Как проверить конденсатор для автозвука
Как подключить конденсатор к сабвуферу и зачем он нужен, знают только те, кто уже сталкивался с работой по улучшению автозвука, потому что, когда самостоятельно устанавливаете аудиосистему, поневоле приходится изучить множество различных материалов.
Среди материалов, встречаются те, что рекомендуют совместно с усилителем обязательно установить накопитель либо конденсатор своими руками. Действительно ли необходим конденсатор, или это очередная выдумка, а если нужен, то для чего, сейчас разберемся.
Немного о конденсаторах
Вот так выглядит современный накопитель для сабвуфера
В наши дни все чаще встречаются накопители для сабвуфера, в устройстве которых применяются конденсаторы, фото выше (от латинского Condense — накапливать):
- Раньше подобные фильтры для сабвуферов встречались лишь в навороченных системах топового уровня, однако сегодня все чаще они встречаются и среди бюджетных вариантов инсталляций
- Сейчас подробно разберемся для чего так необходим конденсатор (далее кондер) в аудио системе автомобиля
- Сегодня современный активный сабвуфер при воспроизведении музыки на кратковременных пиках звучания потребляет значительный (повышенный) ток
- Однако необходимую мощность тока сегодня не в состоянии будут обеспечить даже наиболее мощные аккумуляторы
- Без применения кондеров в эти моменты появляется ощутимые провалы при работе сабвуфера, что значительно снижает качество его звучания
Чтобы решить проблемы с накоплением дополнительного напряжения и применяются накопители - Главным назначением этой детали в схеме является аккумулирование заряда, который, в случае необходимости отдается в сеть к усилителю для сабвуфера
- Сразу после отдачи заряда, конденсатор заряжается вновь (см.Как зарядить конденсатор для сабвуфера самостоятельно) для обеспечения нового пика баса сабвуфера
- Схема установки сабвуфера и конденсатора показана на первом рисунке
- Происходит весь процесс за долю секунды, что позволяет постоянно обеспечивать качественное звучание
- При этом даже в дешевых инсталляциях с использованием сабвуфера качество звучания улучшается кардинальным образом
- Сразу исчезает столь неприятное каждому невнятное бубнение, которое возникает при провалах (недостатке) напряжения
- Так ли нужен этот конденсатор?
- Ведь известно, что цена за него увы, не маленькая, поэтому не далеко не каждый автомобилист, даже среди любители качественного звука, может себе позволить подобную роскошь
- Но с другой стороны, практически каждый меломан обзаводится рано или поздно мощной музыкальной аппаратурой и доводит её звучание до совершенства
- Мощность звучания – это хорошо, однако, чем мощнее ваша система, тем больше она требует энергии
Примечание: Самой большой глупостью, которую легко можно отыскать на подобных форумах, является утверждение, что — надо выбирать конденсатор исходя из расчета исключительно количества фарад на киловатт, подобные рекомендации не верны в корне, абсолютно не понятно, откуда они берутся.
- Чтобы раскрыть завесу хоть в некоторой степени, сейчас вернемся к урокам физики
- И по мере обновления (освежения) в нашей памяти полезных знаний, все мифы развеются, как утренний туман
Различия аккумулятора и конденсатора
Прежде чем изучать вопрос, как правильно подключить конденсатор для сабвуфера, нужно понимать для чего, поэтому давайте разберемся:
Примечание: Отличается конденсатор от аккумулятора тем, что вершина отдачи энергии в конденсаторе приходится лишь на первый миг, затем происходит резкое падение заряда, а вместе с зарядом падает и скорость его отдачи. В аккумуляторе отдача идет без скачков и падений в течение продолжительного времени.
- Сегодня существует альтернатива конденсаторам – ионисторы, рассмотрим их плюсы и минусы
Ионисторы
Ионисторы – модные заменители накопителей, то, что зачастую возит в багажнике большинство меломанов, они отличаются от конденсаторов следующими параметрами:
- Большими потерями энергии
- Огромным сопротивлением
- Отдают заряд намного медленнее накопителей
- Стоят дешевле в несколько раз, чем накопители такой же емкости
- Оптимальным временем работы ионистора является: 1 секунда/83 кул.
Проверяем ионистор
Инструкция рекомендует проверить ионистор, чтобы понять, работает ли он, и как он работает:
- Цепляете ионистор к акустической системе с просадками питания
- Заводите мотор и наблюдаете, если напряжение на его клеммах усиливается, значит пока все у вас в порядке
- Увеличиваете громкость и замечаете, как напряжение садится от 13-ти до 10-ти вольт
Примечание: Это означает одно, при первом же ударе мощности саба заряд падает и ионистор превращается в лишний компонент в системе питания, поскольку активным и полезным он бывает тогда, когда заряд его выше напряжения внутри сети.
- Подобную ситуацию любители автозвука называют просадкой, она может стать значительно большей, если вы применяете в системе питания тонкие и некачественные провода из дешевого обмедненного алюминия
- В таком случае к стандартной просадке добавляется просадка от кабеля
Примечание: Стоит знать, чем грозит вам просадка кабеля. Причина в том, что от резкого возрастания потребления происходит возрастание реактивного сопротивления.
И чем быстрее и больше пользователь хочет взять через кабель энергию, тем кабель сильнее будет этому мешать (особенно если он у вас тонкий и очень длинный). Проблема от дешевого и низкокачественного кабеля отражается на ионисторе, который после разрядки, не сможет больше снова накопить энергию, поэтому решайте сами
Установка конденсатора
Схема подключения конденсатор для сабвуфера, то с чего следует начинать работу:
Схема подключения в цепь конденсатора
- Устанавливая кондер, рекомендуется подключить его параллельно, относительно питания усилителя
- Располагать его нужно, по возможности ближе к усилителю, причем не дальше 60 сантиметров
- Если вы на место популярного ионистора вы поставите накопитель, тогда результат от него получится намного эффективнее
- Генератор вашего автомобиля следует отремонтировать или поставить новый
- От генератора прокладываете провода на плюс и массу
- Устанавливаете новый аккумулятор, или старый после профилактики
- Клеммы либо тщательно зачищаете, либо заменяете новыми
- Прокладываете силовой кабель из меди хорошего качества и с хорошим сечением , не забываете при этом про предохранитель
Совет: Пока не проверите контакт всех клемм и не убедитесь, что в сети есть 14вольт, не подсоединяйте конденсатор.
Примечание: Еще одно распространенное заблуждение по поводу конденсаторов, якобы они нужны в системах, где вам необходима максимальная громкость либо на соревнованиях в мощности звучания, для фанатов эс пи эль. На самом деле, при обычных случаях, он будет удачно заменять ионистор.
Доказать что кондер необходим в обычных акустических автомобильных системах можно:
Производитель Focal
Вот, например, известный производитель высококачественной аудиотехники и усилителей из Франции, Фокал, использует в своих моделях такое решение:
- Для кондеров в них предусматривается место, сразу после блока питания в усилителе
- Именно в них, по утверждению экспертов, эффективность применениям дополнительных накопителей выше во много раз
Примечание: Единственным недостатком этого фирменного конденсатора, является то обстоятельство, что он подходит исключительно к усилителям марки Фокал.
Особенности кондера Фокал следующие:
- Он значительно повышает характеристики звучания
- Модуль состоит из нескольких кондеров, работающих параллельно
Примечание: Количество кондеров в модуле соответствует количеству блоков питания в усилителях.
- Осуществляется подключение через комплектный кабель и специальный разъем
- При сложных режимах работы стабильность усилителя повышается за счет встроенной технологии High-Cap
- Схемы подключения конденсатора для сабвуфера прилагаются
- Как становится понятно, накопитель в системе необходим, он эффективнее ионистора, но и гораздо дороже, выбирать лучше той же фирмы, что и усилитель, чтобы не было проблем
- Подключать нужно качественными медными проводами, с хорошим сечением, чтобы не появилась просадка из-за проводов
- Не забывайте про хороший контакт, зачищайте клеммы и про мощный аккумулятор
- Применяйте исправный генератор
- Тогда звучание будет просто супер
Остается пожелать вам успешного подключения и порекомендовать видео, для успешного выполнения работы.
Григорий с детства обожал машины, а в подростковом возрасте, когда самостоятельно подключил автомагнитолу в отцовской девятке, понял, что машины будут его работой, хобби, призванием.
Зачем нужен конденсатор для автоакустики, знают все те, кто так или иначе сталкивался с автозвуком. Дело в том, что когда устанавливается аудиосистема своими руками, приходится изучать множество материалов.
И в рекомендациях указывается, что вместе с усилителем обязательно должен ставиться конденсатор или накопитель. Нужны ли конденсаторы для акустики в авто или все это мифы.
Если нужны, то зачем и какова их роль во всей системе. Вот о чем пойдет речь в нашей статье.
Общая информация
Лучшие конденсаторы для акустики
Итак, зачем же нужен конденсатор? Как известно, цена на него не маленькая и не все автомобилисты, даже любители хорошего звука, желают лишний раз урезать свой бюджет.
С другой стороны, каждый меломан рано или поздно обзаводится мощной акустической системой или доводит ее до совершенства. Это очень хорошо, но чем мощнее система, тем больше энергии ей подавай.
Правда или нет
По сей день и в интернете, на различных форумах, в блогах ведутся горячие споры, относительно надобности или бесполезности такого накопителя, как конденсатор. Сами споры, к огромному сожалению любителей автозвука, к истине никакой не приводят.
Они полностью бесполезны, ввиду того, что оппоненты даже не имеют начального школьного представления, касающиеся физики.
Примечание. Самая большая глупость, которую можно вычитать из форумов, гласит, что надо устанавливать конденсатор из расчета только фарадов на киловатт. Такие рекомендации в корне не верны, так как не поймешь, откуда они взяты.
Итак, чтобы в некоторой степени раскрыть завесу, давайте вернемся к урокам по физике. По мере того, как будут обновляться в нашей памяти ценные знания, все мифы исчезнут, как утренний дымок.
Различия конденсатора и АКБ
Примечание. Отличие конденсатора от аккумулятора в том, что пик отдачи энергии у конденсатора приходится только на первый миг, а затем происходит резкий упадок заряда. Тем самым, падает и скорость отдачи вместе с зарядом.
Различия конденсатора и ионистора
Ионистор для сабвуфера
Ионисторы – это то, что возят у себя в багажнике большая часть меломанов.
Отличается от конденсатора следующими параметрами:
- Огромными потерями;
- Большим сопротивление;
- Отдает заряд гораздо медленнее;
- Стоит в несколько раз дешевле, чем конденсатор той же емкости.
Оптимальное время работы ионистора равно: 1 сек/83 кул.
Проверка ионистора
Рекомендуется проверять ионистор, чтобы наглядно понимать, как он работает:
- Цепляем ионистор в акустическую систему с просадками питания;
- Заводим и наблюдаем, что напряжение на клеммах усиливается. Пока все в порядке;
- Увеличиваем громкость и замечаем, что напряжение садится с 13 до 10 вольт.
Примечание. Все это означает, что при первом ударе саба заряд упадет и ионистор превратится в лишний компонент питания, поскольку полезным и активным он бывает лишь, когда его заряд больше напряжения в сети.
Такая ситуация среди любителей автозвука называется просадкой, но она может быть значительно хуже, если используются в питании тонкие некачественные провода и дешевый обмедненный алюминий. В этом случае к обычной просадке добавляется еще и просадка кабеля.
Примечание. Надо знать, чем опасна просадка кабеля. Дело в том, что при резком возрастании потребления происходит реактивное сопротивление. Чем больше и быстрее пользователь попытается взять с кабеля энергию, тем тот (кабель) сильнее этому будет препятствовать (если он тонкий и длинный).
Проблема дешевого и некачественного кабеля отразится и на ионисторе, который разрядившись, уже не сможет более получить энергию.
Установка конденсатора
При установке конденсатора рекомендуется подключать его параллельно питанию усилителя(см.Как подключить к автомагнитоле усилитель: сам себе мастер). Ставить его надо, как можно ближе к усилителю мощности, по крайней мере, не дальше 60 см.
Если на место ионистора поставить конденсатор, то результат будет намного эффективнее.
Делается все так:
- Генератор автомобиля ремонтируется или ставится новый;
- От него прокладывается кабель на массу и плюс;
- Ставится новая АКБ;
- Все клеммы меняются или тщательно зачищаются;
- Прокладывается силовой медный кабель хорошего качества с достаточным сечением;
- Подключаем усилитель, не забываем предохранитель.
Совет. Пока не проверим все клеммы и не удостоверимся, что есть 14 вольт, конденсатор не соединяем.
Примечание. Еще одним заблуждением является тот факт, что якобы конденсатор нуждается в системах, где необходима большая громкость или на соревнованиях эс пи эль. В обычных случаях, конденсатор удачно заменит ионистор.
Доказать необходимость конденсатора и в обычных автомобильных акустических системах можно, исходя из нижеприведенного:
Одним словом, в эс пи эль уж точно никакой конденсатор или иной накопитель не используется.
Лучшие конденсаторы
Какой конденсатор лучше для акустики
На сегодняшний день, конденсаторов, как и любой другой продукции автозвука, на рынке очень много. Некоторые производители усилителей, даже заранее предусматривают клеммы, предназначенные для подключения конденсатора.
