и повышенная взрывоопасность. А из-за того, что металлический литий очень активно реагирует с водой с образованием газообразного водорода и при горении аккумулятора выделяется кислород, самовозгорание литий-ионного аккумулятора очень тяжело поддается традиционным способам пожаротушения. Для того чтобы повысить безопасность такого аккумулятора и ускорить время его зарядки, ученые предлагают модифицировать материал катода, воспрепятствовав образованию дендритных литиевых структур, а в электролит добавить вещества, которые блокируют образование взрывоопасных структур, и компоненты, подавляющие возгорание на ранних стадиях.

Твердый электролит

В качестве другого менее очевидного способа повышения эффективности и безопасности батарей, химики предложили не ограничиваться в химических источниках тока жидкими электролитами, а создать полностью твердотельный источник тока. В таких устройствах вообще нет жидких компонентов, а есть слоистая структура из твердого анода, твердого катода и твердого же электролита между ними. Электролит при этом одновременно выполняет и функцию мембраны. Носителями заряда в твердом электролите могут быть различные ионы — в зависимости от его состава и тех реакций, которые проходят на аноде и катоде. Но всегда ими являются достаточно маленькие ионы, которые могут относительно свободно перемещаться по кристаллу, например протоны H + , ионы лития Li + или ионы кислорода O 2- .

Водородные топливные элементы

Возможность перезарядки и специальные меры безопасности делают аккумуляторы значительно более перспективными источниками тока, чем обычные батарейки, но все равно каждый аккумулятор содержит внутри себя ограниченное количество реагентов, а значит, и ограниченный запас энергии, и каждый раз аккумулятор необходимо заново заряжать для возобновления его работоспособности.

Чтобы сделать батарейку «бесконечной», в качестве источника энергии можно использовать не те вещества, которые находятся внутри ячейки, а специально прокачиваемое через нее топливо. Лучше всего в качестве такого топлива подойдет вещество, максимально простое по составу, экологически чистое и имеющееся в достатке на Земле.

Наиболее подходящее вещество такого типа — газообразный водород. Его окисление кислородом воздуха с образованием воды (по реакции 2H2 + O2 → 2H2O) является простой окислительно-восстановительной реакцией, а транспорт электронов между ионами тоже можно использовать в качестве источника тока. Протекающая при этом реакция является своего рода обратной реакцией к реакции электролиза воды (при котором под действием электрического тока вода разлагается на кислород и водород), и впервые такая схема была предложена еще в середине XIX века.

Но несмотря на то, что схема выглядит довольно простой, создать основанное на этом принципе эффективно работающее устройство — совсем не тривиальная задача. Для этого надо развести в пространстве потоки кислорода и водорода, обеспечить транспорт нужных ионов через электролит и снизить возможные потери энергии на всех этапах работы.

Схема работающего водородного топливного элемента очень похожа на схему химического источника тока, но содержит в себе дополнительные каналы для подачи топлива и окислителя и отвода продуктов реакции и избытка поданных газов. Электродами в таком элементе являются пористые проводящие катализаторы. К аноду подается газообразное топливо (водород), а к катоду — окислитель (кислород из воздуха), и на границе каждого из электродов с электролитом проходит своя полуреакция (окисление водорода и восстановление кислорода соответственно). При этом, в зависимости от типа топливного элемента и типа электролита, само образование воды может протекать или в анодном, или в катодном пространстве.

Если электролит является протонпроводящей полимерной или керамической мембраной, раствором кислоты или щелочи, то носителем заряда в электролите являются ионы водорода. В таком случае на аноде молекулярный водород окисляется до ионов водорода, которые проходят через электролит и там реагируют с кислородом. Если же носителем заряда является ион кислорода O 2– , как в случае твердооксидного электролита, то на катоде происходит восстановление кислорода до иона, этот ион проходит через электролит и окисляет на аноде водород с образованием воды и свободных электронов.

Кроме реакции окисления водорода для топливных элементов предложено использовать и другие типы реакций. Например, вместо водорода восстановительным топливом может быть метанол, который кислородом окисляется до углекислого газа и воды.

Эффективность топливных элементов

Несмотря на все преимущества водородных топливных элементов (такие как экологичность, практически неограниченный КПД, компактность размеров и высокая энергоемкость), они обладают и рядом недостатков. К ним относятся, в первую очередь, постепенное старение компонентов и сложности при хранении водорода. Именно над тем, как устранить эти недостатки, и работают сегодня ученые.

Повысить эффективность топливных элементов в настоящее время предлагается за счет изменения состава электролита, свойств электрода-катализатора, и геометрии системы (которая обеспечивает подачу топливных газов в нужную точку и снижает побочные эффекты). Для решения проблемы хранения газообразного водорода используют материалы, содержащие платину, для насыщения которых предлагают использовать, например, графеновые мембраны.

В результате удается добиться повышения стабильности работы топливного элемента и времени жизни его отдельных компонентов. Сейчас коэффициент преобразования химической энергии в электрическую в таких элементах достигает 80 процентов, а при определенных условиях может быть и еще выше.

Огромные перспективы водородной энергетики связывают с возможностью объединения топливных элементов в целые батареи, превращая их в электрогенераторы с большой мощностью. Уже сейчас электрогенераторы, работающие на водородных топливных элементах, имеют мощность до нескольких сотен киловатт и используются как источники питания транспортных средств.