Примечание. К таким усилителям можно отнести Аудисон Весис HV Venti, который даже признан лучшим акустическим усилителем прошлого года.
Focal
Другой известный производитель усилителей и высококачественной аудиотехники, но уже из Франции, Фокал, в своих моделях использует иное решение: для конденсаторов здесь предусматривается место после блока питания усилителя. Именно здесь, как утверждают эксперты, эффективность использования дополнительных накопителей во много раз выше.
Конденсатор какой лучше для акустики
Примечание. Недостатком такого конденсатора, является то, что подходит он только к усилителям своей марки Фокал.
Особенности у этого конденсатора следующие:
- Значительно улучшит характеристику звучания;
- Это даже не один конденсатор, а несколько. Они собраны в единый модуль.
Примечание. Количество конденсаторов соответствует числу блоков питания усилителей.
- Подключение осуществляется посредством комплектного кабеля через специальный разъем;
- В сложных режимах работы повышается стабильность усилителя за счет технологии High-Cap.
В процессе установки конденсатора своими руками, будет полезно посмотреть тематический видео обзор. Не менее важны качественные фото – материалы, схемы, инструкция и чертежи. Цена на конденсаторы разная, но лучший из всех стоит не дешево.
Григорий с детства обожал машины, а в подростковом возрасте, когда самостоятельно подключил автомагнитолу в отцовской девятке, понял, что машины будут его работой, хобби, призванием.
Зачем нужен конденсатор для сабвуфера
Электрический конденсатор представляет собой двухполюсное устройство, способное накапливать, сохранять и отдавать электрический заряд. Конструктивно он состоит из двух пластин (обкладок), разделенных диэлектриком. Важнейшей характеристикой конденсатора является его емкость, отражающая величину энергии, которую он способен накопить. Единицей измерения емкости служит фарада. Из всех типов конденсаторов, наибольшей емкостью обладают электролитические конденсаторы, а также их дальнейшие усовершенствованные родственники – ионисторы.
Чтобы понять, для чего нужен конденсатор, разберемся, что происходит в электрической сети автомобиля при включении в нее низкочастотной автоакустики, имеющей мощность 1 кВт и более. Простой подсчет показывает, что ток, потребляемый такими устройствами, достигает 100 ампер и выше. Нагрузка имеет неравномерный характер, максимумы достигаются в моменты басовых ударов. Просадка напряжения в момент прохождения автозвуком пика громкости НЧ обусловлена двумя факторами:
- Наличием внутреннего сопротивления аккумулятора, ограничивающим его способность к быстрой отдаче тока;
- Влиянием сопротивления соединительных проводов, вызывающим падение напряжения.
Конденсатор подсоединяется параллельно аккумулятору. При резком увеличении потребления тока увеличивается падение напряжения на внутреннем сопротивлении аккумулятора и, соответственно, уменьшается на выходных клеммах. В этот момент включается в работу конденсатор. Он отдаёт накопленную энергию, и тем самым компенсирует падение отдаваемой мощности.
Как подобрать конденсатор
Требуемая емкость конденсатора зависит от мощности сабвуфера. Чтобы не вдаваться в сложные вычисления, можно пользоваться простым эмпирическим правилом: на 1 кВт мощности необходима емкость 1 фарада. Превышение этого соотношения идет только на пользу. Поэтому, наиболее распространенный в продаже конденсатор большой емкости в 1 фараду, можно использовать и для сабвуферов мощностью менее 1 кВт. Рабочее напряжение конденсатора должно быть не менее 14 – 18 вольт. Некоторые модели оборудованы цифровым вольтметром – индикатором. Это создает дополнительные удобства в эксплуатации, а электроника, контролирующая заряд конденсатора, позволяет облегчить эту процедуру.
Как подключить конденсатор к сабвуферу
Установка конденсатора не относится к сложным процедурам, но при ее выполнении нужно быть внимательным и соблюдать некоторые правила:
На рисунке 1 проиллюстрировано подключение конденсатора к сабвуферу.
Как зарядить конденсатор для сабвуфера
Подключать к электрической сети автомобиля, следует уже заряженный автомобильный конденсатор. Необходимость выполнения этого действия объясняется свойствами конденсатора, о которых упоминалось выше. Конденсатор заряжается так же быстро, как и разряжается. Поэтому, в момент включения разряженного конденсатора, токовая нагрузка будет чересчур велика.
Если купленный конденсатор на сабвуфер оснащен электроникой, контролирующей зарядный ток, можно не беспокоиться, смело подсоединяйте его к цепям питания. В противном случае, конденсатор следует заряжать до подключения, ограничивая ток. Удобно использовать для этого обыкновенную автомобильную лампочку, включив ее вразрез цепи питания. Рисунок 2 показывает, как правильно заряжать конденсаторы большой ёмкости.
В момент включения, лампа загорится в полный накал. Максимальный скачок тока будет ограничен при этом мощностью лампы и будет равен ее номинальному току. Далее, в процессе заряда, накал лампы будет ослабевать. По окончании процесса зарядки, лампа потухнет. После этого надо отключить конденсатор от зарядной цепи. Затем можно подключить заряженный конденсатор к цепи питания усилителя.
Дополнительные плюсы установки конденсаторов в автомобилях
Кроме решения проблем с работой сабвуфера, подключаемый в сеть автомобиля конденсатор оказывает положительное влияние на режим работы электрооборудования в целом. Проявляется это следующим образом:
- Конденсатор является хорошим фильтром высокочастотных составляющих сетевого напряжения, возникающих при коммутации нагрузок и работе некоторых электронных приборов, его функции благоприятно сказываются на работе всех систем автомобиля;
- Применение конденсатора позволяет сгладить скачки напряжения, возникающие при включении и отключении потребителей бортовой сети, что позволяет генератору работать в более ровном режиме;
- При запуске автомобиля стартером, конденсатор, безусловно, принимает в нем дополнительное участие, отдавая свой заряд в бортовую сеть. Особенно это актуально зимой, когда возможность аккумулятора отдавать ток снижается, а свойства конденсатора не изменяются.
Заключение
И напоследок, есть желание помочь проекту? Подписывайся на группу “Вконтакте” и “Instagram”. Спасибо, и добро пожаловать в банду
У меня появился усложненный холодный пуск, т.е. заводилась с 3-5 раза, и первые 3-5 секунд как подтраивала, затем резко подхватывала и всё приходило в норму, стоял кондёр от ВАЗ, после замены на родной старый кондёр холодный пуск нормализовался, но учитывая, что старому кондёру уже 30 лет, решил не испытывать судьбу и не мучать старенький конденсатор, заказал и поставил аналог HYUNDAI/KIA 27325-35610
цена — 250 рублей.
Существует несколько способов проверки конденсатора на автомобилях ВАЗ 2105, 2107.
— При помощи контрольной лампы.
1- катушка зажигания, 2 — крышка трамблера, 3 — трамблер, 4 — конденсатор.
— При помощи провода от катушки зажигания.
Как и в способе, описанном выше, отсоединяем провод от катушки и провод конденсатора от вывода на трамблере. Включаем зажигание. Соприкасаем наконечники проводов. Появилось искрение – конденсатор неисправен. Нет – все в порядке.
1 — катушка зажигания, 2 — крышка трамблера, 3 — трамблер, 4 — конденсатор.
Проворачиваем коленчатый вал так, чтобы контакты прерывателя в трамблере сомкнулись. Отсоединяем от трамблера только провод конденсатора. Включаем зажигание. Подносим к наконечнику провода конденсатора наконечник центрального высоковольтного провода от катушки зажигания. Отверткой размыкаем контакты прерывателя (или можно рукой немного повернуть распределитель, чтобы контакты разошлись). Между наконечником высоковольтного провода и наконечником провода конденсатора проскочит искра – конденсатор зарядится током высокого напряжения. Подносим наконечник провода конденсатора к его корпусу. Появление разрядной искры со щелчком свидетельствует о нормальном состоянии конденсатора. Искры нет – конденсатор неисправен.
Примечания и дополнения
— Конденсатор на автомобилях ВАЗ 2105, 2107 и их модификациях с контактной системой зажигания устанавливается на трамблере (30.3706-01) параллельно контактам прерывателя и служит для повышения вторичного напряжения и предотвращения обгорания контактов. Он заряжается при размыкании контактов и разряжается через вторичную обмотку катушки зажигания, чем вызывает повышения вторичного напряжения.
— Параметры работы конденсатора автомобилей ВАЗ 2105, 2107: емкость конденсатора замеряется в диапазоне частоты 50 – 1000 Гц и находится в пределах 0,20-0,25 мкФ, сопротивление изоляции при температуре (100±2)ºС и напряжении постоянного тока 100 В должно быть более 1 МОм/мкФ.
Еще статьи ремонту автомобилей
Когда проверяют работоспособность конденсатора
За способность принимать, удерживать и отдавать электрические заряды конденсатор используется в системе электроснабжения и зажигания. Накопитель с повышенной емкостью используется в нештатной акустике, оборудованной усилителем и сабвуфером.
Определять исправность детали необходимо, если прибор перестал правильно функционировать или мешает другим устройствам. В автомобиле испорченный накопитель электрического заряда может повлиять на работу мотора, радио или акустической системы.
Основные признаки неисправности конденсатора:
- двигатель трудно, а иногда и невозможно запустить;
- неустойчивая работа мотора на холостом ходу;
- фары, мигающие в такт низких частот автомобильной акустики;
- имеются сильные помехи при прослушивании радио.
В этом видео рассказывается, почему не работает двигатель автомобиля с испорченным конденсатором в системе зажигания.
Как работает этот компонент
Изделия защищают электронные компоненты от разного рода помех и используются во множестве систем вашей машины. Ключевой функцией приспособления является фильтрация — например, в автоакустике. Без конденсатора музыкальная система будет работать плохо: возникнут посторонние шумы, помехи и изменения громкости. Все это является следствием скачков напряжения в электросети авто.
Конденсаторы есть во многих частях автомобиля. Они играют роль буферов между аккумуляторами и другими электронными приспособлениями. Без такого изделия невозможно функционирование не только акустики, но и контактного механизма в распределителе зажигания.
На фото: схема системы батарейного зажигания с цифровым обозначением компонентов:
- Аккумулятор.
- Включатель стартера.
- Включатель зажигания.
- Первичная обмотка.
- Вторичная обмотка.
- Катушка зажигания.
- Распределитель.
- Прерыватель.
- Конденсатор.
- Свеча зажигания.
Схема батарейного зажигания. Конденсатор о
Подготовка
Собираясь прозвонить конденсатор, следует подготовить необходимые инструменты.
В процессе проверки могут понадобиться:
- аналоговый (со стрелочкой) или цифровой омметр или мультиметр;
- небольшие куски провода для удобства сборки схемы проверки;
- лампочка или автомобильный индикатор;
- отвертка.
Следует помнить как проверить электролитический конденсатор мультиметром и не вывести из строя. Необходимо плюсовой и минусовой щупы прибора подключать строго к плюсовому и минусовому выводам детали, не забывая об опасности работы с электрическими приборами под напряжением и соблюдая технику безопасности при выполнении работ.
Назначение коммутатора
Бесконтактная система зажигания отличается тем, что электрический импульс, подаваемый на катушку (катушки), формируется не контактом прерывателя, установленным в трамблере, а коммутатором. Электронная схема последнего подает искру в цилиндры с оптимальным временем опережения, основываясь на данных о текущем режиме работы двигателя и положении коленвала в каждый конкретный момент.
Коммутатор способен выдерживать физические нагрузки, вибрацию и температурные перепады в широком диапазоне. Отсутствие контактов в схеме обеспечивает большую надежность и долговечность работы узла. Еще одно достоинство такого решения состоит в том, что коммутатор ВАЗ 2107 имеет возможность перепрограммирования со стороны пользователя для установки момента опережения, соответствующего качеству топлива и динамическим требованиям к автомобилю.
Параметры коммутатора ВАЗ 2107
Рабочее напряжение коммутатора — 13,5 вольт, допустимый диапазон напряжения — от 6 до 16 вольт. Максимальный ток коммутации — 8,5 ампер. Коммутатор обеспечивает стабильное искрообразование в диапазоне оборотов двигателя от 20 до 7000 оборотов в минуту.
Проверка приборами-тестерами
- Переключаем омметр или мультиметр в верхний предел измерений.
- Разряжаем, замкнув центральный контакт (провод) на корпус.
- Один щуп измерительного прибора соединяем с проводом, второй — с корпусом.
- На исправность детали указывает плавное отклонение стрелки или изменение цифровых значений.
Емкость
Для измерения емкости понадобится цифровой мультиметр с соответствующей функцией.
- Устанавливаем мультиметр в режим определения емкости (Сх) в положение, соответствующее предполагаемому номиналу исследуемой детали.
- Подключаем выводы в специальный разъем или к щупам мультиметра.
- На дисплее высвечивается значение.
Напряжение
Помимо емкости, следует проверить рабочее напряжение . На исправной детали оно соответствует указанному на корпусе. Для проверки потребуются вольтметр или мультиметр, а также источник зарядки исследуемого элемента с меньшим напряжением.
Делаем измерение на заряженной детали и сверяем его с номинальным значением. Действовать нужно аккуратно и быстро, так как в процессе заряд в накопителе теряется и важно запомнить первую цифру.
Сопротивление
Неполярные накопители с емкостью более 0,25 мкФ можно проверить, выставив диапазон измерений 2 МОм. На исправной детали показатель на дисплее должен быть выше 2.
Крышка трамблера
Раздача высокого напряжения на свечи цилиндров силового агрегата осуществляется за счет распределительной крышки трамблера. После образования в катушке токов высоких показателей они поступают на основной контакт колпака распределителя-прерывателя, а уже затем, через подвижной элемент, на пластину ротора. В то время, когда ротор вращается, напряжение проскакивает с пластины на контакты распределительной крышки.
Затем короткие импульсы по бронепроводам высокого напряжения поступают непосредственно на свечи зажигания. Контакты распределительной крышки имеют определенную нумерологию, которая соответствует определенному цилиндру двигателя.
Именно так и устанавливается момент работы цилиндров. Определенный порядок работы предусматривает равномерное распределение нагрузки на коленвал. В основном четырехцилиндровые моторы имеют следующий порядок работы: 1-3-4-2. Но он может несущественно изменяться в зависимости от производителя. В данном случае формула порядка работы означает, что изначально воспламенение происходит в первом цилиндре, затем в третьем, четвертом и втором. При этом система зажигания двигателя предусматривает подачу напряжения на свечи в момент окончания такта сжатия. Это происходит за счет установки угла опережения зажигания.
Опережение момента искрообразования необходимо из-за высокой скорости перемещения поршней в цилиндрах. В том случае, когда топливная смесь будет воспламеняться несколько позже или раньше предусмотренного, коэффициент полезного действия расширяющихся газов значительно снизится. Поэтому воспламенение топлива должно осуществляться в заданный момент, когда поршень подходит к ВМТ. При правильно установленном угле опережения на поршень будет воздействовать оптимальное количество газов, необходимое для нормальной работы двигателя. Угол опережения выставляется путем проворачивания корпуса прерывателя. Так подбирается определенный момент, когда контакты прерывателя разводятся.
Проверяем без приборов
Порядок тестирования работоспособности накопителей энергии без приборов:
- От контакта на прерывателе трамблера отсоединяем провода, идущие с конденсатора и катушки зажигания.
- Крепим между проводами контрольную лампу или контакты автомобильного индикатора.
- Включаем зажигание, лампочка загорается — это означает, что проверяемая деталь неисправна, требуется ее замена.
Вместо пунктов 2 и 3, при определенном стечении обстоятельств, можно, включив зажигание, соединить провода между собой, искрение будет сигналом неисправности.
Если на автомобиле есть возможность вручную вращать коленчатый вал, то можно попробовать выполнить еще один способ проверки конденсатора.
- Вращением коленчатого вала добиваемся смыкания контактов в трамблере.
- Отсоединяем от прерывателя гибкий конец конденсатора.
- Вытаскиваем центральный провод из крышки распределителя.
- Включаем зажигание и подносим его к отсоединенному контакту накопителя.
- Отверткой размыкаем прерыватель или поворачиваем для этого корпус трамблера, проскочившая между проводами искра заряжает конденсатор током высокого напряжения.
- Приближаем к его гибкий контакт к корпусу, проскакивает разрядная искра с щелчком и свидетельствует об исправность. Если искры или щелчка нет, необходима замена исследуемой детали.
В некоторых случаях бывает достаточно визуального осмотра.
При обычном осмотре могут быть обнаружены такие неисправности:
- вздутие или разрыв корпуса;
- следы подтекания электролита;
- изменение цвета корпуса;
- признаки термических воздействий на участке крепления конденсатора.
С помощью переноски
Еще один способ проверки на функционирование подразумевает наличие омметра или переносной лампы. Последняя даже поможет выявить пробивание конденсатора.
Вот, как проводится диагностика:
- Провод конденсатора отключается от зажима прерывателя.
- Отсоединяется еще токопровод, проложенный на катушку.
- Подключаются выводы переноски.
При повреждении элемента лампа должна загореться.
Внимание. Для уменьшения эффекта обугливания контактов и увеличение вторич. тока, рекомендуется синхронно им соединять конденсатор.
Он подпитывается искрой, проскакивающей при размыкании, даже если выставлен минимальный зазор. Все известные автомобильные схемы элекроподачи оборудуются собственным конденсатором, емкость которого варьируется в пределах 0,17 — 0,35мкФ. К примеру, у вазовских моделей емкость этого устройства приближена к значениям 0,20 — 0,25мкФ.
Если пропускная способность грешит отклонением, это непосредственно сказывается на минимизации добавочного тока. Разряжение и очередная зарядка конденсатора проблему никак не решает.
Полезные советы
Полезные советы от специалистов:
- Напряжение в заряженном накопителе с большой емкостью можно проверить замкнув контакты при помощи отвертки с изолированной рукояткой — должна проскочить мощная искра.
- Перед тем, как начать исследования в мультиметр или другой используемый прибор желательно поставить свежую батарейку.
- Проверяемую деталь из схемы лучше выпаивать или отсоединять.
- Касаться контактов руками в процессе исследования нельзя, так как они могут быть под опасным напряжением или показания прибора будут искажены.
Устройство контактной системы зажигания
Низковольтные токи служат источником питания и исходят от генератора и аккумулятора автомобиля.
Как правило, значение такого напряжения равно двенадцати-четырнадцати вольтам. А для воспроизводства момента искры в свечах запала нужно подать на них до двадцати тысяч вольт. Учитывая этот фактор, система воспламенения имеет в своей конструкции две различные электрические цепи. Схема системы зажигания собрана из следующих устройств и элементов: АКБ, катушки, трамблера, регуляторов опережения воспламенения вакуумного и центробежного типов, контактных свечек, электропроводов, замкового устройства включения.
Способ четвертый
Четвертый вариант тестирования конденсатора связан с прокруткой коленвала. Если наблюдается сильное токообразование при заводе ДВС, это признак неисправного конденсатора.
Что касается пробоя, то и его можно легко определить во время запуска двигателя. Если между центральным бронепроводом и массой появляется слабое искрообразования, а контакты искрятся сильно, это доказывает пробивание. Такой конденсатор более не способен нормально функционировать – его придется заменить.
Тем самым, тестировать элемент системы получится различными способами. Каждый автомобилист, в зависимости от собственного опыта, выбирает более подходящий вариант.
Забудьте о штрафах с камер! Абсолютно легальная новинка — Глушилка камер ГИБДД, скрывает ваши номера от камер, которые стоят по всем городам. Подробнее по ссылке.
- Абсолютно легально (статья 12.2);
- Скрывает от фото-видеофиксации;
- Подходит для всех автомобилей;
- Работает через разъем прикуривателя;
- Не вызывает помех в радиоприемнике и сотовых телефонах.
Рекомендуем посмотреть:
- Проверка реле зарядки ваз 2107
- Техническое обслуживание прерывателя распределителя
- Как проверить генератор на ваз 2107 инжектор
Из за чего троит двигатель
Конденсатор состоит из нескольких проводников, разделенных диэлектрическим материалом, вмонтированным в корпус. Эта деталь используется в большинстве электронных устройств и электрике автомобиля. Существуют универсальные способы, как проверить конденсатор на работоспособность.
Что такое емкость
Основная характеристика конденсатора — способность накапливать электрический заряд, называется она емкостью и измеряется в фарадах.
Когда проверяют работоспособность конденсатора
За способность принимать, удерживать и отдавать электрические заряды конденсатор используется в системе электроснабжения и зажигания. Накопитель с повышенной емкостью используется в нештатной акустике, оборудованной усилителем и сабвуфером.
Определять исправность детали необходимо, если прибор перестал правильно функционировать или мешает другим устройствам. В автомобиле испорченный накопитель электрического заряда может повлиять на работу мотора, радио или акустической системы.
Основные признаки неисправности конденсатора:
- двигатель трудно, а иногда и невозможно запустить;
- неустойчивая работа мотора на холостом ходу;
- фары, мигающие в такт низких частот автомобильной акустики;
- имеются сильные помехи при прослушивании радио.
В этом видео рассказывается, почему не работает двигатель автомобиля с испорченным конденсатором в системе зажигания.
Подготовка
Собираясь прозвонить конденсатор, следует подготовить необходимые инструменты.
В процессе проверки могут понадобиться:
- аналоговый (со стрелочкой) или цифровой омметр или мультиметр;
- небольшие куски провода для удобства сборки схемы проверки;
- лампочка или автомобильный индикатор;
- отвертка.
Следует помнить как проверить электролитический конденсатор мультиметром и не вывести из строя. Необходимо плюсовой и минусовой щупы прибора подключать строго к плюсовому и минусовому выводам детали, не забывая об опасности работы с электрическими приборами под напряжением и соблюдая технику безопасности при выполнении работ.
Проверка приборами-тестерами
- Переключаем омметр или мультиметр в верхний предел измерений.
- Разряжаем, замкнув центральный контакт (провод) на корпус.
- Один щуп измерительного прибора соединяем с проводом, второй — с корпусом.
- На исправность детали указывает плавное отклонение стрелки или изменение цифровых значений.
Емкость
Для измерения емкости понадобится цифровой мультиметр с соответствующей функцией.
- Устанавливаем мультиметр в режим определения емкости (Сх) в положение, соответствующее предполагаемому номиналу исследуемой детали.
- Подключаем выводы в специальный разъем или к щупам мультиметра.
- На дисплее высвечивается значение.
Напряжение
Помимо емкости, следует проверить рабочее напряжение . На исправной детали оно соответствует указанному на корпусе. Для проверки потребуются вольтметр или мультиметр, а также источник зарядки исследуемого элемента с меньшим напряжением.
Делаем измерение на заряженной детали и сверяем его с номинальным значением. Действовать нужно аккуратно и быстро, так как в процессе заряд в накопителе теряется и важно запомнить первую цифру.
Сопротивление
Неполярные накопители с емкостью более 0,25 мкФ можно проверить, выставив диапазон измерений 2 МОм. На исправной детали показатель на дисплее должен быть выше 2.
Проверяем без приборов
Порядок тестирования работоспособности накопителей энергии без приборов:
- От контакта на прерывателе трамблера отсоединяем провода, идущие с конденсатора и катушки зажигания.
- Крепим между проводами контрольную лампу или контакты автомобильного индикатора.
- Включаем зажигание, лампочка загорается — это означает, что проверяемая деталь неисправна, требуется ее замена.
Вместо пунктов 2 и 3, при определенном стечении обстоятельств, можно, включив зажигание, соединить провода между собой, искрение будет сигналом неисправности.
Если на автомобиле есть возможность вручную вращать коленчатый вал, то можно попробовать выполнить еще один способ проверки конденсатора.
12. Руководство по тестированию ионисторов
Фирма Maxwell Technologies проверяет свои ионисторы непосредственно с использованием цикла зарядки/разрядки постоянным током. Для того чтобы потребитель мог оценить прибор перед проверкой в рабочих условиях, может быть полезен тест на разрядку постоянным током.
Все конденсаторы из соображений безопасности хранятся разряженными.
Мы рекомендуем разряжать любой конденсатор, который не установлен в оборудование, и надевать закорачивающий кусочек провода на его выводы.
Ниже перечислено оборудование, необходимое для выполнения типичного теста на разрядку постоянным током:
♦ двунаправленный источник питания (питание/нагрузка) или отдельный источник питания и программируемая нагрузка (способная работать по постоянному току);
♦ прибор, позволяющий проводить измерения изменения напряжения во времени и хранить результаты (цифровой осциллограф или другое аналогичное оборудование);
♦ прибор, позволяющий проводить измерения колебаний тока во времени и хранить результаты (не обязателен, если вы уверены в установках источника питания и нагрузки).
Перед началом тестирования подключите оборудование сбора данных к выводам прибора и установите максимальную скорость регистрации данных (желательно, меньше 100 мс, чем быстрее регистрирует прибор, тем выше точность вычислений).
Подготовка
1. Установите необходимые предельные значения напряжения и тока источника питания и выключите питание.
2. Максимальный ток должен быть равен или меньше максимального тока испытываемого прибора. Maxwell обычно проводит тестирование своих элементов при величине токе 20–50 % от максимального, в зависимости от размера элемента. Если проводятся несколько тестов, необходимо обеспечить подачу воздуха для охлаждения.
3. Предельное напряжение должны быть равно максимальному напряжению ячейки, умноженному на количество последовательно включенных ячеек. Напряжение на одной ячейке должно быть не более 2,5 В. Шесть (например) последовательно включенных ячеек можно проверять при любом напряжении до 15 В (6 х 2,5 В = 15 В).
4. Подключите ионистор к источнику питания (после установки предельных значений тока и напряжения).
5. В зависимости от тока и длительности работы для поддержания температуры в допустимых для прибора пределах может потребоваться воздушное охлаждение.
6. Подключите приборы измерения напряжения и тока.
Заряд
1. Когда выполнены установки источника питания и ионистор подключен, включите источник питания.