Альтернативные электрохимические накопители

Помимо классических электрохимических источников тока, в качестве накопителей электроэнергии используют и более необычные системы. Одной из таких систем является суперконденсатор (или ионистор) — устройство, в котором разделение и накопление заряда происходит за счет образования двойного слоя вблизи заряженной поверхности. На границе электрод-электролит в таком устройстве в два слоя выстраиваются ионы разных знаков, так называемый «двойной электрический слой», образуя своеобразный очень тонкий конденсатор. Емкость такого конденсатора, то есть количество накопленного заряда, будет определяться удельной площадью поверхности электродного материала, поэтому в качестве материала для суперконденсаторов выгодно брать пористые материалы с максимальной удельной площадью поверхности.

Ионисторы являются рекордсменами среди зарядно-разрядных химических источников тока по скорости заряда, что является несомненным преимуществом данного типа устройств. К сожалению, они также являются рекордсменами и по скорости разряда. Энергоплотность ионисторов в восемь раз меньше по сравнению со свинцовыми аккумуляторами и в 25 раз меньше по сравнению с литий-ионными. Классические «двойнослойные» ионисторы не используют электрохимическую реакцию в своей основе, и к ним наиболее точно применим термин «конденсатор». Однако в тех вариантах исполнения ионисторов, в основе которых используется электрохимическая реакция и накопление заряда распространяется в глубину электрода, удается достичь более высоких времен разрядки при сохранении быстрой скорости заряда. Усилия разработчиков суперконденсаторов направлены на создание гибридных с аккумуляторами устройств, сочетающих в себе плюсы суперконденсаторов, в первую очередь высокую скорость заряда, и достоинства аккумуляторов — высокую энергоемкость и длительное время разряда. Представьте себе в ближайшем будущем аккумулятор-ионистор, который будет заряжаться за пару минут и обеспечивать работу ноутбука или смартфона в течение суток или более!

Несмотря на то, что сейчас плотность энергии суперконденсаторов пока в несколько раз меньше плотности энергии аккумуляторов, их используют в бытовой электронике и для двигателей различных транспортных средств, в том числе и в самых современных разработках.

Таким образом, на сегодня существует большое количество электрохимических устройств, каждое из которых перспективно для своих конкретных приложений. Для повышения эффективности работы этих устройств ученым необходимо решить ряд задач как фундаментального, так и технологического характера. Большинством этих задач в рамках одного из прорывных проектов занимаются в Уральском федеральном университете, поэтому о ближайших планах и перспективах по разработке современных топливных элементов мы попросили рассказать директора Института высокотемпературной электрохимии УрО РАН, профессора кафедры технологии электрохимических производств химико-технологического института Уральского федерального университета Максима Ананьева.

N + 1: Ожидается ли в ближайшем будущем какая-то альтернатива наиболее популярным сейчас литий-ионным аккумуляторам?

Максим Ананьев: Современные усилия разработчиков аккумуляторов направлены на замену типа носителя заряда в электролите с лития на натрий, калий, алюминий. В результате замены лития можно будет снизить стоимость аккумулятора, правда при этом пропорционально возрастут массо-габаритные характеристики. Иными словами, при одинаковых электрических характеристиках натрий-ионный аккумулятор будет больше и тяжелее по сравнению с литий-ионным.

Кроме того, одним из перспективных развивающихся направлений совершенствования аккумуляторов является создание гибридных химических источников энергии, основанных на совмещении металл-ионных аккумуляторов с воздушным электродом, как в топливных элементах. В целом, направление создания гибридных систем, как уже было показано на примере суперконденсаторов, по-видимому, в ближайшей перспективе позволит увидеть на рынке химические источники энергии, обладающие высокими потребительскими характеристиками.

Уральский федеральный университет совместно с академическими и индустриальными партнерами России и мира сегодня реализует шесть мегапроектов, которые сфокусированы на прорывных направлениях научных исследований. Один из таких проектов — «Перспективные технологии электрохимической энергетики от химического дизайна новых материалов к электрохимическим устройствам нового поколения для сохранения и преобразования энергии».

Группа ученых стратегической академической единицы (САЕ) Школа естественных наук и математики УрФУ, в которую входит Максим Ананьев, занимается проектированием и разработкой новых материалов и технологий, среди которых — топливные элементы, электролитические ячейки, металлграфеновые аккумуляторы, электрохимические системы аккумулирования электроэнергии и суперконденсаторы.

Исследования и научная работа ведутся в постоянном взаимодействии с Институтом высокотемпературной электрохимии УрО РАН и при поддержке партнеров.

Какие топливные элементы разрабатываются сейчас и имеют наибольший потенциал?

Одними из наиболее перспективных типов топливных элементов являются протонно-керамические элементы. Они обладают преимуществами перед полимерными топливными элементами с протонно-обменной мембраной и твердооксидными элементами, так как могут работать при прямой подаче углеводородного топлива. Это существенно упрощает конструкцию энергоустановки на основе протонно-керамических топливных элементов и систему управления, а следовательно, увеличивает надежность работы. Правда, такой тип топливных элементов на данный момент является исторически менее проработанным, но современные научные исследования позволяют надеяться на высокий потенциал данной технологии в будущем.

Какими проблемами, связанными с топливными элементами, занимаются сейчас в Уральском федеральном университете?

Сейчас ученые УрФУ совместно с Институтом высокотемпературной электрохимии (ИВТЭ) Уральского отделения Российской академии наук работают над созданием высокоэффективных электрохимических устройств и автономных генераторов электроэнергии для применений в распределенной энергетике. Создание энергоустановок для распределенной энергетики изначально подразумевает разработку гибридных систем на основе генератора электроэнергии и накопителя, в качестве которых выступают аккумуляторы. При этом топливный элемент работает постоянно, обеспечивая нагрузку в пиковые часы, а в холостом режиме заряжает аккумулятор, который может сам выступать резервом как в случае высокого энергопотребления, так и в случае внештатных ситуаций.

Наибольших успехов химики УрФУ и ИВТЭ достигли в области разработки твердо-оксидных и протонно-керамических топливных элементов. Начиная с 2016 года на Урале вместе с ГК «Росатом» создается первое в России производство энергоустановок на основе твердо-оксидных топливных элементов. Разработка уральских ученых уже прошла «натурные» испытания на станции катодной защиты газотрубопроводов на экспериментальной площадке ООО «Уралтрансгаз». Энергоустановка с номинальной мощностью 1,5 киловатта отработала более 10 тысяч часов и показала высокий потенциал применения таких устройств.

В рамках совместной лаборатории УрФУ и ИВТЭ ведутся разработки электрохимических устройств на основе протонпроводящей керамической мембраны. Это позволит в ближайшем будущем снизить рабочие температуры для твердо-оксидных топливных элементов с 900 до 500 градусов Цельсия и отказаться от предварительного риформинга углеводородного топлива, создав, таким образом, экономически эффективные электрохимические генераторы, способные работать в условиях развитой в России инфраструктуры газоснабжения.

Топливные (водородные) элементы/ячейки

Компания Интех ГмбХ / LLC Intech GmbH на рынке инжиниринговых услуг с 1997 года, официальный многолетний дистрибьютор различных производителей промышленного оборудования, предлагает Вашему вниманию различные топливные (водородные) элементы/ячейки.

Топливный элемент/ячейка – это

Преимущества топливных элементов/ячеек

Топливный элемент / ячейка – это устройство, которое эффективно вырабатывает постоянный ток и тепло из богатого водородом топлива путем электрохимической реакции.

Топливный элемент подобен батарее в том, что он вырабатывает постоянный ток путем химической реакции. Топливный элемент включает анод, катод и электролит. Однако, в отличие от батарей, топливные элементы/ячейки не могут накапливать электрическую энергию, не разряжаются и не требуют электричества для повторной зарядки. Топливные элементы/ячейки могут постоянно вырабатывать электроэнергию, пока они имеют запас топлива и воздуха.

В отличие от других генераторов электроэнергии, таких как двигатели внутреннего сгорания или турбины, работающие на газе, угле, мазуте и пр., топливные элементы/ячейки не сжигают топливо. Это означает отсутствие шумных роторов высокого давления, громкого шума при выхлопе, вибрации. Топливные элементы/ячейки вырабатывают электричество путем бесшумной электрохимической реакции. Другой особенностью топливных элементов/ячеек является то, что они преобразуют химическую энергию топлива напрямую в электричество, тепло и воду.

Топливные элементы высокоэффективны и не производят большого количества парниковых газов, таких как углекислый газ, метан и оксид азота. Единственным продуктом выброса при работе — являются вода в виде пара и небольшое количество углекислого газа, который вообще не выделяется, если в качестве топлива используется чистый водород. Топливные элементы/ячейки собираются в сборки, а затем в отдельные функциональные модули.

История развития топливных элементов/ячеек

В 1950х и 1960х годах одна из самых ответственных задач для топливных элементов родилась из потребности Национального управления по аэронавтике и исследованиям космического пространства США (NASA) в источниках энергии для длительных космических миссий. Щелочной топливный элемент/ячейка NASA использует в качестве топлива водород и кислород, соединяя эти два химических элемента в электрохимической реакции. На выходе получаются три полезных в космическом полете побочных продукта реакции – электричество для питания космического аппарата, вода для питья и систем охлаждения и тепло для согревания астронавтов.

Открытие топливных элементов относится к началу XIX века. Первое свидетельство об эффекте топливных элементов было получено в 1838 году.

В конце 1930х начинается работа над топливными элементами со щелочным электролитом и к 1939 году построен элемент, использующую никелированные электроды под высоким давлением. В ходе Второй Мировой Войны разрабатываются топливные элементы/ячейки для подлодок британского флота и в 1958 году представлена топливная сборка, состоящая из щелочных топливных элементов/ячеек диаметром чуть более 25 см.

Интерес возрос в 1950-1960е годы, а также в 1980е, когда промышленный мир пережил нехватку топлива. В этот же период мировые страны также озаботились проблемой загрязнения воздуха и рассматривали способы экологически чистого получения электроэнергии. В настоящее время технология производства топливных элементов/ячеек переживает этап бурного развития.

Принцип работы топливных элементов/ячеек

Топливные элементы/ячейки вырабатывают электроэнергию и тепло вследствие происходящей электрохимической реакции, используя электролит, катод и анод.

Анод и катод разделяются электролитом, проводящим протоны. После того, как водород поступит на анод, а кислород — на катод, начинается химическая реакция, в результате которой генерируются электрический ток, тепло и вода.

На катализаторе анода молекулярный водород диссоциирует и теряет электроны. Ионы водорода (протоны) проводятся через электролит к катоду, в то время как электроны пропускаются электролитом и проходят по внешней электрической цепи, создавая постоянный ток, который может быть использован для питания оборудования. На катализаторе катода молекула кислорода соединяется с электроном (который подводится из внешних коммуникаций) и пришедшим протоном, и образует воду, которая является единственным продуктом реакции (в виде пара и/или жидкости).

Ниже приведена соответствующая реакция:

Реакция на аноде: 2H2 => 4H+ + 4e —
Реакция на катоде: O2 + 4H+ + 4e — => 2H2O
Общая реакция элемента: 2H2 + O2 => 2H2O

Типы и разновидность топливных элементов/ячеек

Подобно существованию различных типов двигателей внутреннего сгорания, существуют различные типы топливных элементов – выбор подходящего типа топливного элемента зависит от его применения.