2. Заряжайте конденсатор соответствующим током до достижения необходимого напряжения.
Разряд
1. Замечание. Если вы используете отдельную программируемую нагрузку вместо источника зарядного и разрядного тока, перед разрядом отключите источник от проверяемых ионисторов. (Недостаточно просто выключить его или установить на 0, поскольку у многих источников имеет место ток утечки.)
2. Установите нагрузку на соответствующее значение тока а разряд на 0,1 В, или насколько возможно низко.
3. НЕМЕДЛЕННО отключите нагрузку, как только будет достигнут минимум напряжения, позволяя при измерении исключить падение напряжения на внутреннем сопротивлении.
4. (Разряд можно остановить при любом напряжении. Maxwell, в зависимости от конкретного прибора, измеряет одни устройства при разряде до 0,1 В, другие — до половины начального напряжения. Величина емкости будут несколько выше при разряде до половины исходного напряжения, чем при разряде до 0,1 В.)
5. Измерьте следующие параметры:
— Vw —» исходное рабочее напряжение;
— Vmin — минимальное напряжение с нагрузкой;
— Id — ток разряда;
— Vf — напряжение через 5 с после снятия нагрузки;
— td — время разряда от исходного напряжения до минимального напряжения.
Емкость = (Id х td)/(Vw — Vj) = (Id x td)/Vd
Это изменение напряжения (Vw — Vj) используется потому, что оно устраняет вклад падения напряжения из-за эквивалентного последовательного сопротивления.
Эквивалентное последовательное сопротивление (при постоянном токе) вычисляется следующим образом:
ESR = Vf — Vmin/Id
Для измерения эквивалентного последовательного сопротивления на высоких частотах используется измерительный прибор или мост. Это сопротивление на частотах до 100 Гц обычно составляет 50–60 % от сопротивления при постоянном токе. Емкость может быть намного ниже из-за структуры электрода.
В Вычисления емкости и сопротивления можно выполнять и в цикле зарядки, используя аналогичные измерения.
Меры безопасности
Как и при проведении любых электрических тестов, вы должны быть достаточно осторожны. Необходимо соблюдать полярность и величину напряжения. Все соединения должны быть выполнены с расчетом на максимально возможный ток и изолированы для соответствующего напряжения. При проведении повторных испытаний может потребоваться воздушное охлаждение, чтобы устройства находились в рабочем диапазоне температур.
Как проверить ионисторы тестером
Сравнительно недавно в широкой продаже появились так называемые ионисторы. По-иному их ещё называют суперконденсаторами. По размерам они сравни обычным электролитическим конденсаторам, но обладают по сравнению с ними, гораздо большей ёмкостью.
Ионистор – это некий гибрид конденсатора и аккумулятора. В зарубежной литературе ионистор называют сокращённо EDLC, что расшифровывается как Electric Double Layer Capacitor, что по-русски означает: конденсатор с двойным электрическим слоем. Работа ионистора основана на электрохимических процессах.
Устройство ионистора.
Отличие ионистора от конденсатора заключается в том, что между его электродами нет специального слоя из диэлектрика. Взамен этого электроды у ионистора сделаны из веществ, обладающими противоположенными типами носителей заряда.
Как известно, электрическая ёмкость конденсатора зависит от площади обкладок: чем она больше, тем больше ёмкость. Поэтому электроды ионисторов чаще всего делают из вспененного углерода или активированного угля. Благодаря этому приёму удаётся получить большую площадь своеобразных «обкладок». Электроды разделяются сепаратором и всё это находятся в электролите. Сепаратор необходим исключительно для защиты электродов от короткого замыкания. Электролит же выполняется на основе растворов кислот и щелочей и является кристаллическим и твёрдым.
Например, с помощью твёрдого кристаллического электролита на основе рубидия, серебра и йода (RbAg4I5) возможно создание ионисторов с низким саморазрядом, большой ёмкостью и выдерживающие низкие температуры. Также возможно изготовление ионисторов на основе электролитов растворов кислот, таких как H2SO4. Такие ионисторы обладают низким внутренним сопротивлением, но и малым рабочим напряжением около 1 В. В последнее время ионисторы на основе электролитов из растворов щелочей и кислот почти не производят, так как такие ионисторы содержат токсичные вещества.
В результате электрохимических реакций небольшое количество электронов отрывается от электродов. При этом электроды приобретают положительный заряд. Отрицательные ионы, которые находятся в электролите, притягиваются электродами, которые заряжены положительно. В итоге всего этого процесса и образуется электрический слой.
Заряд в ионисторе сохраняется на границе раздела электрода из углерода и электролита. Толщина электрического слоя, который образован анионами и катионами, составляет очень малую величину порой равную 1…5 нанометрам (нм). Как известно, с уменьшением расстояния между обкладками ёмкость возрастает.
К основным положительным качествам ионисторов можно отнести:
Малое время заряда и разряда. Благодаря этому ионистор можно быстро зарядить и использовать, тогда, как на заряд аккумуляторных батарей уходит значительное время;
Количество циклов заряд/разряд – более 100000;
Не требуют обслуживания;
Небольшой вес и габариты;
Для заряда не требуется сложных зарядных устройств;
Работает в широком диапазоне температур (-40…+70°C). При температуре больше +70°C ионистор, как правило, разрушается;
Длительный срок службы.
К отрицательным свойствам ионисторов можно отнести всё ещё высокую стоимость, а также довольно малое напряжение на одном элементе ионистора. Номинальное рабочее напряжение ионистора зависит от типа используемого в нём электролита.
Чтобы увеличить рабочее напряжение ионистора их соединяют последовательно, также как и при соединении батареек. Правда, для надёжной работы такого составного ионистора нужно каждый отдельный ионистор шунтировать резистором. Делается это для того, чтобы выровнять напряжение на каждом отдельном ионисторе. Это связано с тем, что параметры отдельных ионисторов отличаются. Ток, который течёт через выравнивающий резистор, должен быть в несколько раз больше тока утечки (саморазряда) ионистора. Значение тока саморазряда у маломощных ионисторов составляет десятки микроампер.
Также стоит помнить, что ионистор – это полярный компонент. Поэтому при подключении его в схему нужно соблюдая полярность.
Кроме этого стоит избегать короткого замыкания выводов ионистора. И хотя ионисторы достаточно устойчивы к короткому замыканию, оно может привести к чрезмерному повышению температуры сверх максимального вследствие теплового действия тока, а это приведёт к порче ионистора.
Ионисторы прекрасно работают в цепях постоянного и пульсирующего тока. Правда, в случае протекания через ионистор пульсирующего тока высокой частоты он может нагреваться из-за высокого внутреннего сопротивления на высоких частотах. Как уже говорилось, увеличение температуры электродов ионистора выше максимально допустимой приводит к его порче.
В документации на ионистор, как правило, указывается значение его внутреннего сопротивления на частоте 1 кГц. Например, для ионистора DB-5R5D105T ёмкостью 1 Фарада внутреннее сопротивление на частоте 1 кГц составлет 30Ω. Также существуют ионисторы с ещё меньшим внутренним сопротивлением. Они маркируются как Low resistance или Low ESR. Такие ионисторы заряжаются быстрее.
Для постоянного тока же внутреннее сопротивление ионистора мало и составляет единицы миллиом – десятки ом.
Обозначение ионистора на схеме.
На схемах ионистор обозначается также как и электролитический конденсатор. Тогда же встаёт вопрос: «А как же определить, что на принципиальной схеме изображён именно ионистор?»
Определить, что на схеме изображён ионистор можно по значению номинальных параметров. Если рядом с обозначением указано, например, 1F * 5,5 V, то тут сразу станет понятно, что это ионистор. Как известно, электролитических конденсаторов ёмкостью 1 Фарада не существует, а если и существует, то габариты у него немалые . Также сразу бросается в глаза номинальное напряжение в 5,5 V. Как уже говорилось, ионисторы в принципе не рассчитаны на большое рабочее напряжение.
Где применяются ионисторы?
Очень часто ионисторы можно встретить в цифровой аппаратуре. Там они выполняют роль автономного или резервного источника питания для микроконтроллеров (IC’s), микросхем памяти (RAM’s), КМОП-микросхем (CMOS’s) или электронных часов (RTC). Благодаря этому даже при отключенном основном питании электронный прибор сохраняет заданные настройки и ход часов. Так, например, в кассетном аудиоплеере Walkman используется миниатюрный ионистор.
При замене аккумуляторов или батареек в плеере он полностью обесточивается, что неизбежно приводит к стиранию настроек (например, частот радиостанций, установок эквалайзера, сброс хода электронных часов). Но этого не происходит благодаря тому, что электронную схему в «ждущем» режиме питает заряженный ионистор. И хотя ёмкость его несоизмеримо меньше, чем ёмкость аккумулятора или батареи этого хватает для сохранения настроек и работы часов в течение нескольких суток!
Ионистор является достаточно новым электронным компонентом. Впервые ионистор был разработан в Соединённых штатах в 1960-х годах. А позднее, в 1978 году, ионисторы появились и в СССР под маркой К58-1. Это был первый отечественный ионистор. Далее промышленность стала выпускать ионисторы марок К58-15 и К58-16.
Как можно применить ионистор в самодельных конструкциях? Его можно использовать в качестве аварийного источника питания, например, в конструкциях на микроконтроллерах. Вот простейшая схема включения ионистора в цепь питания электронного устройства.
Диод VD1 служит для предотвращения разряда ионистора С1, когда напряжение питания равно 0 (Uпит=0). В качестве диода VD1 лучше применить диод Шоттки, например, 1N5817 и аналогичные, так как у них малое падение напряжения на открытом переходе. Резистор R1 препятствует перегрузке источника питания, ограничивая зарядный ток ионистора. Его можно не устанавливать, если источник питания выдерживает ток нагрузки 100 – 250 мА. Rн – это сопротивление нагрузки (питаемое устройство, например, микроконтроллер).
Под занавес сего повествования хочется показать какое-нибудь видео. Видео не моё, нашёл в YouTube. Показано, как можно запитать светодиод от заряженного ионистора ёмкостью в 0,047 Ф. Ионистор на 5,5 V, поэтому если решите повторить эксперимент, то заряжайте его 3 вольтами, иначе можно нечаянно спалить светодиод.
Кстати, у меня оказывается, точно такой же ионистор в запаснике завалялся. А у Вас есть ионистор?
Ионисторы 4 фарада — Суперконденсаторы!
Китайские фарады — такие же свободные величины, как китайские ватты и ампер-часы? Емкость Солнечной системы на ладони — мифы или реальность? Расследование под катом.
Суперконденсаторы, или ионисторы — особый тип конденсаторов. Они по емкости раз в 1000 обходят электролитические конденсаторы, но не дотягивают раз в 10 до литиевых и никель-металл-гидридных аккумуляторов сходных размеров. Помимо очевидных преимуществ перед электролитиками, у них есть плюсы и перед аккумуляторами: суперконденсаторы быстро заряжаются, очень долговечны, у них напрочь отсуствует эффект памяти, они запросто разряжаются в ноль без потери емкости. Недостатки, правда, тоже есть: у них небольшое рабочее напряжение (обычно 2,7 или 5,5 Вольт), они не любят превышения этого напряжения и у них относительно быстрый саморазряд. Остальные подробности есть в вики.
В общем, мне понадобился суперконденсатор. На Али один продавец продает такие заметно дешевле конкурентов. 200 рублей за пару — ну ведь не деньги уже, правда? В Санкт-Петербург пришли очень быстро — дней за 16. Вот вертел их в руках, и как-то даже не верил, что 4 Фарада. Я уже сталкивался с китайскими ампер*часами, китайскими ваттами и даже с китайскими размерами обуви. А тут — такая штуковина. Ни один тестер же не измерит, шкалы не хватит. Позаряжал-поразряжал я их — вроде заряд берут. Подтвердил получение, выставил фидбэк. Но хочется же знать наверняка, что за зверь подвернулся.
Надо сказать, что емкость конденсатора — это способность принять электрический заряд (измеряем его в кулонах) при зарядке до напряжения в один вольт. С вольтами все понятно — вольтметр есть у каждого. А кулон — тоже ничего сложного: если по проводу течет ток в один ампер, то за одну секунду как раз кулон и перельется. Т.е. теоретически, мой ионистор мог бы выдавать четырехамперный ток целую секунду. Но мы же понимаем, что это в идеальном мире с идеальными ионисторами. Куда там нашим. Впрочем, и требования у меня не столь жесткие.
Я решил быстренько смастерить приборчик на Ардуино. Ничего сложного: замеряем напряжение, ток, пишем в лог и по результатам считаем емкость. Написал скриптик, подсоединил датчики. Буквально на один раз прогнать тест. Но аппетит же приходит во время еды. Датчиками тока и напряжения не ограничился, добавил кардридер, чтоб писать на флешку и не зависеть от подключения к компу. Экран, чтоб следить за процессом и часы реального времени. Тест обещал быть долгим: неплохо бы и токи утечки померить.