Топливные элементы делятся на высокотемпературные и низкотемпературные. Низкотемпературные топливные элементы требуют в качестве топлива относительно чистый водород. Это часто означает, что требуется обработка топлива для преобразования первичного топлива (такого как природный газ) в чистый водород. Этот процесс потребляет дополнительную энергию и требует специального оборудования. Высокотемпературные топливные элементы не нуждаются в данной дополнительной процедуре, так как они могут осуществлять «внутреннее преобразование» топлива при повышенных температурах, что означает отсутствие необходимости вкладывания денег в водородную инфраструктуру.

Топливные элементы/ячейки на расплаве карбоната (РКТЭ)

Топливные элементы с расплавленным карбонатным электролитом являются высокотемпературными топливными элементами. Высокая рабочая температура позволяет непосредственно использовать природный газ без топливного процессора и топливного газа с низкой теплотворной способностью топлива производственных процессов и из других источников.

Работа РКТЭ отличается от других топливных элементов. Данные элементы используют электролит из смеси расплавленных карбонатных солей. В настоящее время применяется два типа смесей: карбонат лития и карбонат калия или карбонат лития и карбонат натрия. Для расплавки карбонатных солей и достижения высокой степени подвижности ионов в электролите, работа топливных элементов с расплавленным карбонатным электролитом происходит при высоких температурах (650°C). КПД варьируется в пределах 60-80%.

При нагреве до температуры 650°C, соли становятся проводником для ионов карбоната (CO3 2- ). Данные ионы проходят от катода на анод, где происходит объединение с водородом с образованием воды, диоксида углерода и свободных электронов. Данные электроны направляются по внешней электрической цепи обратно на катод, при этом генерируется электрический ток, а в качестве побочного продукта – тепло.

Реакция на аноде: CO3 2- + H2 => H2O + CO2 + 2e —
Реакция на катоде: СO2 + 1/2O2 + 2e — => CO3 2-
Общая реакция элемента: H2 (g) + 1/2O2 (g) + CO2 (катод) => H2O(g) + CO2 (анод)

Высокие рабочие температуры топливных элементов с расплавленным карбонатным электролитом имеют определенные преимущества. При высоких температурах, происходит внутренний риформинг природного газа, что устраняет необходимость использования топливного процессора. Помимо этого, к числу преимуществ можно отнести возможность использования стандартных материалов конструкции, таких как листовая нержавеющая сталь и никелевого катализатора на электродах. Побочное тепло может быть использовано для генерации пара высокого давления для различных промышленных и коммерческих целей.

Высокие температуры реакции в электролите также имеют свои преимущества. Применение высоких температур требует значительного времени для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. Данные характеристики позволяют использовать установки на топливных элементах с расплавленным карбонатным электролитом в условиях постоянной мощности. Высокие температуры препятствуют повреждению топливного элемента окисью углерода.

Топливные элементы с расплавленным карбонатным электролитом подходят для использования в больших стационарных установках. Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью 3,0 МВт. Разрабатываются установки с выходной мощностью до 110 МВт.

Топливные элементы/ячейки на основе фосфорной кислоты (ФКТЭ)

Топливные элементы на основе фосфорной (ортофосфорной) кислоты стали первыми топливными элементами для коммерческого использования.

Топливные элементы на основе фосфорной (ортофосфорной) кислоты используют электролит на основе ортофосфорной кислоты (H3PO4) с концентрацией до 100%. Ионная проводимость ортофосфорной кислоты является низкой при низких температурах, по этой причине эти топливные элементы используются при температурах до 150–220°C.

Носителем заряда в топливных элементах данного типа является водород (H+, протон). Схожий процесс происходит в топливных элементах с мембраной обмена протонов, в которых водород, подводимый к аноду, разделяется на протоны и электроны. Протоны проходят по электролиту и объединяются с кислородом, получаемым из воздуха, на катоде с образованием воды. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток. Ниже представлены реакции, в результате которых генерируется электрический ток и тепло.

Реакция на аноде: 2H2 => 4H + + 4e —
Реакция на катоде: O2 (g) + 4H + + 4e — => 2 H2O
Общая реакция элемента: 2H2 + O2 => 2H2O

КПД топливных элементов на основе фосфорной (ортофосфорной) кислоты составляет более 40% при генерации электрической энергии. При комбинированном производстве тепловой и электрической энергии, общий КПД составляет около 85%. Помимо этого, учитывая рабочие температуры, побочное тепло может быть использовано для нагрева воды и генерации пара атмосферного давления.

Высокая производительность теплоэнергетических установок на топливных элементах на основе фосфорной (ортофосфорной) кислоты при комбинированном производстве тепловой и электрической энергии является одним из преимуществ данного вида топливных элементов. В установках используется окись углерода с концентрацией около 1,5%, что значительно расширяет возможность выбора топлива. Помимо этого, СО2 не влияет на электролит и работу топливного элемента, данный тип элементов работает с риформированным природным топливом. Простая конструкция, низкая степень летучести электролита и повышенная стабильность также являются преимущества данного типа топливных элементов.

Промышленно выпускаются теплоэнергетические установки с выходной электрической мощностью до 500 кВт. Установки на 11 МВт прошли соответствующие испытания. Разрабатываются установки с выходной мощностью до 100 МВт.