Первая сложность была досадной, хоть и предсказуемой. Датчик тока, рассчитанный на 5 Ампер, мои миллиамперы мерил с большой погрешностью, а точнее сказать не мерил вовсе. Показания зависели от расположения проводов, и предметов на столе, а разрядности АЦП Ардуины явно не хватало. Как альтернатива виделся только костыль с операционным усилителем, данунафиг. И пришлось нагрузку заменить на тестовый резистор, а ток высчитывать по датчику напряжения, как отношение напряжения к сопротивлению резистора.
Второй неприятностью стала неожиданно кончившаяся память. Пришлось перетыкать провода на плату Ардуино Мега 2560. И только так мой тестер стал выдавать первые результаты. Кривая напряжения при разряде оказалась убывающей экспонетной, тут никаких сюрпризов. Но начало ее отличалось заметной просадкой из-за великоватого внутреннего сопротивления ионистора. В теории эта экспонента выглядит так:
Где:
U0 — напряжение на заряженном доверху ионисторе, в вольтах;
t — время в секундах,
R — сопротивление нагрузки, в омах;
C — емкость нашего ионистора, в настоящих полновесных фарадах
Фарадах, а не каки-нибудь там микро- или нано-, кстати говоря. Как несложно догадаться, во всей этой ерунде только «C» мы не знаем. И хотим узнать. Остальное либо нам подвластно (U0 и R), либо мы можем измерить (время t и напряжение в это время U(t)). Короче говоря, восстановить каноническую красивую экспоненту (и фактическое значение емкости вместе с ней) мы можем по двум точкам этой экспоненты — начальной и какой угодно второй. Емкость получается такой:
Скриптик Ардуины дополнился новым кусочком кода. Теперь он следил за напряжением, рассчитывал ток на нагрузке, отслеживал полученный с ионистора заряд и уточнял емкость ионистора. По мере снижения напряжения и тока, потери в цепи уменьшались, и характеристики кривой все больше совпадали с расчетной экспонентой. А вычисленное значение емкости — с реальным.
Для приготовления такого устройства вам понадобится:
1) Arduino MEGA 2560 — в UNO памяти не хватит.
2) Часы реального времени на микросхеме DS 3231 (можно на ds1307) — таймер в Ардуине на больших временных отрезках, оказывается, врет
3) Кардридер с интерфейсом SPI (SD или TF — по вкусу)
4) Датчик напряжения. По сути — резистивный делитель
5) Датчик тока (для больших токов, в коде реализован не вполне)
6) Дисплей 0.96" OLED 128×64 с интерфейсом IIC
7) Резистор известного номинала.
Итак. Что же показал эксперимент.
Расчетная емкость одного ионистора составила 3,8 Фарад, другого — 3,9. Я счтиаю, очень неплохо. Можно даже сказать — отлично!
Да, интересная деталь: емкость нашей любимой планеты в полтора раза меньше фарада. Около фарада — у Юпитера, самой большой планеты Солнечной системы. А вот в руках у меня ионистор на 4 Фарада. Размером с два пятачка.
При подключении в параллель пара набрала 7,8 Фарад. Интересна и реально снятая емкость при разрядке не в ноль, а до напряжения 1,7 Вольт. После уже хлопотно использовать такие низкие напряжения. Получилось точнехонько 5 Фарад. Если перевести в привычные миллиампер*часы, то выходит 6,7. Теоретически, если задаться целью посадить ионистор в ноль, то снимется 10,8 мА*ч.
Красная линия — напряжение, падает с разрядом от 5 до 1,7 Вольт
Зеленая линия — емкость, снятая на резистор. На практике 5 Фарад, в теории до 7,8.
Голубая линия — оценка емкости — по мере проведения эксперимента уточняется и оказывается в районе 7,8 Фарада.
В итоге:
Продавец отличный: доставка как на ракете и не нажульничал с емкостью.
Ионисторы годные: трепал их и в хвост и в гриву, даже полярность путал — все снесли, емкость не упала.
Приборчик получился полезный, пока разбирать не стал. Отградуировал тестить электролитики обычные.
Товар куплен на свои.
Если обзор понравился — в следующем расскажу зачем они мне понадобились.
Как проверить конденсатор мультиметром
По сути ремонт любой радиоэлектронной аппаратуры сводится к поиску и замене неисправных деталей. И, возможно, вы удивитесь тому, насколько часто выходят из строя такие, казалось бы, простые компоненты как конденсаторы. В то время как нежные диоды, чувствительные транзисторы и сложные микросхемы остаются целыми и невредимыми.
Типичные неисправности конденсаторов:
- КЗ между обкладками. Как правило, это следствие механического повреждения, перегрева или превышения рабочего напряжения (пробой). Самый простой случай, т.к. легко выявляется любым мультиметром в режиме прозвонки;
- внутренний обрыв с полной потерей емкости (вот почему нельзя коротить отвертками). В случае с конденсаторами большой емкости этот дефект достаточно просто диагностируется. Выявление обрыва у мелких кондеров (менее 500 пФ) является довольно трудоемкой задачей и осуществляется только при помощи спец. приборов;
- частичная потеря емкости. Для электролитических конденсаторов потеря емкости с годами практически неизбежна, однако это не всегда приводит к неисправности устройства (но может ухудшать его характеристики). Керамические, пленочные и прочие с твердым диэлектриком, как правило, более стабильны, но могут потерять емкость в результате механического повреждения;
- слишком низкое сопротивление утечки (конденсатор "не держит" заряд). В основном это свойственно электролитическим конденсаторам. Хотя танталовые в этом плане очень хороши;
- слишком большое эквивалентное последовательное сопротивление (ЕПС или ESR). Проблема по большей части касается "электролитов" и проявляется только при работе с высокочастотными или импульсными токами.
Существует масса способов как проверить конденсатор мультиметром на работоспособность. Пойдем по-порядку.
-
.
- Проверка на короткое замыкание:
— "прозвонка" тестером;
— светодиодом и батарейкой;
— с помощью лампочки на 220 В. - Проверка на внутренний обрыв:
— звуковой сигнал в режиме "прозвонки";
— измерение сопротивления постоянному току;
— по остаточному напряжению. - Определяем рабочее напряжение конденсатора:
— по напряжению пробоя;
— по току утечки. . - Измерение емкости конденсатора:
— с использованием специальных приборов;
— с использованием второго конденсатора известной емкости;
— расчет емкости через постоянную времени цепи;
— другие методы (контроль сопротивления, яркость лампы, баланс моста). .
Внешний осмотр
Иногда достаточно одного взгляда, чтобы определить неисправный конденсатор на плате. В таких случаях нет смысла проверять его какими-либо приборами.Конденсатор подлежит замене, если визуальный осмотр показал наличие:
- даже незначительного вздутия, следов подтеков;
- механических повреждений, вмятин;
- трещин, сколов (актуально для керамики).
Измерение емкости конденсатора мультиметром и специальными приборами
Некоторые мультиметры имеют функцию измерения емкости. Взять хотя бы эти распространенные модели: M890D, AM-1083, DT9205A, UT139C и т.д.Также в продаже есть цифровые измерители емкости, например, XC6013L или A6013L.
С помощью любого из этих приборов можно не только узнать точную емкость конденсатора, но и убедиться в отсутствии короткого замыкания между обкладками или внутреннего обрыва одного из выводов.
Некоторые производители даже уверяют, что их мультиметры способны проверить емкость конденсатора не выпаивая его с платы. Что, конечно же, противоречит здравому смыслу.
К сожалению, проверка конденсатора мультиметром не поможет определить такие наиважнейшие параметры, как ток утечки и эквивалентное последовательное сопротивление (ESR). Их измерить только с помощью специализированных тестеров. Например, с помощью весьма недорогого LC-метра.
Проверка на короткое замыкание
Способ №1: определение КЗ в режиме прозвонки
Как прозванивать конденсаторы мультиметром? Нужно включить мультиметр в режим прозвонки или измерения сопротивления и приложить щупы к выводам конденсатора.
В зависимости от емкости мультиметр либо сразу же покажет бесконечное сопротивление, либо через какое-то время (от нескольких секунд до десятков секунд).
Если же прибор постоянно пищит в режиме прозвонки (или показывает очень низкое сопротивление в режиме измерения сопротивления), то конденсатор можно смело выкидывать.
Способ №2: определение КЗ конденсатора с помощью светодиода и батарейки
Если нет мультиметра (и даже старой советской "цешки" нету), то можно попробовать подключить светодиод или лампочку к батарейке через исследуемый конденсатор.
Т.к. исправный конденсатор имеет ооочень большое сопротивление постоянному току, лампочка гореть не должна. Хотя, если емкость конденсатора достаточно большая, лампочка может вспыхнуть на короткое время (пока конденсатор не зарядится).
Если же светодиод горит постоянно, конденсатор 100% неисправен.
Способ №3: проверка конденсатора лампочкой на 220В
Подходит для высоковольтных неполярных конденсаторов (например, пусковые конденсаторы из стиральных машин, насосов, различных станков и т.п.).
Все что нужно сделать — просто подключить лампу накаливания небольшой мощности (25-40 Вт) через конденсатор. Полярность конденсатора не имеет значения:
Способ позволяет одним выстрелом убить двух зайцев: обнаружить КЗ, если оно есть, и убедиться в том, что конденсатор имеет ненулевую емкость (не находится в обрыве).
При исправном конденсаторе лампочка будет гореть в полнакала. Чем меньше емкость — тем тусклее будет гореть лампочка.
Если лампа горит в полную мощность (точно также как и без конденсатора), значит конденсатор "пробит" и подлежит замене. Если лампочка совсем не светится — внутри конденсатора обрыв.
Способ №3 очень наглядно продемонстрирован в этом видео:
Проверка на отсутствие внутреннего обрыва
Обрыв — распространенный дефект конденсатора, при котором один из его электродов теряет электрическое соединение с обкладкой и фактически превращается в короткий, ни с чем не соединенный (висящий в воздухе), проводник.
Чаще всего обрыв происходит из-за превышения рабочего напряжения конденсатора. Этим грешат не только электролитические конденсаторы, но и специальные помехоподавляющие конденсаторы типа Y (они, кстати говоря, специально так спроектированы, чтобы уходить в отрыв, а не в КЗ).
Конденсатор с внутренним обрывом внешне ничем не отличается от исправного, кроме случаев, когда ножку физически оторвали от корпуса
Разумеется, в случае отрыва одного из выводов от обкладки конденсатора, емкость такого конденсатора становится равной нулю. Поэтому суть проверки на обрыв состоит в том, чтобы уловить хоть малейшие признаки наличия емкости у проверяемого конденсатора.
Как это сделать? Есть три способа.
Способ №1: исключение обрыва через звуковой сигнал в режиме прозвонки
Включить мультиметр в режим прозвонки, прикоснуться щупами к выводам конденсатора и в этот момент мультиметр должен издать непродолжительный писк. Иногда звук настолько короткий (зависит от емкости конденсатора), что больше похож на щелчок и нужно очень постараться, чтобы его услышать.
Небольшой лайфхак: чтобы увеличить продолжительность звукового сигнала при прозвонке совсем маленьких конденсаторов, нужно предварительно зарядить их отрицательным напряжением, приложив щупы мультиметра в обратном порядке. Тогда при последующей прозвонке мультиметру сначала придется перезарядить конденсатор от какого-то отрицательного напряжения до нуля, и только потом — от нуля до момента отключения пищалки. На все это уйдет значительно больше времени, а значит сигнал будет звучать дольше и его проще будет расслышать.
Вот какой-то чувак, сам того не подозревая, применяет этот лайфхак на видео:
Из своей практике могу сказать, что с помощью уловки, описанной выше, мне удавалось уловить реакцию мультиметра на конденсатор емкостью всего лишь 0.1 мкФ (или 100 нФ)!
Способ №2: увеличение сопротивления постоянному току как признак отсутствия обрыва
Если предыдущий способ не помог и вообще не понятно, как проверить конденсатор тестером, то вот вам более чувствительный метод проверки.
Необходимо переключить мультиметр в режим измерения сопротивления. Выбрать максимально доступный предел измерения (20 или лучше 200 МОм). Приложить щупы к выводам конденсатора и наблюдать за показаниями мультиметра.
По мере заряда конденсатора от внутреннего источника мультиметра, его сопротивление будет постоянно расти до тех пор, пока не выйдет за пределы диапазона измерения. Если такой эффект наблюдается, значит обрыва нет.
Кстати говоря, может так оказаться, что рост сопротивления остановится на значении от единиц до пары десятков МОм — для конденсаторов с жидким электролитом (кроме танталовых) это абсолютно нормально. Для остальных конденсаторов сопротивление утечки должно быть больше, как минимум, на порядок.
С помощью измерения сопротивления на пределе 200 МОм мне удавалось однозначно определить отсутствие обрыва в конденсаторах емкостью всего 0.001 мкФ (или 1000 пФ).
Вот видео для наглядности:
Способ №3: измерение остаточного напряжения для исключения внутреннего обрыва
Это самый чувствительный способ, позволяющий убедиться в отсутствии обрыва конденсатора даже тогда, когда все предыдущие способы не помогли.
Берется мультиметр в режиме прозвонки или в режиме измерения сопротивления (не важно в каком диапазоне) и на пару секунд прикладываем щупы к выводам испытуемого конденсатора. В этот момент конденсатор зарядится от мультиметра до какого-то небольшого напряжения (обычно 2.8 В).