Твердооксидные топливные элементы/ячейки (ТОТЭ)

Твердооксидные топливные элементы являются топливными элементами с самой высокой рабочей температурой. Рабочая температура может варьироваться от 600°C до 1000°C, что позволяет использовать различные типы топлива без специальной предварительной обработки. Для работы с такими высокими температурами используемый электролит представляет собой тонкий твердый оксид металла на керамической основе, часто сплав иттрия и циркония, который является проводником ионов кислорода (О 2- ).

Твердый электролит обеспечивает герметичный переход газа от одного электрода к другому, в то время как жидкие электролиты расположены в пористой подложке. Носителем заряда в топливных элементах данного типа является ион кислорода (О 2- ). На катоде происходит разделение молекул кислорода из воздуха на ион кислорода и четыре электрона. Ионы кислорода проходят по электролиту и объединяются с водородом, при этом образуется четыре свободных электрона. Электроны направляются по внешней электрической цепи, при этом генерируется электрический ток и побочное тепло.

Реакция на аноде: 2H2 + 2O 2- => 2H2O + 4e —
Реакция на катоде: O2 + 4e — => 2O 2-
Общая реакция элемента: 2H2 + O2 => 2H2O

КПД производимой электрической энергии является самым высоким из всех топливных элементов – около 60-70%. Высокие рабочие температуры позволяют осуществлять комбинированное производство тепловой и электрической энергии для генерации пара высокого давления. Комбинирование высокотемпературного топливного элемента с турбиной позволяет создать гибридный топливный элемент для повышения КПД генерирования электрической энергии до 75%.

Твердооксидные топливные элементы работают при очень высоких температурах (600°C–1000°C), в результате чего требуется значительное время для достижения оптимальных рабочих условий, при этом система медленнее реагирует на изменение расхода энергии. При таких высоких рабочих температурах не требуется преобразователь для восстановления водорода из топлива, что позволяет теплоэнергетической установке работать с относительно нечистым топливом, полученным в результате газификации угля или отработанных газов и т.п. Также данный топливный элемент превосходно подходит для работы с высокой мощностью, включая промышленные и крупные центральные электростанции. Промышленно выпускаются модули с выходной электрической мощностью 100 кВт.

Топливные элементы/ячейки с прямым окислением метанола (ПОМТЭ)

Технология использования топливных элементов с прямым окислением метанола переживает период активного развития. Она успешно зарекомендовала себя в области питания мобильных телефонов, ноутбуков, а также для создания переносных источников электроэнергии. на что и нацелено будущее применение данных элементов.

Устройство топливных элементов с прямым окислением метанола схоже с топливных элементах с мембраной обмена протонов (МОПТЭ), т.е. в качестве электролита используется полимер, а в качестве носителя заряда – ион водорода (протон). Однако, жидкий метанол (CH3OH) окисляется при наличии воды на аноде с выделением СО2, ионов водорода и электронов, которые направляются по внешней электрической цепи, при этом генерируется электрический ток. Ионы водорода проходят по электролиту и вступает в реакцию с кислородом из воздуха и электронами, поступающих с внешней цепи, с образованием воды на аноде.

Реакция на аноде: CH3OH + H2O => CO2 + 6H + + 6e —
Реакция на катоде: 3/2O2 + 6 H + + 6e — => 3H2O
Общая реакция элемента: CH3OH + 3/2O2 => CO2 + 2H2O

Достоинством данного типа топливных элементов являются небольшие габариты, благодаря использованию жидкого топлива, и отсутствие необходимости использования преобразователя.

Щелочные топливные элементы/ячейки (ЩТЭ)

Щелочные топливные элементы – одни из самых эффективных элементов, используемых для генерации электричества, эффективность выработки электроэнергии доходит до 70%.

В щелочных топливных элементах используется электролит, то есть водный раствор гидроксида калия, содержащийся в пористой стабилизированной матрице. Концентрация гидроксида калия может меняться в зависимости от рабочей температуры топливного элемента, диапазон которой варьируется от 65°C до 220°C. Носителем заряда в ЩТЭ является гидроксильный ион (ОН — ), движущийся от катода к аноду, где он вступает в реакцию с водородом, производя воду и электроны. Вода, полученная на аноде, движется обратно к катоду, снова генерируя там гидроксильные ионы. В результате этого ряда реакций, проходящих в топливном элементе, производится электричество и, как побочный продукт, тепло:

Реакция на аноде: 2H2 + 4OH — => 4H2O + 4e —
Реакция на катоде: O2 + 2H2O + 4e — => 4 OH —
Общая реакция системы: 2H2 + O2 => 2H2O

Достоинством ЩТЭ является то, что эти топливные элементы — самые дешевые в производстве, поскольку катализатором, который необходим на электродах, может быть любое из веществ, более дешевых чем те, что используются в качестве катализаторов для других топливных элементов. ЩТЭ работают при относительно низкой температуре и являются одними из самых эффективных топливных элементов — такие характеристики могут соответственно способствовать ускорению генерации питания и высокой эффективности топлива.

Одна из характерных особенностей ЩТЭ – высокая чувствительность к CO2, который может содержаться в топливе или воздухе. CO2 вступает в реакцию с электролитом, быстро отравляет его, и сильно снижает эффективность топливного элемента. Поэтому использование ЩТЭ ограничено закрытыми пространствами, такими как космические и подводные аппараты, они должны работать на чистом водороде и кислороде. Более того, такие молекулы, как CO, H2O и CH4, которые безопасны для других топливных элементов, а для некоторых из них даже являются топливом, вредны для ЩТЭ.