Затем мы быстро переключаем мультиметр в режим измерения постоянного напряжения на самом чувствительном диапазоне и, не мешкая слишком долго, снова прикладываем щупы к конденсатору, чтобы измерить на нем напряжение. Если у кондера есть хоть какая-нибудь вразумительная емкость, то мультиметр успеет показать напряжение, до которого был заряжен конденсатор.
Этим способом мне удавалось с помощью обычного цифрового мультиметра M890D отловить емкость вплоть до 470 пФ (0.00047 мкФ)! А это очень маленькая емкость.
Вообще говоря, это наиболее эффективный метод прозвонки конденсаторов. Таким способ можно проверять кондеры любой емкости — от малюсеньких до самых больших, а также любого типа — полярные, неполярные, электролитические, пленочные, керамические, оксидные, воздушные, металло-бумажные и т.д.
Правда, если конденсатор имеет совсем маленькую емкость, до 470 пФ, то, увы, проверить его на обрыв без специального прибора, вроде упомянутого ранее LC-метра, никак не получится.
Определение рабочего напряжения конденсатора
Строго говоря, если на конденсаторе нет маркировки и не известна схема, в которой он стоял, то узнать его рабочее напряжение неразрушающими методами НЕВОЗМОЖНО.
Однако, имея некоторый опыт, можно оооочень приблизительно прикинуть "на глазок" рабочее напряжение исходя из габаритов конденсатора. Естественно, чем больше размеры конденсатора и чем меньше при этом его емкость, тем на большее напряжение он расчитан.
Способ №1: определение рабочего напряжения через напряжения пробоя
Если имеется несколько одинаковых конденсаторов и одним из них не жалко пожертвовать, то можно определить напряжение пробоя, которое обычно раза в 2-3 выше рабочего напряжения.
Напряжение пробоя конденсатора измеряется следующим образом. Конденсатор подключается через токоограничительный резистор к регулируемому источнику напряжения, способного выдавать заведомо больше, чем напряжение пробоя. Напряжение на конденсаторе контроллируется вольтметром.
Затем напряжение плавно повышают до тех пор, пока не произойдет пробой (момент, когда напряжение на конденсаторе резко упадет до нуля).
За рабочее напряжение можно принять значение, в 2-3 раза меньше, чем напряжение пробоя. Но это такое. Вы можете иметь свое мнение на этот счет.
Энергии заряженного конденсатора бывает достаточно, чтобы устроить небольшой ядерный взрыв прямо на рабочем столе. Вот, можно посмотреть, как это бывает:
А некоторые типы керамических конденсаторов при электрическом пробое способны разлетаться на очень мелкие, но твердые осколки, без труда пробивающие кожу (не говоря уже о глазах).
Способ №2: нахождение рабочего напряжения конденсатора через ток утечки
Этот способ узнать рабочее напряжение конденсатора подходит для алюминиевых электролитических конденсаторов (полярных и неполярных). А таких конденсаторов большинство.
Суть заключается в том, чтобы отловить момент, при котором его ток утечки начинает нелинейно возрастать. Для этого собираем простейшую схему:
и делаем замеры тока утечки при различных значениях приложенного напряжения (начиная с 5 вольт и далее). Напряжение следует повышать постепенно, одинаковыми порциями, записывая показания вольтметра и микроампераметра в таблицу.
У меня получилась такая табличка (моя чуйка подсказала мне, что это довольно высоковольтный конденсатор, так что я сразу начал прибавлять по 10В):
Напряжение на конденсаторе, В |
Ток утечки, мкА |
Прирост тока, мкА |
---|---|---|
10 | 1.1 | 1.1 |
20 | 2.2 | 1.1 |
30 | 3.3 | 1.1 |
40 | 4.5 | 1.2 |
50 | 5.8 | 1.3 |
60 | 7.2 | 1.4 |
70 | 8.9 | 1.7 |
80 | 11.0 | 2.1 |
90 | 13.4 | 2.4 |
100 | 16.0 | 2.6 |
Как только станет заметно, что одинаковый прирост напряжения каждый раз приводит к непропорционально бОльшему приросту тока утечки, эксперимент следует остановить, так как перед нами не стоит задача довести конденсатор до электрического пробоя.
Если из полученных значений построить график, то он будет иметь следующий вид:
Видно, что начиная с 50-60 вольт, график зависимости тока утечки от напряжения обретает явно выраженную нелинейность. А если принять во внимание стандартный ряд напряжений:
Стандартный ряд номинальных рабочих напряжений конденсаторов, В | |||||||||||||||||||
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
6.3 | 10 | 16 | 20 | 25 | 32 | 40 | 50 | 63 | 80 | 100 | 125 | 160 | 200 | 250 | 315 | 350 | 400 | 450 | 500 |
то можно предположить, что для данного конденсатора рабочее напряжение составляет либо 50 либо 63 В.
Согласен, метод достаточно трудоемкий, но не сказать о нем было бы ошибкой.
Как измерить ток утечки конденсатора?
Чуть выше уже была описана методика измерения тока утечки. Хотелось бы только добавить, что Iут измеряется либо при максимальном рабочем напряжении конденсатора либо при таком напряжении, при котором конденсатор планируется использовать.
Также можно вычислить ток утечки конденсатора косвенным методом — через падение напряжения на заранее известном сопротивлении:
При измерении тока утечки электролитических конденсаторов после подачи напряжения очень важно выждать какое-то время (минут 5-10) для того, чтобы все электрохимические процессы завершились. Особенно это актуально для конденсаторов, которые в течение длительного времени были выведены из эксплуатации.
Вот видео с наглядной демонстрацией описанного метода измерения тока утечки конденсатора:
Определение емкости неизвестного конденсатора
Способ №1: измерение емкости специальными приборами
Самый просто способ — измерить емкость с помощью прибора, имеющего функцию измерения емкостей. Это и так понятно, и об этом уже говорилсь в начале статьи и тут нечего больше добавить.Если с приборами совсем туган, можно попробовать собрать простенький самодельный тестер. В интернете можно найти неплохие схемы (посложнее, попроще, совсем простая).
Ну или раскошелиться, наконец, на универсальный тестер, который измеряет емкость до 100000 мкФ, ESR, сопротивление, индуктивность, позволяет проверять диоды и измерять параметры транзисторов. Сколько раз он меня выручал!
Способ №2: измерение емкости двух последовательно включенных конденсаторов
Иногда бывает так, что имеется мультиметр с измерялкой емкости, но его предела не хватает. Обычно верхний порог мультиметров — это 20 или 200 мкФ, а нам нужно измерить емкость, например, в 1200 мкФ. Как тогда быть?
На помощь приходит формула емкости двух последовательно соединенных конденсаторов:Суть в том, что результирующая емкость Cрез двух последовательных кондеров будет всегда меньше емкости самого маленького из этих конденсаторов. Другими словами, если взять конденсатор на 20 мкФ, то какой бы большой емкостью не обладал бы второй конденсатор, результирующая емкость все равно будет меньше, чем 20 мкФ.
Таким образом, если предел измерения нашего мультиметра 20 мкФ, то неизвестный конденсатор нужно последовательно с конденсатором не более 20 мкФ.Остается только измерить общую емкость цепочки из двух последовательно включенных конденсаторов. Емкость неизвестного конденсатора рассчитывается по формуле:Давайте для примера рассчитаем емкость большого конденсатора Сх с фотографии выше. Для проведения измерения последовательно с этим конденсатором включен конденсатор С1 на 10.06 мкФ (он был предварительно измерен). Видно, что результирующая емкость составила Cрез = 9.97 мкФ.
Подставляем эти цифры в формулу и получаем:
Способ №3: измерение емкости через постоянную времени цепи
Как известно, постоянная времени RC-цепи зависит от величины сопротивления R и значения емкости Cх:Постоянная времени — это время, за которое напряжение на конденсаторе уменьшится в е раз (где е — это основание натурального логарифма, приблизительно равное 2,718).
Таким образом, если засечь за какое время разрядится конденсатор через известное сопротивление, рассчитать его емкость не составит труда.Для повышения точности измерения необходимо взять резистор с минимальным отклонением сопротивления. Думаю, 0.005% будет нормально =)Хотя можно взять обычный резистор с 5-10%-ой погрешностью и тупо измерить его реальное сопротивление мультиметром. Резистор желательно выбирать такой, чтобы время разряда конденсатора было более-менее вменяемым (секунд 10-30).
Вот какой-то чел очень хорошо все рассказал на видео:
Другие способы измерения емкости
Также можно очень приблизительно оценить емкость конденсатора через скорость роста его сопротивления постоянному току в режиме прозвонки. Об этом уже упоминалось, когда шла речь про проверку на обрыв.
Яркость свечения лампочки (см. метод поиска КЗ) также дает весьма приблизительную оценку емкости, но тем не менее такое способ имеет право на существование.
Существует также метод измерения емкости посредством измерения ее сопротивления переменному току. Примером реализации данного метода служит простейшая мостовая схема:Вращением ротора переменного конденсатора С2 добиваются баланса моста (балансировка определяется по минимальным показаниям вольтметра). Шкала заранее проградуирована в значениях емкости измеряемого конденсатора. Переключатель SA1 служит для переключения диапазона измерения. Замкнутое положение соответствует шкале 40. 85 пФ. Конденсаторы С3 и С4 можно заменить одинаковыми резисторами.
Недостаток схемы — необходим генератор переменного напряжения, плюс требуется предварительная калиброка.
Можно ли проверить конденсатор мультиметром не выпаивая его с платы?
Не существует однозначного ответа на вопрос как проверить конденсатор мультиметром не выпаивая: все зависит о схемы, в которой стоит конденсатор.
Все дело в том, что принципиальные схемы, как правило, состоят из множества элементов, которые могут быть соединены с исследуемым конденсатором самым замысловатым образом.
Например, несколько конденсаторов могут быть соединены параллельно и тогда прибор покажет их суммарную емкость. Если при этом один из конденсаторов будет в обрыве, то это будет очень сложно заметить.
Или, например, довольно часто параллельно электролитическому конденсатору устанавливают керамический. В этом случае нет ни малейшей возможности прозвонить конденсатор мультиметром на плате и определить внутренний обрыв.В колебательных контурах, вообще, параллельно кондеру может оказаться катушка индуктивности. Тогда прозвонка конденсатора покажет короткое замыкание, хотя на самом деле его нет.
Вот пример, когда все пять конденсаторов покажут ложное КЗ:
В схемах импульсных блоков питания очень часто встречаются контура, состоящие из вторичной обмотки трансформатора, диода и выпрямительного конденсатора. Так вот любая "прозвонка" конденсатора при пробитом диоде покажет КЗ. А на самом деле конденсатор может быть вполне исправен.Вообще-то, проверить электролитический конденсатор мультиметром не выпаивая можно, но это только для кондеров ощутимой емкости (>1 мкФ) и только проверить наличие емкости и отсутствие коротыша. Ни о каком измерении емкости и речи быть не может. К тому же, если прибор покажет КЗ, то выпаивать все-таки придется, так как коротить может что угодно на плате.
Мелкие кондеры проверяются только на отсутствие КЗ, обрыв и нулевую емкость таким образом не проверишь.
Вот очень правильный и понятный видос на эту тему:
Примеры выше (а также доходчивое видео) не оставляют никаких сомнений, что проверка конденсаторов не выпаивая из схемы — это фантастика.
Если какой-либо конденсатор вызывает сомнения, лучше сразу заменить его на заведомо исправный. Или хотя бы временно подпаять хороший конденсатор параллельно сомнительному, чтобы подтвердить или опровергнуть подозрения.
Как продиагностировать мультиметром конденсатор: общие рекомендации и принципы проведения измерений
Конденсаторы встречаются в самой разной технике. Но они зачастую и приводят к неисправностям механизмов. Для того, чтобы своевременно определить неисправность и устранить её, необходимо понимать общие принципы проверки конденсатора мультиметром. Этот способ является наиболее простым.
Рассмотрим варианты применения недорогого и эффективного прибора, чтобы выявить элементы, вышедшие из строя. В статье подробно представлены различные виды конденсаторов, а также последовательность их проверки. Благодаря практическим советам вы без труда сможете обнаружить неисправность в любой схеме.
Для чего используют конденсатор?
Промышленная отрасль производит самые разнообразные конденсаторы, которые затем используются во многих областях. Они требуются в следующих отраслях:
- автомобилестроении;
- радиотехнике;
- электронике;
- электробытовой технике;
- приборостроении.
Конденсаторы можно назвать «сосудами» для хранения энергии. Они отдают энергию при коротких сбоях в питании. Кроме вышеперечисленного, специальный вид данных компонентов отделяет нужные сигналы, определяет частоту устройств, которые формируют сигналы. Конденсатор имеет быстрый период зарядки-разрядки.
Справка! Данный электрический элемент (конденсатор) располагает в своём составе парой проводников — это токопроводящие обкладки. При пропускании постоянного тока цепью его запрещено включать, так как это будет равносильно разрыву цепи.
В электроцепи переменного тока обкладки конденсатора попеременно заряжаются с частотой проходящего тока. Это можно объяснить следующим: зажимы данного источника тока время от времени подвергаются смене напряжения. Далее в цепи появляется ток переменного характера.
Подобно катушке, а также резистору, конденсатор оказывает переменному току сопротивление. Следует учесть, для токов различных частот оно будет разным. Например, проявляя хорошую пропускную способность для токов высокочастотных, он будет оказывать изолирующие свойства для токов низкочастотных.
Сопротивление электрического компонента взаимосвязанно с частотой, а также ёмкостью тока.
Неполярные и полярные разновидности
Среди многообразия конденсаторов следует выделить два основных типа: полярные или электролитические, а также неполярные. В качестве диэлектрика в данных приборах используют — стекло, бумагу и воздух.
Специфика полярных конденсаторов
Само название наглядно говорит о том, что они имеют полярность, потому являются электролитическими. Потребуется верное и точное следование схеме, когда их будут подключать — «минус» к «минусу», а «плюс» к «плюсу». Если не соблюдать данное правило, то элемент не только утратит работоспособность, но вполне способен взорваться. Электролит встречается как в состоянии твёрдом, так и в жидком.
В качестве диэлектрика в устройствах применяется бумага, которая пропитана электролитом. Ёмкость варьируется в пределах от 0,1 тыс. и до 100 тыс. МкФ.
Справка! Полярные конденсаторы предназначены для выравнивания электрофильтрации поступающих сигналов. Метка «+» имеет большую длину. Пометка «-» обозначена на самом корпусе.
Когда происходит замыкание пластин, то осуществляется выделение тепла. Под его действием происходит испарение электролита, а затем следует взрыв.
Сверху у конденсаторов современного исполнения имеется крестик и незначительное вдавливание. Толщина вдавлиной части немного меньше, чем остальная поверхность. Если происходит взрыв, тогда верхний участок открывается, как роза. Поэтому при наблюдении за повреждённым элементом можно заметить вспучивание на корпусе.
Отличительные особенности неполярных конденсаторов
Плёночные неполярные части используют диэлектрик из керамики, а также из стекла. Если сравнивать с конденсаторами электролитическими, то у них самозаряд меньше. Это можно объяснить тем, что керамика имеет более высокое сопротивление, чем бумага.
Конденсаторы подразделяются на детали как специального назначения, так и общего. Они бывают следующими:
- Пусковыми. Используются для поддержания надёжной и качественной работы электродвигателей. Увеличивают в двигателе стартовый момент, например, это компрессор или насосная станция, осуществляющие запуск.
- Дозиметрическими. Предназначены для работы в цепях, в которых незначительный показатель токовых нагрузок. У них необъёмный самозаряд, но сопротивление изоляции повышенное. Большей частью это фторопластовые элементы.
- Импульсными. Используются для формирования повышенного скачка напряжения, а также его перевода на принимающую панель устройства.
- Высоковольтными. Применяются в высоковольтных приборах. Производятся в разнообразном исполнении. Встречаются масляные и керамические, плёночные и вакуумные. Они заметно отличаются от других деталей и имеют ограниченный доступ.
- Помехоподавляющими. Предназначены для смягчения в частотной вилке электромагнитного фона. Имеют незначительную собственную индуктивность, что даёт возможность повысить резонансную частоту, а также увеличить полосу сдерживаемых частот.
Если сравнивать в процентном отношении, то наиболее значительное число неисправных элементов приходится на случаи, когда наблюдается подача напряжения превосходящее стандартные показатели. Оплошности в проектировании вполне могут вызвать неисправности элементов.
Когда диэлектрик утрачивает свои характеристики и свойства, то могут возникнуть сбои и перепады в деятельности конденсатора. Например, при его растрескивании, вытекании или высыхании. Ёмкость может сразу измениться. Определить её значение возможно только благодаря измерительным устройствам.
Алгоритм диагностики мультиметром
Тестирование конденсаторов рекомендуется проводить после их изъятия из электроцепи. Таким образом достигаются более верные показатели.
Центральным показателем конденсаторов является способность пропускать только ток переменного характера. Постоянный же ток он способен пропускать лишь небольшой промежуток времени и исключительно в начале процесса. Сопротивление здесь напрямую зависит от ёмкости.
Как произвести тестирование полярного конденсатора
Для диагностики элемента мультиметром, потребуется обеспечить ёмкость, которая не будет превышать показатель равный 0,25 мкФ.
Алгоритм проверки неисправностей конденсатора при помощи мультиметра следующий:
- Потребуется взять электрический компонент за ножки и закоротить его каким-то предметом из металла, например, это может быть пинцет или отвёртка. Это надлежит сделать для разрядки элемента. Искры, которые появятся при этом, дадут знать, что разряд произошел.
- Затем надлежит установить переключатель мультиметра в режим замера данных сопротивления или на прозвонку.
- Далее следует прикоснуться щупами к выводам конденсатора, при этом следует учитывать их полярность, то есть к минусовой ножке подвести щуп чёрного цвета, а к плюсовой — красного. При этом происходит выработка постоянного тока, поэтому через определённый отрезок времени можно ожидать минимальное сопротивление электрического компонента.
В то время, когда щупы располагаются на вводах конденсатора, происходит его подзарядка. Продолжает повышаться сопротивление пока не достигнет максимального уровня.
Если при соединении со щупами прибор начинает пищать, а стрелка его склоняет к нулевой отметке, то это говорит о наличии короткого замыкания. Оно и вывело из строя работу конденсатора. При указании стрелки на единицу, можно предположить, что в конденсаторе произошёл внутренний обрыв. Подобные элементы можно признать испорченными и заменить. Если на приборе, спустя некоторое время, единица высвечивается, то деталь в порядке.
Важно сделать измерения таким образом, чтобы на их качество не повлияло неправильное поведение. Запрещается в продолжении диагностики прикасаться руками к щупам. Человеческое тело имеет небольшой показатель сопротивления, поэтому соответствующие данные утечки будут превышать его многократно.
Ток последует по пути наименьшего сопротивления и обойдёт конденсатор. Таким образом мультиметр представит ложный результат измерений. Можно разрядить электрический компонент благодаря лампе накаливания. В подобном случае процесс станет идти более плавным образом.
Разрядку необходимо производить в обязательном порядке, тем паче, если элемент является высоковольтным. Это делают из-за соблюдения норм безопасности, а также, чтобы сам прибор остался в рабочем состоянии. Его способно привести в негодность остаточное напряжение.
Неполярный конденсатор и его диагностика
Такого рода элементы проверить с помощью мультиметра ещё легче. Вначале на самом приборе проставляют предельный показатель измерения на мегаомы. Затем прикладывают щупы. Если данные на приборе будут менее 2 Мом, то это показатель неисправности конденсатора.
В период подзарядки элемента с помощью мультиметра можно продиагностировать его работоспособность, когда ёмкость колеблется от 0,5 мкФ. Если показатель меньше, то измерения будут незаметны на приборе. Когда требуется протестировать элемент менее 0,5 мкФ на мультиметре, то это можно сделать, если будет короткое замыкание между обкладками.
При исследовании неполярного конденсатора, у которого напряжение выше 400 В, то это возможно выполнить при зарядке его от источника, ограждённого от к.з. автоматическим выключателем. По порядку с конденсатором соединяют резистор, сопротивление его должно быть предусмотрено свыше 100 Ом., что ограничит мощность первичного токового броска.
Возможно определить работоспособность конденсатора и другим способом, например, протестировав его на искру. Заряжают электрический компонент до рабочей ёмкости, а потом выводы закорачивают при помощи металлической отвёртки, у которой имеется изолированная ручка. По мощности разряда делают вывод о работоспособности компонента.
До зарядки, а также через время после неё, следует измерить на ножках детали показатели напряжения. Существенным является способность заряда продолжительное время сохраняться. Затем потребуется разрядка конденсатора с помощью резистора, благодаря которому он и производил зарядку.
Определение ёмкости конденсатора
Ёмкость — это основополагающая характеристика конденсатора. Её требуется измерять для определения того, что накапливает сам элемент, а также удовлетворительно ли удерживает заряд.
Для того, чтобы удостовериться в работоспособности компонента, надлежит измерить данный параметр и сравнить его обозначенным на самом корпусе. Перед проверкой любого конденсатора на эффективность и функциональность, требуется принять во внимание некоторую особенность данной процедуры.
Пытаясь произвести измерение при помощи щупов, возможно не добиться желаемых результатов. Доступным может стать только проверка общей работоспособности обследуемого конденсатора. Для чего выставляют режим прозвона, затем прикасаются к ножкам щупами.
Справочная информация! Когда последует писк, то надлежит поменять щупы местами, тогда звук повторится. Его будет слышно при показателях ёмкости в районе от 0,1 мкФ. Чем выше данное значение, тем продолжителльнее воспроизводится звук.
Если требуются точные результаты, то наилучшим выходом в подобной ситуации является применение модели, которая имеет особые контактные площадки, а также способность регулировки вилки, которая вычисляет емкость элемента.
Прибор следует переключить на номинальное значение, которое прописано на корпусе. Затем требуется вставить электрический компонент в посадочные «гнезда», произведя перед этим его разрядку при помощи металлического предмета.
На экране будут высвечиваться показатели ёмкости, приблизительно равные номинальным. Если этого не наблюдается, тогда надлежит сделать вывод, что конденсатор неисправен. Следует отследить, чтобы в мультиметре была новая и работоспособная батарейка. Это предоставит наиболее точные показания.
Определение напряжения при помощи мультиметра
Проверить исправную работу конденсатора возможно благодаря измерению напряжения, сравнив затем полученный результат с номиналом. Для выполнения диагностики, необходим источник питания, у которого напряжение должно быть немного меньше, чем у исследуемого элемента.
Например, если у конденсатора показатель в 25 В, то подойдёт 9-вольтный источник. Подсоединяют щупы к ножкам, предварительно обращая внимание на полярность, затем ждут немного времени — примерно несколько секунд. Случается, что время прошло, а просроченный компонент всё еще функционирует, хотя характеристики приведены иные. В подобном случае его требуется систематически контролировать.
Мультиметр следует настроить на режим определения напряжения и производят диагностику. При быстром появлении на дисплее значения равного номинальному, элемент полностью годен к использованию. В противоположном случае конденсатор надлежит поменять.
Проверка конденсаторов без выпаивания из платы
Можно обойтись без выпаивания из платы конденсаторов для их тестирования. Главное условие, чтобы сама плата была полностью обесточена. После обесточивания потребуется определённое время подождать, чтобы электрические компоненты разрядились.
Следует знать, что для получения 100% результата, невозможно будет обойтись без выпаивания элемента из платы. Детали, которые располагаются рядом, мешают достоверной проверке. Надлежит удостовериться лишь в отсутствии пробоя.
Для проверки исправного функционирования конденсатора, не выпаивая, необходимо к выводам элемента прикоснуться щупами для измерения сопротивления. Исходя из разновидности конденсатора, будет отличаться и диагностика самого параметра.
Советы по проверке электронных компонентов (конденсаторов)
У конденсаторных элементов имеется одно не очень приятное свойство. Дело в том, что при пайке, когда происходит воздействие на детали тепла, они часто не подлежат восстановлению. Однако качественно исследовать элемент возможно лишь, если выпаять его из схемы. В ином случае детали, которые находятся поблизости, станут его шунтировать. По данной причине необходимо учитывать определённые нюансы.
Когда продиагностированный конденсатор можно будет снова впаять в схему, потребуется ввести в работу ремонтируемый прибор. Это позволит отследить его работу. Если работоспособность благополучно возобновилась, устройство стало функционировать эффективнее, то протестированный компонент меняет на новый.
Важная информация! Для сокращения проверки, следует выпаивать не два, а лишь один из выводов. Требуется учитывать и понимать, что для подавляющего большинства электролитических элементов данный способ нельзя применять. Это связано со специфическими конструктивными особенностями самого корпуса.
Если схема сложная и включает в себя значительное количество конденсаторов, то дефекты вычисляют благодаря измерению напряжения на них. При несоответствии параметра требованиям, деталь, которая вызывает подозрение, надлежит убрать и произвести проверку.
При фиксировании в схеме сбоев, требуется перепроверить дату изготовления электронного компонента. Усыхание элемента происходит в течение пяти лет функционирования и составляет более 65%. Подобную деталь, даже если она в рабочем состоянии, надлежит заменить. В противоположном случае она станет ухудшать работу всей схемы.
Мультиметры современного поколения отличаются тем, что их наивысшим показателем для измерения является параметр ёмкости, который варьируется в районе 200 мкФ. При превышении данного показателя контрольный прибор способен выйти из рабочего состояния, даже если он и имеет предохранитель. В электротехнике нового поколения есть высокотехнологичные smd электроконденсаторы. Их отличие и преимущество состоит в очень небольших размерах.
Выпаять один вывод от подобного компонента очень непростая задача. Здесь наилучшим выходом будет поднять один из выводов уже после отпаивания, затем произвести изоляцию его от схемы, или вовсе отделить два вывода.
Итоги и практические рекомендации
Нет особого смысла покупать сложное и дорогостоящее оборудование для того, чтобы произвести тестирование конденсаторов. Вполне возможно применять с данной целью обычный мультиметр с подходящим диапазоном. Самое важное — это грамотно и правильно использовать его возможности.