Полимерные электролитные топливные элементы/ячейки (ПЭТЭ)

В случае полимерных электролитных топливных элементов полимерная мембрана состоит из полимерных волокон с водными областями, в которых существует проводимость ионов воды H2O + (протон, красный) присоединяется к молекуле воды). Молекулы воды представляют проблему из-за медленного ионного обмена. Поэтому требуется высокая концентрация воды как в топливе, так и на выпускных электродах, что ограничивает рабочую температуру 100°C.

Твердокислотные топливные элементы/ячейки (ТКТЭ)

В твердокислотных топливных элементах электролит (CsHSO4) не содержит воды. Рабочая температура поэтому составляет 100-300°C. Вращение окси анионов SO4 2- позволяет протонам (красный) перемещаться так, как показано на рисунке. Как правило, твердокислотный топливный элемент представляет собой бутерброд, в котором очень тонкий слой твердокислотного компаунда располагается между двумя плотно сжатыми электродами, чтобы обеспечить хороший контакт. При нагреве органический компонент испаряется, выходя через поры в электродах, сохраняя способность многочисленных контактов между топливом (или кислородом на другом конце элементы), электролитом и электродами.

Различные модули топливных элементов. Батарея топливного элемента

  1. Батарея топливных элементов
  2. Остальное оборудование, работающее при высокой температуре (интегрированный парогенератор, камера сгорания, устройство смены теплового баланса)
  3. Теплостойкая изоляция

Модуль топливного элемента

Сравнительный анализ типов и разновидностей топливных элементов

Инновационные энергосберегающие коммунально-бытовые теплоэнергетические установки обычно построены на твердооксидных топливных элементах (ТОТЭ), полимерных электролитных топливных элементах (ПЭТЭ), топливных элементах на фосфорной кислоте (ФКТЭ), топливных элементах с мембраной обмена протонов (МОПТЭ) и щелочных топливных элементах (ЩТЭ). Обычно имеют следующие характеристики:

Наиболее подходящими следует признать твердооксидные топливные элементы (ТОТЭ), которые:

  • работают при более высокой температуре, что уменьшает необходимость в дорогих драгоценных металлах (таких, как платина)
  • могут работать на различных видах углеводородного топлива, в основном на природном газе
  • имеют большее время запуска и потому лучше подходят для длительного действия
  • демонстрируют высокую эффективность выработки электроэнергии (до 70%)
  • из-за высоких рабочих температур установки могут быть скомбинированы с системами обратной теплоотдачи, доводя общую эффективность системы до 85%
  • имеют практически нулевой уровень выбросов, работают бесшумно и предъявляют низкие требованиями к эксплуатации в сравнении с существующими технологиями выработки электроэнергии

Поскольку малые теплоэнергетические установки могут подключаться к обычной сети подачи газа, топливные элементы не требуют отдельной системы подачи водорода. При использовании малых теплоэнергетических установок на основе твердооксидных топливных ячеек вырабатываемое тепло может интегрироваться в теплообменники для нагрева воды и вентиляционного воздуха, увеличивая общую эффективность системы. Эта инновационная технология наилучшим образом подходит для эффективной выработки электричества без необходимости в дорогой инфраструктуре и сложной интеграции приборов.

Применение топливных элементов/ячеек

Применение топливных элементов/ячеек в системах телекоммуникации

Вследствие быстрого распространения систем беспроводной связи во всем мире, а также роста социально-экономических выгод технологии мобильных телефонов, необходимость надежного и экономичного резервного электропитания приобрела определяющее значение. Убытки электросети на протяжении года вследствие плохих погодных условий, стихийных бедствий или ограниченной мощности сети представляют собой постоянную сложную проблему для операторов сети.

Традиционные телекоммуникационные решения в области резервного электропитания включают батареи (свинцово-кислотный элемент аккумуляторной батареи с клапанным регулированием) для резервного питания в течение непродолжительного времени и дизельные и пропановые генераторы для более продолжительного резервного питания. Батареи являются относительно дешевым источником резервного питания на 1 – 2 часа. Однако батареи не подходят для более продолжительного резервного питания, так как их техническое обслуживание является дорогим, они становятся ненадежными после долгой эксплуатации, чувствительны к температурам и опасны для окружающей среды после утилизации. Дизельные и пропановые генераторы могут обеспечить продолжительное резервное электропитание. Однако генераторы могут быть ненадежными, требуют трудоемкого технического обслуживания, выделяют в атмосферу высокие уровни загрязнений и газов, вызывающих парниковый эффект.

С целью устранения ограничений традиционных решений в области резервного электропитания была разработана инновационная технология экологически чистых топливных ячеек. Топливные ячейки надежны, не производят шума, содержат меньше подвижных деталей, чем генератор, имеют более широкий диапазон рабочих температур, чем батарея: от -40°C до +50°C и, как результат, обеспечивают чрезвычайно высокий уровень энергосбережения. Кроме того, затраты на такую установку на протяжении срока эксплуатации ниже затрат на генератор. Более низкие затраты на топливную ячейку являются результатом всего одного посещения с целью технического обслуживания в год и значительно более высокой производительностью установки. В конце концов, топливная ячейка представляет собой экологически чистое технологическое решение с минимальным воздействием на окружающую среду.