Хотя мультиметр не является узкоспециализированным прибором и его возможности ограничены, для диагностических мероприятий и ремонта огромного количества популярных радиоэлектронных приборов, этого вполне хватит.
Дополняйте, пожалуйста, своим комментариями расположенный ниже блок, публикуйте фотографии и задавайте вопросы любой сложности по предложенной теме статьи. Расскажите о своём опыте, как вы проводили диагностику конденсаторов на эффективность и работоспособность. Делитесь рекомендациями и полезной информацией, которая может пригодится пользователям сайта.
Универсальный тестер MTester V2.07
Любому, кто работает с электроникой, требуется тестер радиоэлектронных компонентов. В большинстве случаев электронщики обходятся цифровым мультиметром. Им можно проверить с достаточной точностью самые частоиспользуемые электронные компоненты. Но, среди радиодеталей есть и такие, проверить которые рядовым мультиметром сложно, а порой и невозможно. К таким можно отнести полевые транзисторы (как MOSFET, так и J-FET). Также, обычный мультиметр не всегда имеет функцию замера ёмкости конденсаторов, в том числе и электролитических. И даже если такая функция имеется, то прибор, как правило, не измеряет ещё один очень важный параметр электролитических конденсаторов – эквивалентное последовательное сопротивление (ЭПС или ESR).
С недавнего времени стали доступны по цене универсальные измерители R, C, L и ESR. Многие из них обладают возможностью проверки практически всех ходовых радиодеталей.
На фото универсальный тестер R, C, L и ESR — MTester V2.07 (QS2015-T4). Он же LCR T4 Tester. Приобрести его можно на Алиэкспресс. Прибор без корпуса, с ним он стоит куда дороже.
Рис. 1 — Универсальный тестер MTester V2.07
Тестер радиодеталей собран на микроконтроллере Atmega328p. Также на печатной плате (рис. 2) имеются SMD-транзисторы с маркировкой J6 (биполярный S9014), M6 (S9015), интегральный стабилизатор 78L05, прецизионный регулятор напряжения (регулируемый стабилитрон) TL431, SMD-диоды 1N4148, кварц на 8,042 МГц и планарные конденсаторы и резисторы.
Рис. 2 — Печатная плата тестера MTester v2.07 на базе Atmega328
Прибор питается от батарейки на 9 В (типоразмер 6F22). Прибор можно питать и от стабилизированного блока питания.
На печатной плате тестера установлена ZIF-панель. Рядом указаны цифры 1,2,3,1,1,1,1. Дополнительные клеммы верхнего ряда ZIF-панели (те, которые 1,1,1,1) дублируют клемму под номером 1. Это для того, чтобы было легче устанавливать детали с разнесёнными выводами. Кстати, стоит отметить, что нижний ряд клемм дублирует клеммы 2 и 3. Для клеммы 2 отведено 3 дополнительных клеммы, а для клеммы 3 уже 4. В этом можно убедиться, осмотрев разводку печатных проводников на другой стороне печатной платы.
Измерение ёмкости и параметров электролитического конденсатора
Подключаем один вывод электролитического конденсатора к выводу 1, а другой к выводу 3. Можно подключит один из выводов к клемме 2. Прибор сам определяет, к каким выводам подключен конденсатор.
Рис. 3 — Измерение параметров электролитического конденсатора 1000 мкФ
Далее нажимаем на красную кнопку.
На экране результат (рис. 3): ёмкость — 1004 мкФ (1004 µF); ЭПС — 0,05 Ом (ESR = 0,05Ω); Vloss = 1,4%.
Рис. 4 — Результат измерения параметров танталового электролитического конденсатора 22мкФ×35В
ёмкость — 24,4 мкФ; ЭПС — 0,2 Ом; Vloss = 0,4%
Тестер можно использовать и для замера ёмкости у обычных конденсаторов с ёмкостью от 20 пикофарад (20pF). Если подключить к ZIF-Панели выносные щупы, то можно проверять и детали, выполненные в корпусах для поверхностного (SMT) монтажа.
Внимание! Перед тестированием конденсаторов, особенно электролитических, их необходимо разрядить! Иначе можно повредить прибор высоким остаточным напряжением. Особенно это относится к электролитам, выпаянным с плат.
Параметр Vloss.
При проверке конденсаторов, кроме ёмкости и ESR, универсальный тестер показывает ещё такой параметр, как Vloss. Этот параметр косвенно указывает на уровень утечки конденсатора. Как известно, реальный конденсатор имеет сопротивление диэлектрика между обкладками. Благодаря этому сопротивлению конденсатор медленно разряжается из-за, так называемого, тока утечки.
Так вот, при заряде конденсатора коротким импульсом тока напряжение на его обкладках достигает определённого уровня. Но, как только заряд конденсатора прекращается, напряжение на заряженном конденсаторе падает на очень небольшую величину. Разность между максимальным напряжением на конденсаторе и тем, что наблюдается после завершения заряда и выражают как Vloss. Чтобы было удобней, Vloss выражают в процентах.
Падение напряжения на обкладках конденсатора объясняют как внутренним рассеиванием заряда, так и сопротивлением между обкладками, которое имеется у всех конденсаторов, так как любой диэлектрик имеет, пусть и большое, но сопротивление.
Для керамических и электролитических конденсаторов высокий показатель Vloss в несколько процентов свидетельствует о плохом качестве конденсатора.
Проверка полевых J-FET и MOSFET транзисторов
Вставляем MOSFET-транзистор в панель так, чтобы его выводы были подключены к клеммам 1,2,3. Прибор сам определяет цоколёвку детали и выдает результат на дисплей.
Рис. 5 — Проверка MOSFET-транзистора IRFZ44N универсальным тестером
На дисплее (рис. 5), кроме цоколёвки транзистора и его типа (n-канальный MOSFET), тестер указывает величину порогового напряжения открытия транзистора VGS(th) (Vt = 3,74V) и ёмкость затвора транзистора Ciis (C = 2,51nF). Если заглянуть в даташит на IRFZ44N и найти там значение VGS(th), то можно обнаружить, что оно находится в пределах 2 — 4 В.
Проверка биполярных транзисторов
У биполярных транзисторов измеряется коэффициент усиления hFE (он же h21э) и напряжение смещения Б-Э (открытия транзистора) Uf. Для кремниевых биполярных транзисторов напряжение смещения находится в пределах 0,6 . 0,7 В. Для КТ817Г оно составило 0,615 В (615mV) (рис. 6).
Рис. 6 — Параметры биполярного транзистора КТ817Г
Составные биполярные транзисторы мультитестер тоже распознаёт. Вот только параметры прибор определяет неверно. Не может составной транзистор иметь коэффициент усиления hFE = 37 (рис. 7). Для КТ973А минимальный hFE должен быть не менее 750.
Рис. 6 — Параметры биполярного транзистора КТ973А типа p-n-p
Cтруктуру для КТ973А (PNP) и КТ972А (NPN) (рис. 7) определяет верно. Но вот всё остальное замеряет некорректно.
Рис. 7 — Некорректные результаты тестирования составного транзистора КТ972А
Стоит учесть, что если хотя бы один из переходов транзистора пробит, то тестер может определить его как диод.
Проверка диодов универсальным тестером
Образец для испытаний — диод 1N4007.
Рис. 8 — Проверка диода 1N4007
Для диодов указывается падение напряжения на p-n переходе в открытом состоянии Uf (Рис. 8). В техдокументации на диоды указывается как VF — Forward Voltage (иногда VFM). При разном прямом токе через диод величина этого параметра также меняется.
Для диода 1N4007: VF=677mV (0,677V). Это нормальное значение для низкочастотного выпрямительного диода. А вот у диодов Шоттки это значение ниже, поэтому их и рекомендуют применять в устройствах с низковольтным автономным питанием.
Кроме этого тестер замеряет и ёмкость p-n перехода (C=8pF).
В результате проверки диода КД106А выяснилось, что ёмкость перехода у него во много раз больше, чем у диода 1N4007 (184 пикофарады).
Рис. 9 — Результат проверки диода КД106А
Если вместо диода установить светодиод и включить проверку, то во время тестирования он будет мигать.
Рис. 10 — Результаты проверки светодиода
Для светодиодов тестер показывает ёмкость перехода и минимальное напряжение, при котором светодиод открывается и начинает излучать (рис. 10). Конкретно для этого красного светодиода оно составило Uf = 1,84V.
Универсальный тестер справляется и с проверкой сдвоенных диодов, которые можно встретить в компьютерных блоках питания, преобразователях напряжения автоусилителей, всевозможных блоках питания (рис. 10).
Рис. 11 — Проверка сдвоенного диода MBR20100CT
Тестер показывает падение напряжения на каждом из диодов Uf = 299mV (в даташитах указывается как VF), а также цоколёвку. Не забываем, что сдвоенные диоды бывают как с общим анодом, так и общим катодом.
Проверка резисторов
Данный тестер отлично справляется с замером сопротивления резисторов, в том числе переменных и подстроечных. На дисплее переменный или подстроечный резистор отображается в виде двух резисторов (рис. 12).
Рис. 12 — Проверка подстроечного резистора типа 3296 на 1 кОм
Также можно проверить постоянные резисторы с сопротивлением вплоть до долей ома (рис. 13).
Рис. 13 — Измерение сопротивления низкоомных резисторов
Измерение индуктивности катушек и дросселей
На практике не менее востребована функция замера индуктивности у катушек и дросселей. И если на крупногабаритных изделиях наносят маркировку с указанием параметров, то вот на малогабаритных и SMD-индуктивностях такой маркировки нет. Прибор поможет и в этом случае (рис. 14).
Рис. 14 — Измерение индуктивности дросселя на 330 мкГ с помощью тестера
Кроме индуктивности дросселя (0,3 мГн) тестер определил его сопротивление постоянному току — 1 Ом (1,0Ω).
Тестирование других элементов
Маломощные симисторы данный тестер проверяет без проблем (рис. 15).
Рис. 15 — Определение цоколёвки тиристора MCR22-8
А вот более мощный тиристор BT151-800R в корпусе TO-220 прибор протестировать не смог и отобразил на дисплее надпись «? No, unknown or damaged part», что в вольном переводе означает «Отсутствует, неизвестная или повреждённая деталь».
Кроме всего прочего, универсальный тестер может измерять напряжение батареек и аккумуляторов.
Данным прибором можно проверить оптопары. Правда, проверить такие «составные» детали можно только в несколько этапов, поскольку они состоят минимум из двух изолированных между собой частей.
Излучающий диод подключается к выводам 1 и 2 оптопары (рис. 18). Подключаем их к клеммам прибора и тестер определил, что к его клеммам подключили диод и отобразил напряжение, при котором он начинает излучать Uf = 1,15V (рис. 16).
Рис. 16 — Проверка оптопары TLP627 со стороны излучающего диода
Далее подключаем к тестеру 3 и 4 выводы оптопары.
Рис. 17 — Проверка оптопары TLP627 со стороны фототранзистора
На этот раз тестер определил, что к нему подключили обычный диод (рис. 17). В этом нет ничего удивительного. Взгляните на внутреннюю структуру оптопары TLP627 (рис. 18) и вы увидите, что к выводам эмиттера и коллектора фототранзистора подключен диод. Он шунтирует выводы транзистора и тестер «видит» только его.
Рис. 18 — Внутренняя структура и цоколёвка оптопары TLP627
Так мы проверили исправность оптопары TLP627.
Какие детали этим тестером НЕ проверить.
- Мощные тиристоры. При проверке тиристора BT151-800R прибор показал на дисплее биполярный транзистор с нулевыми значениями hFE и Uf. Другой экземпляр тиристора определил как неисправный. Возможно, это действительно так и есть;
- Стабилитроны. Определяет как диод. Основных параметров стабилитрона вы не получите, но можно удостовериться в целостности P-N перехода. Производителем заявлено корректное распознавание стабилитронов с напряжением стабилизации менее 4,5V.
При ремонте всё-таки рекомендую не полагаться на показания прибора, а заменять стабилитрон новым, так как бывает, что стабилитроны исправны, но напряжение стабилизации «гуляет»; - Любые микросхемы, такие как интегральные стабилизаторы 78L05, 79L05 и им подобные.
- Динисторы. Собственно, это понятно, так как динистор открывается только при напряжении в несколько десятков вольт, например, 32 В, как у распространённого DB3;
- Ионисторы. Видимо из-за большого времени заряда;
- Варисторы определяет как конденсаторы;
- Однонаправленные супрессоры определяет как диоды.
Стоит понимать, что при проверке неисправных полупроводниковых элементов, прибор может определить тип элемента некорректно. Так, биполярный транзистор с одним пробитым p-n переходом, он может определить как диод. А вздувшийся электролитический конденсатор с огромной утечкой распознать как два встречно-включенных диода. Это свидетельствует о негодности радиодетали.
Но, стоит учесть тот факт, что также имеет место и некорректное определение значений из-за плохого контакта выводов детали в ZIF-панели. Поэтому в некоторых случаях следует повторно установить деталь в панель и провести проверку.