Установки на топливных ячейках обеспечивают резервное электропитание для критически важных инфраструктур сети связи для беспроводной, постоянной и широкополосной связи в системе телекоммуникаций, в диапазоне от 250 Вт до 15 кВт, они предлагают множество непревзойденных инновационных характеристик:

  • НАДЕЖНОСТЬ – малое количество подвижных деталей и отсутствие разрядки в режиме ожидания
  • ЭНЕРГОСБЕРЕЖЕНИЕ
  • ТИШИНА – низкий уровень шумов
  • УСТОЙЧИВОСТЬ – рабочий диапазон от -40°C до +50°C
  • АДАПТИВНОСТЬ – установка на улице и в помещении (контейнер/защитный контейнер)
  • ВЫСОКАЯ МОЩНОСТЬ – до 15 кВт
  • НИЗКАЯ ПОТРЕБНОСТЬ В ТЕХНИЧЕСКОМ ОБСЛУЖИВАНИИ – минимальное ежегодное техническое обслуживание
  • ЭКОНОМИЧНОСТЬ — привлекательная совокупная стоимость владения
  • ЭКОЛОГИЧЕСКИ ЧИСТАЯ ЭНЕРГИЯ – низкий уровень выбросов с минимальным воздействием на окружающую среду

Система все время чувствует напряжение шины постоянного тока и плавно принимает критические нагрузки, если напряжение шины постоянного тока падает ниже заданного значения, определенного пользователем. Система работает на водороде, который поступает в батарею топливных ячеек одним из двух путей – либо из промышленного источника водорода, либо из жидкого топлива из метанола и воды, при помощи встроенной системы риформинга.

Электричество производится батареей топливных элементов в виде постоянного тока. Энергия постоянного тока передается на преобразователь, который преобразует нерегулируемую электроэнергию постоянного тока, исходящую от батареи топливных ячеек, в высококачественную регулируемую электроэнергию постоянного тока для необходимых нагрузок. Установка на топливных ячейках может обеспечивать резервное электропитание на протяжении многих дней, так как продолжительность действия ограничена только имеющимся в запасе количеством водорода или топлива из метанола/воды.

Топливные элементы предлагают высокий уровень энергосбережения, повышенную надежность системы, более предсказуемые эксплуатационные качества в широком спектре климатических условий, а также надежную эксплуатационную долговечность в сравнении с комплектами батарей со свинцово-кислотными элементами с клапанным регулированием промышленного стандарта. Затраты на протяжении срока эксплуатации также более низкие, вследствие значительно меньшей потребности в техническом обслуживании и замене. Топливные ячейки предлагают конечному пользователю экологические преимущества, так как затраты на утилизацию и риски ответственности, связанные со свинцово-кислотными элементами, вызывают растущее беспокойство.

На эксплуатационные характеристики электрических батарей может отрицательно повлиять широкий спектр факторов, таких как уровень зарядки, температура, циклы, срок службы и другие переменные факторы. Предоставляемая энергия будет различной в зависимости от этих факторов, ее нелегко предсказать. Эксплуатационные характеристики топливной ячейки с мембраной обмена протонов (МОПТЯ) относительно не подвержены влиянию этих факторов и могут обеспечивать критически важное электропитание, пока есть топливо. Повышенная предсказуемость является важным преимуществом при переходе на топливные ячейки для критически важных сфер использования резервного электропитания.

Топливные элементы генерируют энергию только при подаче топлива, подобно газотурбинному генератору, но не имеют подвижных деталей в зоне генерирования. Поэтому, в отличие от генератора, они не подвержены быстрому износу и не требуют постоянного технического обслуживания и смазки.

Топливо, используемое для приведения в действие преобразователя топлива с повышенной продолжительностью действия, представляет собой топливную смесь из метанола и воды. Метанол является широкодоступным, производимым в промышленных масштабах топливом, которое в настоящее время имеет множество применений, среди прочего стеклоомыватели, пластиковые бутылки, присадки для двигателя, эмульсионные краски. Метанол легко транспортируется, может смешиваться с водой, обладает хорошей способностью к биоразложению и не содержит серы. Он имеет низкую точку замерзания (-71°C) и не распадается при длительном хранении.

Применение топливных элементов/ячеек в сетях связи

Сети засекреченной связи нуждаются в надежных решениях в области резервного электропитания, которые могут функционировать на протяжении нескольких часов или нескольких дней в чрезвычайных ситуациях, если электросеть перестала быть доступной.

При наличии незначительного числа подвижных деталей, а также отсутствии снижения мощности в режиме ожидания, инновационная технология топливных ячеек предлагает привлекательное решение в сравнении с существующими в настоящий момент системами резервного электропитания.

Самым неопровержимым доводом в пользу применения технологии топливных ячеек в сетях связи является повышенная общая надежность и безопасность. Во время таких происшествий, как отключения электропитания, землетрясения, бури и ураганы, важно, чтобы системы продолжали работать и были обеспечены надежной подачей резервного электропитания на протяжении длительного периода времени, независимо от температуры или срока эксплуатации системы резервного электропитания.

Линейка устройств электропитания на основе топливных ячеек идеально подходит для поддержки сетей засекреченной связи. Благодаря заложенным в конструкцию принципам энергосбережения, они обеспечивают экологически чистое, надежное резервное питание с повышенной продолжительностью действия (до нескольких дней) для использования в диапазоне мощностей от 250 Вт до 15 кВт.

Применение топливных элементов/ячеек в сетях передачи данных

Надежное электропитание для сетей передачи данных, таких как сети высокоскоростной передачи данных и оптико-волоконные магистрали, имеет ключевое значение во всем мире. Информация, передаваемая по таким сетям, содержит критически важные данные для таких учреждений, как банки, авиакомпании или медицинские центры. Отключение электропитания в таких сетях не только представляет опасность для передаваемой информации, но и, как правило, приводит к значительным финансовым потерям. Надежные инновационные установки на топливных ячейках, обеспечивающие резервное электропитание, предоставляют надежность, необходимую для обеспечения непрерывного электропитания.

Установки на топливных ячейках, работающие на жидкой топливной смеси из метанола и воды, обеспечивают надежное резервное электропитание с повышенной продолжительностью действия, вплоть до нескольких дней. Кроме того, эти установки отличаются значительно сниженными требованиями в отношении технического обслуживания в сравнении с генераторами и батареями, необходимо лишь одно посещение с целью технического обслуживания в год.

Типичные характеристики мест применений для использования установок на топливных ячейках в сетях передачи данных:

  • Применения с количествами потребляемой энергии от 100 Вт до 15 кВт
  • Применения с требованиями в отношении автономной работы > 4 часов
  • Повторители в оптико-волоконных системах (иерархия синхронных цифровых систем, высокоскоростной Интернет, голосовая связь по IP-протоколу…)
  • Сетевые узлы высокоскоростной передачи данных
  • Узлы передачи по протоколу WiMAX

Установки на топливных ячейках для резервного электропитания предлагают многочисленные преимущества для критически важных инфраструктур сетей передачи данных в сравнении с традиционными автономными батареями или дизельными генераторами, позволяя повысить возможности использования на месте:

  1. Технология жидкого топлива позволяет решить проблему размещения водорода и обеспечивает практически неограниченную работу резервного электропитания.
  2. Благодаря тихой работе, малой массе, устойчивости к перепадам температур и функционированию практически без вибраций топливные элементы можно устанавливать вне здания, в промышленных помещениях/контейнерах или на крышах.
  3. Приготовления к использованию системы на месте быстры и экономичны, стоимость эксплуатации низкая.
  4. Топливо обладает способностью к биоразложению и представляет собой экологически чистое решение для городской среды.

Применение топливных элементов/ячеек в системах безопасности

Самые тщательно разработанные системы безопасности зданий и системы связи надежны лишь настолько, насколько надежно электропитание, которое поддерживает их работу. В то время как большинство систем включает некоторые типы систем резервного бесперебойного питания для краткосрочных потерь мощности, они не создают условия для более продолжительных перерывов в работе электросети, которые могут иметь место после стихийных бедствий или терактов. Это может стать критически важным вопросом для многих корпоративных и государственных учреждений.

Такие жизненно важные системы, как системы мониторинга и контроля доступа с помощью системы видеонаблюдения (устройства чтения идентификационных карт, устройства для закрытия двери, техника биометрической идентификации и т.д.), системы автоматической пожарной сигнализации и пожаротушения, системы управления лифтами и телекоммуникационные сети, подвержены риску при отсутствии надежного альтернативного источника электропитания питания продолжительного действия.

Дизельные генераторы производят много шума, их тяжело разместить, также хорошо известно о проблемах с их надежностью и техническим обслуживанием. В противоположность этому, установка на топливных ячейках, обеспечивающая резервное электропитание, не производит шума, является надежной, выбросы, выделяемые ей, равны нулю или весьма низки, ее легко установить на крыше или вне здания. Она не разряжается и не теряет мощность в режиме ожидания. Она обеспечивает непрерывную работу критически важных систем, даже после того, как учреждение прекратит работу и здание будет покинуто людьми.

Инновационные установки на топливных ячейках защищают дорогостоящие вложения критически важных сфер применения. Они обеспечивают экологически чистое, надежное резервное питание с повышенной продолжительностью действия (до многих дней) для использования в диапазоне мощностей от 250 Вт до 15 кВт в сочетании с многочисленными непревзойденными характеристиками и, особенно, высоким уровнем энергосбережения.

Установки на топливных ячейках для резервного электропитания предлагают многочисленные преимущества для использования в критически важных сферах применения, таких как системы обеспечения безопасности и управления зданиями, в сравнении с традиционными автономными батареями или дизельными генераторами. Технология жидкого топлива позволяет решить проблему размещения водорода и обеспечивает практически неограниченную работу резервного электропитания.

Применение топливных элементов/ячеек в коммунально-бытовом отоплении и электрогенерации

На твердооксидных топливных ячейках (ТОТЯ) построены надежные, энергетически эффективные и не дающие вредных выбросов теплоэнергетические установки для выработки электроэнергии и тепла из широко доступного природного газа и возобновляемых источников топлива. Эти инновационные установки используется на самых различных рынках, от домашней выработки электричества до поставок электроэнергии в удаленные районы, а также в качестве вспомогательных источников питания.

Эти энергосберегающие установки производят тепло для отопления помещений и подогрева воды, а также электроэнергию, которая может быть использована в доме и отведена назад в электросеть. Распределенные источники выработки электроэнергии могут включать фотогальванические (солнечные) элементы и ветровые микротурбины. Эти технологии на виду и широко известны, однако их работа зависит от погодных условий и они не могут стабильно вырабатывать электроэнергию круглый год. По мощности теплоэнергетические установки могут варьироваться от менее чем 1 кВт до 6 МВт и больше.

Применение топливных элементов/ячеек в распределительных сетях

Малые теплоэнергетические установки предназначены для работы в распределенной сети выработки энергии, состоящей из большого числа малых генераторных установок вместо одной централизованной электростанции.

На рисунке ниже указаны потери эффективности выработки электроэнергии при ее выработке на ТЭЦ и передаче в дома через традиционные сети электропередач, используемые на данный момент. Потери эффективности при централизованной выработке включают потери с электростанции, низковольтной и высоковольтной передачи, а также потери при распределении.

Рисунок показывает результаты интеграции малых теплоэнергетических установок: электричество вырабатывается с эффективностью выработки до 60% на месте использования. В дополнение к этому, домохозяйство может использовать тепло, вырабатываемое топливными ячейками, для нагрева воды и помещений, что увеличивает общую эффективность переработки энергии топлива и повышает уровень энергосбережения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *