Что называют замком поршневого кольца
Перейти к содержимому

Что называют замком поршневого кольца

  • автор:

Поршневые кольца двигателя. Основное назначение.

Поршневые кольца — это незамкнутые кольца, которые с небольшим зазором (до нескольких сотых долей миллиметра) посажены в канавках на внешних поверхностях поршней в двигателях внутреннего сгорания. В данной статье мы поговорим про поршневые кольца двигателя, какие они бывают и основное предназначение колец двигателя.

Поршневые кольца по назначению разделяют на компрессионные и маслосъемные. Компрессионные кольца предотвращают порыв газов из камеры сгорания в картер. Наружный диаметр кольца в свободном состоянии больше внутреннего диаметра цилиндра, поэтому часть кольца вырезана. Вырез в поршневом кольце называют замком.

Маслосъемные кольца препятствуют проникновению масла из картера в камеру сгорания, снимая излишки масла со стенки цилиндра. Их устанавливают ниже уровня компрессионных. Они в отличии от компрессионных колец имеют сквозные прорези.

Из чего делают кольца двигателя?

Одним из первых эффективных материалов, использованных для поршневых колец, был ковкий чугун. Он сочетается с чугуном, используемым в блоках цилиндров, а его пористая структура позволяет ему удерживать масло, уменьшая износ. Широко используется также производная от ковкого чугуна, известная как пластичный чугун. Он обладает большинством качеств чугуна, а кроме этого, он может упруго деформироваться, что облегчает установку колец.

Поршневые кольца, сделанные из нержавеющей стали, являются усовершенствованием хромированных чугунных колец. По сути, нержавеющая сталь является материалом, в который входит большое количество хрома. И нет ничего странного в том, что такие кольца имеют свойства, аналогичные свойствам хромированных колец. Нержавеющая сталь также имеет способность противостоять высокой температуре, превосходящую хромированный чугун.

При попытках увеличения срока службы колец и обеспечения быстрой их приработки, были созданы молибденовые кольца. Такое кольцо является обычно кольцом с основой из чугуна с молибденовым покрытием поверхности. Молибден обладает многими противоизносными свойствами хрома, а в некоторых случаях он может иметь даже большую сопротивляемость износу. С течением времени молибденовые кольца стали основными в двигателях, так как они долговечные, относительно легко прирабатываются и более надежные.

Верхние компрессионные кольца двигателя

Существует много конфигураций верхнего компрессионного кольца и различия между некоторыми трудно уловимы. К примеру, кольцо может иметь преднамеренное небольшое перекручивание. Другими словами, верхняя и нижняя поверхности кольца не лежат плоско в канавке для кольца, а слегка наклонены, и только верхний или нижний край лицевой (рабочей) поверхности контактирует с отверстием цилиндра.

Кольца сконструированы таким образом, чтобы ускорить приработку поверхностей поршневых колец и стенок цилиндров и помогать уплотнению кольца в верхней и нижней частях канавки для кольца. Величина перекручивания кольца очень мала и оно обычно делается путем стачивания фаски на внутреннем крае кольца.

Другим важным типом компрессионного кольца, хотя и не такого, как обычное плоское или перекрученное кольцо, является поршневое кольцо с L-образным участком, чья способность к уплотнению зависит от усилия, развиваемого давлением газов, действующих на заднюю сторону большого выступа в форме буквы «L». Только эти кольца развивают дополнительное усилие, прикладываемое к стенкам цилиндров, когда в цилиндре имеется высокое давление, например, в такте сжатия и особенно в момент после сгорания рабочей смеси. Конечно, когда высокого давления в цилиндре нет, кольцо ослабляется, уменьшая трение и износ.

Второе компрессионное и маслосъемное кольца двигателя

Основная задача второго компрессионного кольца — обеспечение дополнительного уплотнения после верхнего маслосъемного кольца. Из-за этого второе кольцо обычно «следит» только за газами, которые проходят мимо верхнего кольца, а давление и температура отличаются от значений для верхнего компрессионного кольца. Соответственно материалы и конструкция второго кольца являются менее критичными.

Однако, второе кольцо имеет важную дополнительную функцию: оно помогает маслосъемному кольцу, действуя как «скребок», предотвращает попадание излишнего масла в камеру сгорания и возникновение детонации.

Некоторые вторые компрессионные кольца специально сделаны скошенными, чтобы содействовать работе маслосъемного кольца, а скос наименьший у верхнего края кольца. При этом оно стремится двигаться поверх масла при движении вверх в цилиндре и будет удалять масло при движении вниз. Если удаление масла является проблемой, то такой тип кольца принудительно удаляет масло, хотя второе кольцо с плоской поверхностью вместе с маслосъемным кольцом «нормального» усилия — это все, что нужно.

Второе компрессионное кольцо без зазора является новой конструкцией. Используемый здесь термин «без зазора» в чем-то неправильный, т. к. вообще невозможно изготовить кольцо полностью без зазора — его будет невозможно установить на поршень, и кольцо будет нерегулируемым даже при самых малых отклонениях формы отверстия цилиндра от окружности. Не обращая внимания на это, кольцо можно сделать без видимого зазора для газов, проходящих мимо кольца. При использовании этих колец двигатель прирабатывается быстрее в процессе обкатки, и он выдает немного большую мощность при проверке на стенде.

Потребность в беззазорных кольцах зависит в той или иной степени от того, как работают другие кольца. Если верхнее компрессионное кольцо обеспечивает качественное уплотнение, то беззазорное второе компрессионное кольцо менее важно. Однако, в реальности дело обстоит не так и второе беззазорное компрессионное кольцо может быть реальным средством при получении большей мощности на коленчатом валу.

Маслосъемные кольца очень важны для функционирования двигателей, особенно при использовании низкооктанового топлива. Моторное масло, которое остается в камере сгорания, будет уменьшать октановое число топлива, что может привести к детонации. Оно также может загрязнять камеры сгорания и головки поршней, что обязательно вызовет снижение мощности двигателя.

Sorry, you have been blocked

This website is using a security service to protect itself from online attacks. The action you just performed triggered the security solution. There are several actions that could trigger this block including submitting a certain word or phrase, a SQL command or malformed data.

What can I do to resolve this?

You can email the site owner to let them know you were blocked. Please include what you were doing when this page came up and the Cloudflare Ray ID found at the bottom of this page.

Cloudflare Ray ID: 7f2d8c230fc4c2c5 • Your IP: Click to reveal 178.132.111.83 • Performance & security by Cloudflare

Поршневые кольца. Устройство, виды, функции поршневых колец

Поршневые кольца для двигателей внутреннего сгорания должны отвечать всем требованиям, предъявляемым к динамическому линейному уплотнению. Они должны не только выдерживать термические и химические нагрузки, но и выполнять ряд функций. Кроме того, они должны обладать следующими свойствами:

Функции поршневых колец

  • Предотвращение (за счет уплотнения) прорыва газов из камеры сгорания в картер, во избежание снижения давления газов и, следовательно, мощности двигателя
  • Уплотнение, т. е. предотвращение попадания смазывающего масла из кривошипной камеры (картера) в камеру сгорания
  • Обеспечение наличия на стенке цилиндра масляной пленки точно заданной толщины
  • Распределение смазочного масла по стенке цилиндра
  • Стабилизация движения поршня (качание поршня) – особенно на холодном двигателе и большом зазоре между поршнем и цилиндром
  • Передача тепла (отвод тепла) от поршня к цилиндру

Свойства поршневых колец

  • Низкое трение во избежание существенных потерь мощности двигателя
  • Высокая износостойкость и сопротивление термомеханической усталости, химическим нагрузкам и горячей коррозии
  • Поршневое кольцо не должно вызывать чрезмерный износ цилиндра, иначе значительно сокращается срок службы двигателя.
  • Длительный срок службы, эксплуатационная надежность и эффективность затрат в течение всего времени эксплуатации

Поршневые кольца

2. Основные функции поршневых колец

2.1. Уплотнение от прорыва отработанных газов

Основной функцией компрессионных поршневых колец является предотвращение прорыва газов между поршнем и стенками цилиндра в картер. В большинстве двигателей это достигается за счет использования двух компрессионных поршневых колец, образующих лабиринт для газов.

В силу конструктивных особенностей, поршневые кольца для двигателей внутреннего сгорания не обеспечивают 100%-ого уплотнения, поэтому в картер всегда проникает небольшое количество газов. Это нормальное явление, полностью исключить прорыв газов невозможно в связи с особенностями конструкции колец.

Однако в любом случае необходимо избежать чрезмерного прорыва горячих отработанных газов между поршнем и стенкой цилиндра. Иначе это повлекло бы за собой снижение мощности, повышенный нагрев компонентов и прекращение смазывания. Всё это отрицательно сказалось бы на сроке службы и работе двигателя. Различные уплотняющие и прочие функции колец, а также возникающий прорыв газов будут подробнее рассмотрены ниже.

Уплотнение от прорыва отработанных газов в поршневых кольцах

Уплотнение от прорыва отработанных газов.

2.2. Съем и распределение масла

Поршневые кольца не только обеспечивают герметичность между камерой сгорания и полостью картера, но и регулируют толщину масляной пленки. Кольца равномерно распределяют масло по стенке цилиндра. Съем избыточного количества масла осуществляется в основном маслосъемным поршневым кольцом (3-е кольцо), а также комбинированным компрессионным/скребковым кольцом (2-е кольцо).

Съем и распределение масла в поршневых кольцах

Съем и распределение масла

2.3. Отвод тепла

Еще одна важная функция поршневых колец заключается в регулировании температуры поршня. Основная часть (около 70 %) тепла, поглощенного поршнем при сгорании топлива, отводится через поршневые кольца к цилиндру. Решающую роль при этом играют компрессионные поршневые кольца.

Отсутствие постоянного отвода тепла поршневыми кольцами привело бы к образованию на поршне задиров или даже к расплавлению поршня всего за несколько минут. В связи с этим очевидно, что поршневые кольца всегда должны иметь оптимальный контакт со стенкой цилиндра. Некруглости цилиндра или блокирование поршневых колец в кольцевых канавках (нагарообразование, грязь, деформация) с течением времени приводят к повреждениям поршня, вызванным перегревом из-за недостаточного отвода тепла.

Отвод тепла в поршневых кольцах

3. Типы поршневых колец

3.1. Компрессионные поршневые кольца

Цилиндрические компрессионные поршневые кольца

Цилиндрическое компрессионное кольцо

Цилиндрическое компрессионное кольцо

Цилиндрическое компрессионное кольцо с внутренней фаской

Цилиндрическое компрессионное кольцо с внутренней фаской

Цилиндрическое компрессионное кольцо с внутренним углом

Цилиндрическое компрессионное кольцо с внутренним углом

Цилиндрическое компрессионное поршневое кольцо

Цилиндрическое компрессионное кольцо

Цилиндрические компрессионные поршневые кольца – это кольца, имеющие прямоугольное поперечное сечение. У таких колец боковые поверхности параллельны друг другу. Данный тип компрессионных поршневых колец является самым простым и наиболее распространенным. В настоящее время кольца этого типа используются преимущественно в качестве первого компрессионного кольца во всех бензиновых, а иногда и в дизельных двигателях легковых автомобилей. Наличие внутренних фасок и углов вызывает скручивание колец в установленном (напряженном) состоянии. Фаска или внутренний угол, расположенные по верхней кромке, вызывают «положительное скручивание кольца». Более подробное описание воздействия скручивания колец приводится в 6. «Скручивание колец».

Конические кольца – компрессионные поршневые кольца с маслосъемной функцией

Коническое кольцо

Коническое кольцо с нижней внутренней фаской

Коническое кольцо с нижней внутренней фаской

Коническое кольцо с нижним внутренним углом

Коническое кольцо с нижним внутренним углом

ЗАМЕЧАНИЕ

Конические кольца используются на двигателях любых типов (бензиновых и дизельных, для легковых и грузовых автомобилей) и устанавливаются, как правило, во вторую кольцевую канавку.

Эти кольца выполняют двойную функцию. Они помогают компрессионному кольцу в противодействии прорыву газов, а маслосъемному кольцу – в регулировании толщины масляной пленки.

Рабочая поверхность конических колец (Рис. 2) имеет коническую форму. В зависимости от исполнения, угловое отклонение рабочей поверхности в сравнении с кольцом прямоугольного сечения составляет от 45 до 60 угловых минут. Благодаря такой форме новое коническое кольцо контактирует с поверхностью цилиндра только по нижней кромке. По этой причине в данной области возникает высокое механическое давление на поверхность и происходит желаемый съем материала. В результате этого запланированного износа, возникающего в период приработки, уже после непродолжительной эксплуатации образуется идеально закругленная кромка, которая обеспечивает оптимальное уплотнение. За период эксплуатации в несколько сотен тысяч км pабочая поверхность кольца теряет коническую форму, и коническое кольцо начинает выполнять функцию кольца прямоугольного сечения. Обладая теперь свойствами кольца прямоугольного сечения, бывшее коническое кольцо по-прежнему обеспечивает надежное уплотнение. По причине того, что газы оказывают давление на кольцо также спереди (из-за проникновения газов в зазор между цилиндром и рабочей поверхностью поршневого кольца), усиление действия давления газов несколько снижается. За счет этого во время приработки кольца незначительно уменьшаются давление прижима и степень износа.

Конические кольца выполняют не только функцию компрессионных поршневых колец, но и обладают хорошими маслосъемными свойствами. Этому способствует смещенная внутрь верхняя кромка кольца. При движении поршня вверх, от нижней к верхней мертвой точке, кольцо скользит по масляной пленке. Под действием гидродинамических сил (образование масляного клина) кольцо слегка отходит от поверхности цилиндра. При движении поршня в обратном направлении кромка кольца проникает глубже в масляную пленку и таким образом снимает слой масла, отводя его в сторону картера. На бензиновых двигателях конические кольца устанавливаются также в первую кольцевую канавку. Фаска или внутренний угол, относительно нижней кромки, вызывают отрицательное скручивание кольца (смотри 6. «Скручивание колец»).

Давление газов на коническое кольцо

Скребковые кольца

Скребковое кольцо

У скребкового кольца, обеспечивающего как уплотнение от прорыва газов, так и съем масла, нижняя кромка рабочей поверхности имеет прямоугольную или скругленную проточку. В этой проточке скапливается определенное количество масла, которое затем стекает обратно в масляный поддон.

Раньше скребковые кольца имели прямоугольное сечение и устанавливались в качестве второго компрессионного поршневого кольца на многих моделях двигателей.

В настоящее время, вместо скребковых колец прямоугольного сечения используют преимущественно конические скребковые кольца. Скребковые кольца устанавливают также на поршнях для компрессоров пневматических тормозных систем, главным образом в качестве первого компрессионного поршневого кольца.

Коническое скребковое кольцо

Коническое скребковое кольцо

Коническое скребковое кольцо является усовершенствованным типом скребкового кольца прямоугольного сечения. За счет конической pабочей поверхности улучшается процесс съема масла. В случае использования поршневых компрессоров, конические скребковые кольца устанавливают не только во вторую, но и в первую кольцевую канавку.

Коническое скребковое кольцо с закрытым стыком

Коническое скребковое кольцо с закрытым стыком

У некоторых конических скребковых колец скругленная проточка не доходит до стыкового конца, благодаря чему улучшается функция уплотнения от прорыва газов. Тем самым, по сравнению с традиционными коническими скребковыми кольцами, такие кольца обеспечивают уменьшение прорыва газов в картер (см. также 6. «Тепловой зазор»).

Кольца трапециевидного сечения

Кольцо симметричного трапециевидного сечения

Кольцо симметричного трапециевидного сечения

У колец симметричного трапециевидного сечения обе боковые поверхности расположены не параллельно друг другу, а под наклоном, в результате чего поперечное сечение приобретает форму трапеции. Угол наклона составляет, как правило, 6 °, 15 ° или 20 °.

Кольцо несимметричного трапециевидного сечения

Кольцо несимметричного трапециевидного сечения

У колец несимметричного трапециевидного сечения нижняя боковая поверхность не имеет угла наклона и расположена перпендикулярно рабочей поверхности.

Кольца трапециевидного или несимметричного трапециевидного сечения используются для предотвращения нагарообразования и, следовательно, заклинивания колец в кольцевых канавках. При наличии очень высокой температуры внутри поршневой канавки велика вероятность образования нагара из-за воздействия этой температуры на имеющееся в канавке масло. При этом у дизельных двигателей возможно образование не только масляного нагара, но и сажи. Наличие сажи ускоряет скопление отложений в кольцевой канавке. Если бы в результате накопления отложений произошло заклинивание поршневых колец в канавках, то горячие отработанные газы беспрепятственно проникли бы через зазор между поршнем и стенкой цилиндра и вызвали бы перегрев поршня. Это привело бы к расплавлению головки поршня и его серьезным повреждениям.

По причине действия повышенных температур и образования сажи, кольца трапециевидного сечения устанавливаются преимущественно на дизельных двигателях, в самой верхней кольцевой канавке, а иногда и во второй кольцевой канавке.

ВНИМАНИЕ!

Кольца (симметричного и несимметричного) трапециевидного сечения нельзя устанавливать в обычные прямоугольные канавки. Кольцевые канавки поршня, в которые необходимо установить кольца трапециевидного сечения, всегда должны иметь соответствующую форму.

Функция очистки поршневых колец трапециевидного сечения Функция очистки поршневых колец трапециевидного сечения

Функция очистки: благодаря особенностям формы колец трапециевидного сечения и их движению в кольцевой канавке за счет качания поршня происходит механическое измельчение нагара.

3.2. Маслосъемные поршневые кольца

Назначение

Конструкция маслосъемных поршневых колец позволяет распределять масло по стенке цилиндра и снимать с нее избыточное масло. Для улучшения функций уплотнения и съема масла, маслосъемные поршневые кольца оснащаются, как правило, двумя маслосъемными рабочими поясками. Каждый их этих рабочих поясков снимает со стенки цилиндра избыточное масло. Таким образом, как у нижней кромки маслосъемного поршневого кольца, так и между рабочими поясками скапливается определенное количество масла, которое необходимо удалить из области кольца. Поскольку при движении поршня он качается внутри цилиндра, функция уплотнения выполняется тем лучше, чем ближе друг к другу расположены рабочие пояски кольца.

Маслосъемное поршневое кольцо

Маслосъемное поршневое кольцо

Прежде всего, масло, снимаемое верхним рабочим пояском и скапливающееся между обоими поясками, подлежит удалению из этой зоны, так как иначе оно может проникать в область над маслосъемным поршневым кольцом, что потребует его съема вторым компрессионным кольцом. Для этой цели коробчатые маслосъемные кольца и маслосъемные кольца из 2-х частей имеют между рабочими поясками продольные прорези или отверстия. Через эти отверстия в самом кольце масло, снимаемое верхним рабочим пояском, выводится на обратную сторону кольца.

ЗАМЕЧАНИЕ

У двухтактных двигателей поршень смазывается маслом, содержащимся в топливной смеси. Поэтому из конструктивных соображений можно отказаться от использования маслосъемного поршневого кольца.

Оттуда дальнейший отвод снятого масла может осуществляться разными способами. Один из этих способов предусматривает отвод масла через отверстия в поршневой канавке к внутренней поверхности поршня, чтобы оно могло стекать обратно в масляный поддон. При наличии так называемых поверхностных пазов (cover slots) (Рис. 1) снятое масло выводится обратно на наружную поверхность поршня через расположенную вокруг бобышки выемку. Также используется комбинированный вариант, когда масло отводится сразу обоими способами.

Оба этих способа отвода масла надежно зарекомендовали себя и успешно используются, в зависимости от формы поршня, процесса сгорания топлива или цели применения. Теоретически сложно дать общий ответ, какой из этих способов лучше. По этой причине, выбор оптимального способа для конкретного поршня зависит от результатов различных практических испытаний.

Коробчатые маслосъемные поршневые кольца

Маслосъемное поршневое кольцо

Маслосъемное поршневое кольцо

В современном моторостроении коробчатые маслосъемные поршневые кольца больше не используются. Их упругость обеспечивается только за счет собственного поперечного сечения. Поэтому такие кольца относительно более жесткие, имеют меньшую подвижность и менее плотно прилегают к стенке цилиндра, вследствие чего их уплотняющая способность хуже, чем у маслосъемных поршневых колец, состоящих из нескольких частей.

Коробчатые маслосъемные кольца с прорезями изготавливают из серого чугуна.

Типы конструкции

Маслосъемное коробчатое кольцо с прорезями

Маслосъемное коробчатое кольцо с прорезями

Это самое простое исполнение с прямоугольными маслосъемными рабочими поясками и прорезями для отвода масла.

Маслосъемное коробчатое кольцо со сходящимися фасками

Маслосъемное коробчатое кольцо со сходящимися фасками

В отличие от маслосъемного кольца с прорезями, у этого кольца с кромок рабочих поясков сняты фаски, благодаря чему улучшается давление на поверхность.

Маслосъемное коробчатое кольцо с параллельными фасками

Маслосъемное коробчатое кольцо с параллельными фасками

У рабочих поясков этого кольца фаски сняты только с кромок в направлении камеры сгорания. Это позволяет улучшить процесс съема масла при движении поршня вниз.

Маслосъемные поршневые кольца из 2-х частей (конструкция с пружинным расширителем)

Такие маслосъемные поршневые кольца состоят собственно из самого кольца (кольцевой детали) и расположенной за ним спиральной пружины. Поперечное сечение кольца намного меньше, чем у коробчатого маслосъемного поршневого кольца. Это придает кольцу относительную гибкость и позволяет ему оптимально прилегать к стенке цилиндра. Канавка для пружинного расширителя, расположенная на внутренней стороне кольца, имеет либо полукруглую, либо V-образную форму.

Упругость как таковая обеспечивается за счет спиральной нажимной пружины из жаропрочной пружинной стали. Она расположена внутри кольца и прижимает его к стенке цилиндра. Во время эксплуатации пружина плотно прилегает к обратной стороне кольца, образуя с ним единое целое. Хотя пружина в кольце не прокручивается, всё кольцо в целом – так же, как и другие кольца – свободно вращается в кольцевой канавке. У состоящих из 2-х частей маслосъемных поршневых колец радиальное давление всегда распределяется симметрично, так как давление прижима имеет одинаковую величину по всей окружности спиральной пружины.

Шлифование пружин по наружному диаметру, более плотное расположение витков в области замка поршневого кольца и защита тефлоновой оболочкой позволяют увеличить срок службы пружин. За счет этих мер уменьшается износ от трения между кольцом и спиральной пружиной. Собственно кольца маслосъемных колец из двух частей изготавливают из серого чугуна или стали.

ЗАМЕЧАНИЕ

У состоящих из нескольких частей маслосъемных поршневых колец зазор в замке ненапряженного кольца, т. е. расстояние между стыковыми концами самого кольца в демонтированном состоянии, без установленной внутри пружины-расширителя, является незначительным. В особенной степени это касается стальных колец, у которых данный зазор может быть равным нулю. Это не является дефектом или основанием для рекламации.

Маслосъемные поршневые кольца из 2-х частей (конструкция с пружинным расширителем)

Маслосъемное коробчатое кольцо с прорезями и пружинным расширителем

Самый простой тип конструкции, обеспечивающий более эффективное уплотнение в сравнении с обычным коробчатым маслосъемным кольцом с прорезями.

Маслосъемное коробчатое кольцо с параллельными фасками и пружинным расширителем

Кольцо имеет такую же форму рабочей поверхности, как и у обычного коробчатого маслосъемного кольца с параллельными фасками, однако обеспечивает более эффективное уплотнение.

Маслосъемное коробчатое кольцо со сходящимися фасками и пружинным расширителем

Маслосъемное коробчатое кольцо со сходящимися фасками и пружинным расширителем

Кольцо имеет такую же форму рабочей поверхности, как и у обычного коробчатого маслосъемного кольца со сходящимися фасками, однако обеспечивает более эффективное уплотнение. Маслосъемные поршневые кольца этого типа находят самое широкое применение. Их можно использовать на любых моделях двигателей.

Маслосъемное коробчатое кольцо со сходящимися фасками, пружинным расширителем и хромированными рабочими поясками

Маслосъемное коробчатое кольцо со сходящимися фасками, пружинным расширителем и хромированными рабочими поясками

Это кольцо имеет такие же свойства, как у традиционного коробчатого маслосъемного кольца со сходящимися фасками и пружинным расширителем, однако отличается повышенной износостойкостью и, следовательно, более длительным сроком службы. Поэтому оно оптимально подходит для дизельных двигателей.

Маслосъемное коробчатое кольцо со сходящимися фасками и пружинным расширителем, изготовленное из азотированной стали

Маслосъемное коробчатое кольцо со сходящимися фасками и пружинным расширителем, изготовленное из азотированной стали

Это кольцо изготавливается из профильной листовой стали и со всех сторон покрыто износозащитным слоем. Оно отличается очень высокой гибкостью и ломается реже, чем указанные выше кольца из серого чугуна. Отвод масла из полости между рабочими поясками осуществляется через круглые штампованные отверстия. Маслосъемные поршневые кольца этого типа используются преимущественно на дизельных двигателях.

Маслосъемные поршневые кольца из 3-х частей

Данные маслосъемные кольца состоят из 3-х частей: двух тонких стальных пластинок (колец) и распорной пружинырасширителя, прижимающей кольца к стенкам цилиндра. Маслосъемные поршневые кольца со стальными пластинками либо имеют хромированные рабочие поверхности, либо со всех сторон обработаны азотированием.

Последние отличаются повышенной износостойкостью как в области pабочей поверхности, так и в месте контакта пружины-расширителя и пластинок (вторичный износ).

Состоящие из 3-х частей маслосъемные поршневые кольца оптимально прилегают к стенкам цилиндров и находят применение преимущественно в бензиновых двигателях легковых автомобилей.

Маслосъемное поршневое кольцо из 3-х частей

Маслосъемное поршневое кольцо из 3-х частей

3.3. Типичная комплектация поршня кольцами

Комплексные требования, предъявляемые к поршневым кольцам, не могут быть выполнены при использовании только одного поршневого кольца. Это можно осуществить только с помощью нескольких поршневых колец различных типов. В современном автомобильном моторостроении устоявшимся решением является комбинация из компрессионного поршневого кольца, комбинированного компрессионного и маслосъемного поршневого кольца и отдельного маслосъемного поршневого кольца. Поршни с более чем тремя кольцами встречаются сегодня сравнительно редко.

Комплектация поршня кольцами

  1. Компрессионное поршневое кольцо
  2. Комбинированное компрессионное и маслосъемное поршневое кольцо
  3. Маслосъемное поршневое кольцо

3.4. Наиболее подходящее поршневое кольцо

Не существует ни лучшего поршневого кольца, ни лучшей комплектации поршня кольцами. Каждое поршневое кольцо является «специалистом» в своей области. В конечном счете, любое исполнение и сочетание колец представляют собой компромисс для удовлетворения абсолютно разным и отчасти противоположным требованиям. Изменение в отношении хотя бы одного поршневого кольца может нарушить баланс работы всего комплекта колец.

Окончательный подбор поршневых колец для двигателя новой конструкции всегда осуществляется как на основании результатов интенсивных тестов на испытательном стенде, так и с учетом нормальных условий эксплуатации.

Приведенная ниже таблица не претендует на полноту, однако показывает в целом, как различные характеристики колец отражаются на их различных функциях.

  • благоприятное действие – положительно
  • среднее действие – нейтрально
  • неблагоприятное действие – отрицательно

выбор подходящего поршневого кольца

4. Поршневое кольцо: термины

Поршневое кольцо

Поршневое кольцо

  1. Зазор в замке ненапряженного поршневого кольца
  2. Стыковые концы
  3. Спинка кольца (напротив стыковых концов)
  4. Рабочая поверхность кольца
  5. Боковая поверхность кольца
  6. Внутренняя поверхность кольца
  7. Тепловой зазор (зазор в холодном состоянии)
  8. Диаметр цилиндра
  9. Радиальная толщина стенки
  10. Осевой зазор
  11. Высота поршневого кольца
  12. Диаметр цилиндра
  13. Внутренний диаметр канавки
  14. Высота канавки
  15. Радиальный зазор

5. Конструкция и форма поршневых колец

5.1. Материалы для изготовления поршневых колец

Материалы для изготовления поршневых колец подбираются с учетом антифрикционных свойств и условий, при которых поршневые кольца должны работать. Высокая эластичность и коррозионная стойкость важны так же, как и высокая устойчивость к повреждениям при экстремальных условиях эксплуатации. Серый чугун до сих пор является основным материалом, из которого изготавливаются поршневые кольца. С трибологической точки зрения, серый чугун и содержащиеся в нем графитовые включения обеспечивают оптимальные свойства при работе в аварийном режиме (сухое смазывание графитом).

Эти свойства важны особенно тогда, когда прекращается смазывание моторным маслом и масляная пленка уже разрушена. Кроме того, графитовые жилки в структуре кольца служат в качестве масляных резервуаров и противодействуют разрушению масляной пленки при неблагоприятных условиях эксплуатации.

Процесс литья поршневых колец

Процесс литья поршневых колец

Используемые материалы на основе серого чугуна

  • Чугун с пластинчатой структурой графита (чугун с пластинчатым графитом), легированный и нелегированный
  • Чугун с глобулярной структурой графита (чугун с шаровидным графитом), легированный и нелегированный

В качестве стальных материалов используются хромистая сталь с мартенситной микроструктурой и пружинная сталь. Для повышения износостойкости поверхность материалов подвергают упрочнению. Это осуществляется, как правило, путем азотирования.*

*В технической литературе под термином азотирование понимается процесс обогащения азотом (подачи азота) с целью упрочнения поверхности стали. Азотирование выполняется, как правило, при температуре от 500 до 520 °C; время обработки составляет от 1 до 100 часов. В результате диффузии азота на поверхности заготовки образуется очень твердый поверхностный связующий слой из нитрида железа. В зависимости от времени обработки, он может достигать толщины в 10–30 мкм. Наиболее распространенными методами являются азотирование в соляной ванне (например, коленчатых валов), газовое азотирование (поршневых колец) и плазменное азотирование.

5.2. Материалы для покрытия pабочей поверхности

поршневое кольцо с полным покрытием рабочей кромки

С полным покрытием рабочей кромки

поршневое кольцо С покрытием центра рабочей кромки

С покрытием центра рабочей кромки

поршневое кольцо с частичным покрытием рабочей кромки

С частичным покрытием рабочей кромки

На рабочие пояски или pабочие поверхности поршневых колец можно нанести покрытия, улучшающие трибологические свойства. При этом первоочередное значение отводится повышению износостойкости, а также обеспечению смазывания и уплотнения в экстремальных условиях. Материал покрытия должен быть совместим как с материалами, из которых изготовлены поршневое кольцо и стенка цилиндра, так и со смазывающей средой. Нанесение покрытий на рабочие поверхности поршневых колец находит широкое применение. На поршневые кольца серийных двигателей часто наносят покрытия из хрома, молибдена и феррооксида.

Трибология (греч.: учение о трении) изучает порядок взаимодействия поверхностей тел, движущихся относительно друг друга. Эта наука занимается описанием трения, износа и смазывания.

5.2.1. Молибденовые покрытия

Во избежание следов прижога рабочая поверхность компрессионных (не маслосъемных) поршневых колец может быть наполнена молибденом или полностью им покрыта. Для этого используются методы как газопламенного, так и плазменного напыления. Благодаря высокой температуре плавления молибдена (2620 °C) обеспечивается чрезвычайно высокая термостойкость. Кроме того, технология нанесения покрытий приводит к образованию пористой структуры материала. В микропустотах, образующихся при этом на рабочей поверхности кольца (Рис. 2), может скапливаться моторное масло. За счет этого обеспечивается наличие моторного масла для смазывания рабочей поверхности кольца даже при экстремальных режимах эксплуатации.

Молибденовые покрытия поршневого кольца - микропустоты

Свойства

  • Высокая термостойкость
  • Оптимальные свойства при работе в аварийном режиме
  • Мягче хрома
  • Износостойкость ниже, чем у колец с хромовым покрытием (повышенная восприимчивость к загрязнениям)
  • Повышенная восприимчивость к вибрациям поршневого кольца (из-за этого возможно крошение молибдена при экстремальных нагрузках, например, при детонационном сгорании и прочих нарушениях режима сгорания)
5.2.2. Гальванические покрытия
Хромовые покрытия

Большинство хромовых покрытий наносится гальваническим способом.

Хромовые покрытия поршневого кольца

  • Длительный срок службы (износостойкость)
  • Твердая, устойчивая поверхность
  • Снижение износа цилиндров (примерно на 50 % в сравнении с поршневыми кольцами без покрытия)
  • Высокая устойчивость к появлению следов прижога
  • Свойства при работе в аварийном режиме хуже, чем у молибденовых покрытий
  • По причине высокой износостойкости приработка длится дольше, чем у неармированных поршневых колец, маслосъемных поршневых колец со стальными пластинками или маслосъемных поршневых колец U-Flex.
Покрытия CK (Хромовая керамика) И DC (Diamond coated)

Данные покрытия состоят из нанесенного гальваническим способом слоя хрома с сеткой микротрещин, в которые прочно внедрены твердые материалы. В качестве заполнителя используются керамика (CK) или микроалмазы (DC).

Хромовые покрытия поршневого кольца с микротрещинами заполненными твердыми материалами

Свойства

  • Минимальные потери на трение благодаря чрезвычайно гладкой поверхности
  • Максимальная износостойкость и длительный срок службы за счет заполнения твердыми материалами
  • Высокая устойчивость к появлению следов прижога
  • Незначительный самоизнос слоя, нанесенного на поршневое кольцо, при сохранении незначительного износа цилиндра
Покрытия PVD

PVD, сокращенно от «Physical Vapour Deposition» (физическое осаждение из парообразной фазы), – это вакуумная технология нанесения покрытий, при которой слои из высокопрочных материалов (CrN, нитрид хрома (III)) напрямую напыляются на поверхность поршневых колец.

 Покрытия поршневого кольца - PVD

Свойства

  • Благодаря чрезвычайно гладкой поверхности, потери на трение сводятся к минимуму.
  • За счет очень тонкой и плотной структуры слоя высокой твердости обеспечивается очень высокая износостойкость.
  • Ввиду высокой износостойкости контур кольца сохраняется на протяжении более длительного времени эксплуатации. Это позволяет, к примеру, дополнительно снизить упругость маслосъемного поршневого кольца с покрытием PVD, что дает значительные преимущества в отношении потерь на трение.

5.3. Отслаивание покрытий

В некоторых случаях происходит отслаивание напыленных на рабочие поверхности слоев молибдена и феррооксида. Причиной этого являются, главным образом, ошибки при монтаже поршневых колец (слишком сильное растягивание при установке на поршень или деформирование колец, как показано на Рис. 1). При неправильной установке кольца на поршень покрытие отслаивается только в области спинки кольца (Рис. 2). Отслаивание покрытия на стыковых концах указывает на вибрацию поршневого кольца в результате нарушения режима сгорания (например, при детонационном сгорании).

Пeрeкручивание и растягивание поршневых колец при установке на поршень

Рис. 1. Пeрeкручивание и растягивание поршневых колец при установке на поршень

Отслаивание покрытия в области спинки кольца

Рис. 2. Отслаивание покрытия в области спинки кольца

5.4. Обработка рабочих поверхностей (обтачивание, притирка, шлифование)

Рабочие поверхности неармированных поршневых колец из чугуна обрабатывают, как правило, только путем тонкого обтачивания. По причине быстрой приработки неармированных колец, их рабочие поверхности не подвергают притирке или шлифованию. Снабженные покрытием или закаленные рабочие поверхности колец либо шлифуют, либо притирают. Это связано с их высокой износостойкостью, из-за которой потребовалось бы слишком много времени на то, чтобы рабочие поверхности колец приобрели скругленную форму и начали обеспечивать надлежащее уплотнение. Возможными последствиями стали бы потеря мощности и высокий расход масла.

Станок для обработки рабочих поверхностей

Станок для обработки рабочих поверхностей

5.5. Выпуклая форма рабочей поверхности

Еще одна причина обработки притиркой или шлифованием связана с формой pабочей поверхности. У (неармированных) поршневых колец прямоугольного сечения pабочая поверхность спустя некоторое время приобретает выпуклую форму (Рис. 1), что связано с их возвратнопоступательным движением и движением в канавках (скручивание колец). Это положительно отражается на создании масляной пленки и сроке службы колец.

Образование выпуклости под действием износа в период приработки

Рис. 1. Образование выпуклости под действием износа в период приработки

Рабочим поверхностям поршневых колец с покрытием придают слегка выпуклую форму еще в процессе изготовления. Благодаря этому не требуется их дополнительная приработка до желаемой формы. Это предотвращает усиленный износ в период приработки и, следовательно, повышенный расход масла. По причине точечного прилегания рабочей поверхности кольца достигается повышенное специфическое давление прижима к стенке цилиндра, благодаря чему улучшается уплотнение от прорыва газов и поступления масла. Кроме того, снижается риск образования кромочного контакта из-за еще пока острых кромок колец. Кромки колец с хромовым покрытием всегда сглаживают, чтобы предотвратить продавливание масляной пленки во время приработки. При неоптимальной конструкции кольца, твердое хромовое покрытие могло бы привести к значительному износу и повреждениям стенки цилиндра, выполненного из гораздо более мягкого материала.

Рабочие поверхности колец симметричной выпуклой формы (Рис. 2), образовавшейся в результате приработки или выполненной еще на стадии изготовления, обладают оптимальными антифрикционными свойствами и создают масляную пленку заданной толщины. Благодаря симметричной выпуклости, толщина масляной пленки при возвратно-поступательном движении поршня остается одинаковой. Силы, действующие на кольцо и обеспечивающие его скольжение по масляной пленке, одинаковы при движении поршня в обоих направлениях.

Рабочая поверхность кольца симметричной выпуклой формы

Рис. 2. Рабочая поверхность кольца симметричной выпуклой формы

Если выпуклость создается еще в процессе изготовления, то существует возможность придания ей асимметричной формы для улучшения контроля расхода масла. В этом случае наивысшая точка выпуклости будет располагаться не по середине pабочей поверхности, а немного ниже (Рис. 3).

Рабочая поверхность кольца асимметричной выпуклой формы

Рис. 3. Рабочая поверхность кольца асимметричной выпуклой формы

Асимметричное разделение pабочей поверхности позволяет формировать разные поверхности скольжения кольца при его возвратно-поступательном движении. При движении вверх кольцо, из-за увеличенной площади рабочей поверхности в верхней части, сильнее выталкивается маслом («кольцо всплывает»), в результате чего со стенки цилиндра снимается меньше масла. При движении вниз уменьшенная площадь в нижней части способствует тому, что кольцо меньше «всплывает» и, соответственно, снимает больше масла (Рис. 4 и 5). Таким образом, кольца с рабочими поверхностями асимметричной выпуклой формы позволяют также контролировать расход масла, особенно при неблагоприятных условиях эксплуатации в дизельных двигателях. Такие условия возникают, например, в результате продолжительной работы на режиме холостого хода после работы на режиме полной нагрузки, когда при последующем нажатии на педаль акселератора часто происходит выброс масла в выпускную систему и образование синего дыма.

Сильное «всплывание» при движении вверх

Рис. 4. Сильное «всплывание» при движении вверх

Слабое «всплывание» при движении вниз

Рис. 5. Слабое «всплывание» при движении вниз

5.6. Обработка поверхностей

поршневые кольца

В зависимости от исполнения, поверхности поршневых колец могут либо остаться необработанными, либо быть подвергнуты фосфатированию или омеднению. Это влияет только на антикоррозионные свойства колец. Новые необработанные кольца хотя и имеют красивый блеск, но абсолютно не защищены от образования ржавчины. Кольца, подвергнутые фосфатированию, имеют черную матовую поверхность и защиту от образования ржавчины за счет нанесенного на них слоя фосфата.

Омедненные кольца тоже хорошо защищены от ржавчины и имеют некоторую защиту от образования следов прижога в период приработки. Медь обладает определенным сухим смазочным эффектом, улучшая свойства при работе в аварийном режиме во время периода приработки.

Обработка поверхностей колец не имеет, однако, никакого влияния на их функциональность. Поэтому цвет поршневого кольца не является показателем его качества.

6. Назначение и свойства

6.1. Тангенциальное напряжение

Диаметр поршневых колец в свободном состоянии превышает диаметр установленных в цилиндр колец. Это необходимо для того, чтобы после установки кольца оказывали требуемое давление прижима по всей окружности цилиндра.

На практике сложно измерить давление прижима в цилиндре. Поэтому диаметральная сила, прижимающая кольцо к стенке цилиндра, определяется с помощью формулы, исходя из тангенциальной силы. Под тангенциальной силой понимают силу, необходимую для сжатия стыковых концов до образования теплового зазора

(Рис. 1). Тангенциальную силу измеряют с помощью гибкой стальной ленты, которую обматывают вокруг кольца. Эту ленту затягивают до тех пор, пока не достигается заданный тепловой зазор поршневого кольца. После этого значение тангенциальной силы считывают по динамометру. Если речь идет о маслосъемных поршневых кольцах, то измерение всегда выполняют с установленной пружиной-расширителем. Чтобы обеспечить точность измерений, измерительный прибор подвергают вибрации, что позволяет пружине-расширителю принять свое естественное положение за кольцом. Если измерения проводятся на состоящих из 3-х частей кольцах с пружиной и стальными пластинками, то в связи с их конструкцией требуется дополнительная осевая фиксация всего кольца, так как иначе стальные пластинки сместятся в сторону и измерение станет невозможным. На Рис. 1 схематически показан процесс измерения тангенциальной силы.

ЗАМЕЧАНИЕ

В результате радиального износа, вызванного полусухим трением или длительной эксплуатацией, поршневые кольца утрачивают тангенциальное напряжение. Поэтому измерять это напряжение имеет смысл только у новых колец с еще полным поперечным сечением.

Измерение тангенциальной силы

Рис. 1. Измерение тангенциальной силы

6.2. Распределение радиального давления

Радиальное давление зависит от модуля эластичности материала, зазора в замке ненапряженного поршневого кольца и, не в последнюю очередь, от поперечного сечения кольца. Различают два основных вида распределения радиального давления. Самым простым видом является симметричное распределение радиального давления (Рис. 2). Оно встречается, прежде всего, у составных маслосъемных поршневых колец, состоящих из собственно упругого кольца или стальных пластинок с относительно низким внутренним напряжением. Установленная внутри пружина-расширитель прижимает кольцо или, соответственно, стальные пластинки к стенке цилиндра. В результате того, что пружина-расширитель в сжатом состоянии (после установки) прижимается к обратной стороне кольца или стальных пластинок, радиальное давление распределяется симметрично.

Симметричное распределение радиального давления

Рис. 2. Симметричное распределение радиального давления

У компрессионных поршневых колец четырехтактных ДВС используется не симметричное распределение радиального давления, а грушевидное (позитивно-овальное), которое препятствует вибрации стыковых концов колец на высоких оборотах (Рис. 3). Вибрация всегда начинается на стыковых концах и передается от них к кольцу по всей его окружности. Под действием увеличенного усилия прижима, стыковые концы поршневого кольца сильнее прижимаются к стенке цилиндра, благодаря чему вибрация кольца эффективно снижается или прекращается.

Позитивно-овальное распределение радиального давления

Рис. 3. Позитивно-овальное распределение радиального давления

6.3. Увеличение давления прижима под действием давления сгорания

Гораздо более важным, чем внутреннее напряжение колец, является увеличение давления прижима, образующееся в результате сгорания смеси во время работы двигателя.

До 90 % общего усилия прижима первого компрессионного поршневого кольца создается за счет давления сгорания во время такта рабочего хода. Как показано на Рис. 1, компрессионное поршневое кольцо подвергается действию этого давления с задней стороны и сильнее прижимается к стенке цилиндра. Увеличенное усилие прижима воздействует главным образом на первое компрессионное кольцо и в меньшей степени на второе компрессионное кольцо.

Давление газов на второе поршневое кольцо может регулироваться за счет изменения теплового зазора первого компрессионного поршневого кольца.

Увеличение давления прижима поршневого кольца

Рис. 1. Увеличение давления прижима

При небольшом увеличении этого зазора, давление сгорания, действующее на обратную сторону второго компрессионного поршневого кольца, повышается, что также приводит к усилению прижима. При увеличении количества компрессионных поршневых колец, дальнейшего увеличения давления прижима под действием давления образующихся при сгорании газов, начиная со второго кольца, не происходит.

Маслосъемные поршневые кольца работают только за счет своего внутреннего напряжения. Ввиду особой формы этих колец, давление газов не вызывает увеличения усилия прижима. Кроме того, распределение силы на поршневом кольце зависит от формы рабочей поверхности поршневого кольца. У конических колец и шлифованных компрессионных поршневых колец выпуклой формы давление газов действует также в зазоре между рабочей поверхностью поршневого кольца и стенкой цилиндра, противодействуя давлению газов за поршневым кольцом (см. главу 1.3.1 «Компрессионные поршневые кольца»).

Осевое усилие, прижимающее компрессионное поршневое кольцо к нижней боковой поверхности канавки, возникает только за счет давления газов. Внутреннее напряжение колец в осевом направлении не действует.

ЗАМЕЧАНИЕ

Во время работы на режиме холостого хода, из-за снижения степени наполнения цилиндров наблюдается уменьшение усилия прижима колец. Это особенно заметно у дизельных двигателей. Двигатели, которые долго работают на холостом ходу, имеют повышенный расход масла, так как из-за снижения воздействия давления газов ухудшается процесс съема масла. Часто после длительной работы на режиме холостого хода и последующего нажатия на педаль акселератора, двигатели выбрасывают из выхлопной трубы клубы синего дыма. Это связано со скоплением масла в цилиндрах и в выпускной системе и его сгоранием после нажатия на педаль акселератора.

6.4. Специфическое давление прижима

Упругость поршневого кольцаспецифическое усилие прижима кольца

Рис. 2 и Рис. 3. Упругость кольца и специфическое усилие прижима

Специфическое давление прижима зависит от упругости кольца и площади его прилегания к стенке цилиндра.

Удвоение значения специфического усилия прижима возможно двумя способами: либо за счет удвоения значения упругости кольца, либо путем уменьшения вдвое площади прилегания кольца в цилиндре. На Рис. 2 и Рис. 3 видно, что результирующее усилие (специфическое усилие прижима = усилие × площадь), действующее на стенку цилиндра, всегда остается неизменным, несмотря на то, что упругость кольца увеличивают или, соответственно, уменьшают вдвое.

ВНИМАНИЕ!

При оценке давления прижима и уплотняющих свойств недостаточно учитывать только упругость кольца. Сравнивая поршневые кольца, всегда необходимо обращать внимание также на площадь pабочей поверхности.

На новых двигателях всё чаще устанавливают более плоские кольца, чтобы уменьшить внутреннее трение в двигателе. Это возможно, однако, только за счет уменьшения эффективной площади контакта кольца со стенкой цилиндра. При уменьшенной вдвое высоте кольца снижаются также вдвое упругость поршневого кольца и, следовательно, трение.

Поскольку оставшееся усилие действует на уменьшенную площадь, специфическое давление прижима на стенку цилиндра (усилие × площадь) при уменьшенных вдвое площади и упругости остается таким же, как и при увеличенных вдвое площади и упругости.

6.5. Тепловой зазор

Тепловой зазор (Рис. 1) – это важная особенность конструкции, необходимая для обеспечения надлежащей работы поршневых колец. Его можно сравнить с зазором в приводе впускных и выпускных клапанов. При нагреве компонентов из-за естественного теплового расширения происходит увеличение их длины или, соответственно, диаметра. В зависимости от разности рабочей температуры и температуры окружающей среды, требуется определенный зазор в холодном состоянии, чтобы обеспечить надлежащую работу при рабочей температуре.

Тепловой зазор кольца в смонтированном состоянии

Рис. 1. Тепловой зазор в смонтированном состоянии

Основным условием для корректной работы поршневых колец является их свободное вращение в канавках.

Заклиненные в канавках поршневые кольца не обеспечивают ни уплотнения, ни отвода тепла. Тепловой зазор, который должен всё ещё присутствовать и при рабочей температуре, гарантирует, что окружность расширенного под действием тепла поршневого кольца всегда будет меньше окружности цилиндра. Если, в результате теплового расширения поршневого кольца, тепловой зазор полностью исчезнет, то его стыковые концы начнут давить друг на друга. При дальнейшем увеличении такого давления произойдет деформация поршневого кольца, вызванная увеличением длины его окружности в результате нагрева. Поскольку при тепловом расширении поршневое кольцо не имеет возможности раздвигаться в радиальном направлении, увеличение длины его окружности может быть скомпенсировано только в осевом направлении. На Рис. 2 показано, как деформируется кольцо при недостаточном пространстве в цилиндре.

Деформация поршневого кольца при рабочей температуре

Рис. 2. Деформация поршневого кольца при рабочей температуре

Приведенные ниже вычисления на примере поршневого кольца диаметром 100 мм показывают, как изменяется длина его окружности при рабочей температуре.

расчет длины окружности поршневого кольца при рабочей температуре

В данном примере для обеспечения надлежащей работы кольца требуется тепловой зазор не менее 0,6 мм. Однако, в результате нагрева при рабочей температуре происходит не только расширение поршня и поршневых колец, но также увеличивается внутренний диаметр цилиндра.

По этой причине тепловой зазор может быть немного меньше рассчитанного. Тем не менее, под действием тепла диаметр цилиндра увеличивается в гораздо меньшей степени, чем поршневое кольцо. Это объясняется тем, что, во-первых, структура блока цилиндров жестче, чем у поршня. Во-вторых, поверхность цилиндра нагревается не так сильно, как поршень с поршневыми кольцами.

К тому же, внутренний диаметр цилиндра увеличивается неравномерно по всей рабочей поверхности цилиндра. Под действием теплоты сгорания верхняя часть цилиндра расширяется сильнее, чем нижняя. В результате неравномерного теплового расширения цилиндра происходит отклонение от цилиндрической формы, которая слегка принимает форму воронки (Рис. 3).

расчет кольца

Рис. 3. Цилиндр в форме воронки при рабочей температуре

6.6. Уплотнительные поверхности поршневых колец

Поршневые кольца обеспечивают уплотнение не только со стороны pабочей поверхности, но и в области нижней боковой поверхности. Рабочая поверхность кольца отвечает за уплотнение между кольцом и стенкой цилиндра, а нижняя боковая поверхность канавки служит для уплотнения обратной стороны кольца. Поэтому требуется плотное прилегание кольца не только к стенке цилиндра, но и к нижней боковой поверхности канавки поршня (Рис. 1). При отсутствии плотного прилегания, масло или отработанные газы могут проникать через обратную сторону кольца.

Приведенные рисунки наглядно показывают, что в результате износа (из-за загрязнений или длительной эксплуатации) больше не обеспечивается уплотнение обратной стороны кольца и через поршневую канавку поступает большее количество газов и масла. Поэтому устанавливать новые кольца в изношенные канавки не имеет смысла. Неровности на боковой поверхности канавки препятствуют плотному прилеганию кольца, а увеличенная по высоте канавка позволяет кольцу перемещаться в больших пределах. Из-за увеличения зазора по высоте нарушается правильное расположение кольца в канавке, в результате чего кольцо гораздо легче отделяется от нижней боковой поверхности канавки, происходит откачка масла (Рис. 2 и Рис. 3), возникает вибрация кольца и ухудшается уплотнение. Кроме того, pабочая поверхность кольца приобретает чрезмерно выпуклую форму. Это приводит к увеличению толщины масляной пленки и повышению расхода масла.

Уплотнение кольца за счет нижней боковой поверхности канавки

Рис. 1. Уплотнение за счет нижней боковой поверхности канавки

Такт впуска

Рис. 2. Такт впуска

Такт сжатия

Рис. 3. Такт сжатия

6.7. Дросселирующая щель и прорыв газов

Поскольку конструкция используемых в моторостроении поршневых колец не обеспечивает 100%-ого уплотнения, возникает прорыв так называемых картерных газов.

Отработанные газы через мельчайшие зазоры, имеющиеся в области поршней и поршневых колец, проникают в картер двигателя. При этом количество проникающих газов определяется по размерам дросселирующего окна (x и y на Рис. 4), которые следуют из значений теплового зазора и половины рабочего зазора поршня. В действительности, дросселирующее окно, в отличие от изображенного на рисунке, ничтожно мало.

Дросселирующее окно кольца

Рис. 4. Дросселирующее окно

В качестве ориентира, максимальное значение количества прорывающихся газов принимают равным 0,5 % от количества потребляемого двигателем воздуха. Количество газов, прорывающихся в картер во время работы двигателя, зависит от положения поршневых колец. Если тепловые зазоры первого и второго компрессионных поршневых колец располагаются в кольцевых канавках друг над другом, то прорыв газов слегка увеличивается.

В процессе работы двигателя такая ситуация повторяется регулярно, так как кольца совершают в канавках несколько оборотов в минуту. Если же тепловые зазоры колец оказываются на противоположных сторонах поршня, то из-за увеличения пути через уплотняющий лабиринт прорыв газов слегка уменьшается. Отработанные газы, проникающие в картер, отводятся системой вентиляции картера обратно во впускной тракт и далее попадают в камеры сгорания. Необходимость такого решения вызвана тем, что эти газы вредны для здоровья. В результате повторного сгорания в двигателе они обезвреживаются. Вентиляция также необходима для снижения давления в картере, иначе избыточное давление в его полости приводило бы к увеличению утечек масла через уплотнительные сальники коленчатого вала двигателя.

Повышенный прорыв газов связан либо со значительным износом поршневых колец в результате их длительной эксплуатации, либо с наличием трещин в днище поршня, через которые отработанные газы проникают в картер. Кроме того, нарушение геометрии цилиндров также приводит к увеличению прорыва газов в картер.

На стационарных двигателях или на двигателях, установленных на испытательном стенде, прорыв газов постоянно измеряется, контролируется и используется в качестве показателя, предупреждающего о возникновении повреждений в двигателе. Если измеренное количество прорывающихся газов превышает максимально допустимое значение, двигатель автоматически отключается. Это позволяет избежать серьезных и дорогостоящих повреждений двигателя.

6.8. Зазор кольца по высоте

Зазор кольца по высоте

Рис. 1. Зазор кольца по высоте

Зазор кольца по высоте (Рис. 1) не является результатом износа кольцевой канавки. Это важный функциональный параметр, обеспечивающий правильное функционирование поршневых колец. Благодаря наличию зазора у кольца по высоте, возможно его свободное вращение в кольцевой канавке.

Величина зазора должна быть достаточной, чтобы кольцо не заклинивало при рабочей температуре и чтобы давление сгорания, действующее в канавке на обратную сторону кольца, было достаточным.

С другой стороны, зазор кольца по высоте не должен быть слишком большим, так как иначе снижается стабильность положения кольца в осевом направлении. В результате этого усиливается склонность кольца к вибрации и чрезмерному скручиванию. Это приводит к неблагоприятному износу поршневых колец (чрезмерная выпуклость рабочей поверхности) и повышенному расходу масла.

6.9. Скручивание колец

Наличие у поршневых колец внутренних углов или фасок приводит к скручиванию колец в напряженном, установленном состоянии. Кольца в ненапряженном состоянии (на поршне, не установленном в двигатель) не скручиваются (Рис. 2) и ровно лежат в кольцевых канавках.

Установленное в двигатель кольцо, т. е. кольцо в напряженном состоянии, отклоняется в более слабую сторону, где из-за наличия внутренней фаски или внутреннего угла материала меньше. Происходит скручивание кольца.

В зависимости от расположения фаски или угла – у нижней или верхней кромки – различают положительное или отрицательное скручивание кольца (Рис. 3 и 4).

Поршневые кольца в ненапряженном состоянии: скручивание пока отсутствует

Рис. 2. Поршневые кольца в ненапряженном состоянии: скручивание пока отсутствует

Положительное скручивание кольца Отрицательное скручивание кольца

Рис. 3. Положительное скручивание кольца

Рис. 4. Отрицательное скручивание кольца

Скручивание колец в условиях эксплуатации

Положительное и отрицательное скручивание колец проявляется тогда, когда на кольцо не действует давление сгорания (Рис. 5). Как только давление сгорания начинает действовать в кольцевой канавке, поршневое кольцо плотно прижимается к её нижней боковой поверхности, за счет чего улучшается контроль расхода масла (Рис. 6).

Кольца прямоугольного сечения (цилиндрические кольца) и конические кольца с положительным скручиванием всегда обладают хорошими маслосъемными свойствами. При возникновении трения о стенку цилиндра во время движения поршня вниз такие кольца всё-таки могут слегка отделиться от нижней боковой поверхности канавки, что приведет к проникновению в зазор масла и повышению его расхода.

Кольцо с отрицательным скручиванием обеспечивает уплотнение кольцевой канавки по нижней боковой поверхности снаружи и по верхней боковой поверхности внутри. За счет этого блокируется проникновение в канавку масла. Таким образом, кольца с отрицательным скручиванием способствуют снижению расхода масла, особенно на режимах частичной нагрузки и при наличии разрежения в камере сгорания (режим принудительного холостого хода). У конических колец с отрицательным скручиванием угол наклона pабочей поверхности примерно на 2° больше, чем у обычных конических колец. Это необходимо по причине того, что из-за отрицательного скручивания угол наклона частично уменьшается.

кольца при отсутствии давления сгораниякольца при наличии давления сгорания

Рис. 5. Отсутствие давления сгорания

Рис. 6. Наличие давления сгорания

6.10. Способность поршневых колец прилегать к стенкам цилиндров

Под способностью поршневого кольца прилегать к стенкам цилиндра понимают его адаптацию к форме стенки цилиндра для обеспечения эффективного уплотнения. Эта способность зависит от эластичности коробчатого кольца (у маслосъемных поршневых колец из 2-х частей) или, соответственно, стальных пластинок (у маслосъемных поршневых колец из 3-х частей), а также от давления прижима кольца/кольцевой детали к стенке цилиндра.

При этом способность кольца прилегать к стенке цилиндра тем лучше, чем эластичнее кольцо/кольцевая деталь и чем выше давление прижима. Высокие кольца и кольца с большим поперечным сечением обладают высокой жесткостью, а также вызывают увеличение сил инерции во время работы по причине большей массы. Поэтому их способность прилегать к стенкам цилиндров хуже, чем у более плоских колец и колец с малым поперечным сечением и, следовательно, с уменьшенными силами инерции.

Оптимальную способность прилегать к стенкам цилиндров имеют маслосъемные поршневые кольца из 2-х или 3-х частей, поскольку они состоят из очень гибкой кольцевой детали или очень гибких стальных пластинок, без необходимости при этом обладать высокой упругостью.

Как уже было описано, усилие прижима маслосъемных поршневых колец, состоящих из 2-х или 3-х частей, обеспечивается за счет соответствующей пружины-расширителя. Кольцевая деталь и стальные пластинки обладают высокой гибкостью и легко адаптируются.

Хорошая способность поршневых колец прилегать к стенкам цилиндров особенно важна тогда, когда отверстия цилиндров теряют круглую форму. Это происходит в результате деформаций (тепловых и механических) или ошибок при ремонтной обработке и монтаже.

Плохая способность кольца прилегать к стенке цилиндра

Рис. 1. Плохая способность кольца прилегать к стенке цилиндра

6.11. Движения поршневых колец

Вращение колец

Для того, чтобы обеспечивалась успешная приработка и дальнейшее оптимальное уплотнение, поршневые кольца должны свободно вращаться в кольцевых канавках. Вращение колец возникает как благодаря хонингованию (перекрестное шлифование), так и в результате качания поршней в верхней и нижней мертвых точках. При малых углах хонингования кольца вращаются медленнее, при больших углах частота их вращения увеличивается. Кроме того, вращение колец зависит от частоты вращения коленчатого вала двигателя. Для общего представления: поршневые кольца совершают в среднем от 5 до 15 оборотов в минуту.

В двухтактных двигателях кольца заблокированы от вращения. Это позволяет избежать попадания стыковых концов в газовые каналы. Двухтактные двигатели используются преимущественно на двухколесных транспортных средствах, в садовых инструментах и т. п. В этом случае допускается, что блокировка вращения колец приводит к их неравномерному износу, возможному нагарообразованию в кольцевых канавках и сокращению срока службы. Данное исполнение в любом случае рассчитано на более короткий срок службы двигателя. К пробегу автомобилей с обычным четырехтактным двигателем предъявляются гораздо более высокие требования.

Смещение замков поршневых колец на 120° относительно друг друга во время монтажа служит только для улучшения запуска нового двигателя. В процессе последующей эксплуатации поршневые кольца могут занимать в кольцевых канавках любое положение, если их вращение не блокируется преднамеренно, путем конструктивных изменений (двухтактные двигатели).

Вращение вокруг оси

В идеальном случае кольца должны прилегать к нижним боковым поверхностям канавок. Это важно для обеспечения уплотняющей функции колец, так как они уплотняют не только в области рабочих поверхностей, но и в области нижних боковых поверхностей. Нижняя боковая поверхность канавки уплотняет от проникновения газов или масла на обратную сторону кольца. Рабочая поверхность поршневого кольца уплотняет его переднюю сторону, прилегающую к стенке цилиндра (см. главы, начиная с 1.6.6 «Уплотнительные поверхности поршневых колец»).

В результате возвратно-поступательного движения поршня и изменения направления его движения, на кольца воздействуют также силы инерции, из-за которых кольца отделяются от нижних боковых поверхностей канавок. Вызванное силами инерции отделение поршневых колец от нижних боковых поверхностей канавок сдерживается имеющейся внутри канавок масляной пленкой. Проблемы здесь возникают в основном тогда, когда кольцевые канавки и, следовательно, зазоры колец по высоте, увеличиваются в результате износа. Это приводит к отделению кольца от поверхности прилегания к поршню и к его вибрации, которая начинается на стыковых концах. В результате поршневое кольцо перестает уплотнять, и расход масла увеличивается.

Это происходит, прежде всего, во время такта впуска, когда при движении поршня вниз и образовании разрежения в камере сгорания, кольцо отделяется от дна канавки и масло, проникшее к задней стороне кольца, всасывается в камеру сгорания. В процессе выполнения трех остальных тактов кольца прижимаются к канавкам нижней боковой поверхностью под действием давления в камере сгорания.

Радиальное движение

В принципе, кольца совершают радиальные движения не сами по себе, а в результате движения поршня внутри цилиндра, при котором он соприкасается то с одной, то с другой стенкой цилиндра (перекладка поршня). Это происходит как в верхней, так и в нижней мертвых точках положения поршня. В результате кольца совершают в кольцевых канавках радиальное движение. Это приводит к измельчению образовавшегося слоя масляного нагара (особенно при использовании колец трапециевидного сечения), а также к вращению колец, обработанных перекрестным шлифованием.

Радиальное движение поршневого кольцаРадиальное движение поршневого кольца

Радиальное движение поршневого кольца

Скручивание колец

В результате действия сил инерции, скручивания колец и наличия зазоров по высоте, кольца совершают движения, показанные стрелками на рисунках. Как описано в 5.5 «Выпуклая форма рабочей поверхности», рабочая поверхность поршневых колец приобретает со временем выпуклую форму.

Поршневые кольца — условия работы, конструкция

Кольца служат для уплотнения зазора между поршнем и втулкой рабочего цилиндра. Они подразделяются на компрессионные и маслосъемные. Компрессионные (уплотнительные) кольца помимо функций уплотнения выполняют задачи отвода теплоты от головки поршня к цилиндровой втулке и далее в охлаждающую воду, распределения масла по зеркалу цилиндра, а маслосъемные кольца — для снятия излишков масла, забрасываемого снизу на нижнюю часть втулки цилиндра (тронковые двигатели) и регулирования поступления его на верхнюю часть.

Условия работы, конструкция

Уплотняющее действие компрессионных колец обеспечивается прижатием их к зеркалу цилиндра и стенкам поршневых канавок и лабиринтным действием пакета колец. К зеркалу цилиндра кольцо прижимается силой собственной упругости и силой давления газов, проникающих через зазор между поршнем и цилиндром в надкольцевое пространство и закольцевое (рис. 7.1а).

Величина удельного давления поршневых колец на стенку цилиндра под действием сил упругости относительно невелика и составляет 0,5-2,0 бар (нижние цифры — малооборотные двигатели, верхние — среднеоборотные). Основной составляющей силы прижатия колец к стенке цилиндра является сила давления газов. Лабиринтное действие колец заключается в перетекании газа через ряд объемов, сообщающихся узкими щелями. Перетекание сопровождается последовательным расширением газов и расходами энергии на вихреобразование и трение.

Как видно из рис. 7.1, давление за кольцами устанавливается в следующей последовательности: за первым кольцом оно ориентировочно равно 0,75 рг, за вторым — 0,20 рг и за третьим — 0,08 рг.

Схема работы поршневых колец

С наибольшей силой к втулке цилиндра прижимается первое кольцо, оно же по этой причине, а также в связи с наличием более высоких температур и ухудшением условий смазки в зоне ВМТ имеет наибольшие износы. Обратное движение поршневых колец внутрь кепов происходит при перекладке поршня в цилиндре под действием меняющей свой знак нормальной силы, являющейся составляющей силы давления газов и силы инерции поступательно движущихся масс поршня.

Радиальное перемещение колец. Радиальное перемещение колец приводит к износу как самого кольца, так и нижней поверхности кепа (рис. 7.2).

При износе кепа плотность посадки кольца в кепе нарушается, газы из затылочной части кольца вытекают, и кольцо перестает прижиматься к зеркалу цилиндра. Его уплотняющее действие теряется, происходит прорыв газов и перегрев кольца и кепа. Рост температур кепа создает условия для коксования масла в нем, в последующем приводящее к заклиниванию кольца и полной потере его уплотняющих свойств.

Практическая рекомендация: применять масла с высокими детергентно-диспергирующими свойствами, обеспечивающими существенное снижение нагарообразования.

В современных форсированных двигателях в целях уменьшения износа кепов их рабочая поверхность хромируется. Потеря давления за кольцом вызывает явления коллапса, при котором возникает радиальная вибрация-кольцо ударяется о внутреннюю стенку поршневой канавки, затем разжимается и входит в контакт со стенкой цилиндра. Попеременные удары в конечном итоге приводят к поломке кольца, отмечаемой обычно в его средней части (напротив замка).

Осевое перемещение колец происходит под действием сил давления газов над кольцом и под ним, силы трения по втулке и силы инерции самого кольца. В итоге кольца осуществляют функцию масляного насоса, перекачивая находящееся под кольцом масло вверх, в зону камеры сгорания, где оно сгорает (см. рис. 7.1ж). Чем выше износ ЦПГ, колец и их кепов, тем большие потери масла на угар.

Износ кепа

Помимо радиальных и осевых движений, кольца вращаются относительно оси поршня. Вращательное движение вызывается возвратно-угловыми перемещениями поршня при каждом обороте вала двигателя. Под действием нормальной силы ось поршня при перекладке в цилиндре должна переходить из точки а в точку с. В действительности вследствие деформаций механизма движения и допущенных при сборке неточностей поршень при перекладке «перекатывается» в цилиндре из а в с через точку б. Поскольку сила трения по окружности кольца больше силы трения в кепах, то оно перемещается в нем, совершая вращательное движение.

Конструкция. К кольцам предъявляются следующие требования:

  • высокие прочность и упругость и их сохранение при длительном воздействии высоких температур;
  • равномерное распределение по окружности радиального давления от сил упругости;
  • малый коэффициент трения и высокая износостойкость.

Материал — серый чугун со сфероидальным графитом, с присадкой легирующих элементов. Наибольшее применение в малооборотных и ряде среднеоборотных двигателей находят стандартные прямоугольные кольца (рис. 7.3а). На новых кольцах рабочие кромки обычно слегка закруглены.

Конструкция поршневых колец

Кольцо (рис. 7.36) в отличие от стандартного имеет слегка скругленную рабочую поверхность (поверхность контакта с зеркалом цилиндра). Это обеспечивает линейный контакт с цилиндром в первый период приработки, тем самым предотвращая прорыв газов в местах неполного касания, а в последующем снижает изнашивание верхней части рабочей поверхности кольца. Ускорению приработки колец особенно в цилиндрах с твердым хромовым покрытием служат кольца, рабочая поверхность которых слегка (на 1-2°) скошена, а внизу оставлен узкий цилиндрический поясок (рис. 1 Зв). Представленное на рис. 7.3д кольцо имеет коническую форму. Это позволяет повысить прочность перемычек поршня, а главное, кольцо при своем движении счищает образующийся в канавках нагар и тем самым исключается возможность зависания кольца в слое нагара в канавке. Подобные кольца предпочитают применять в быстроходных напряженных двигателях. Кольцо со скошенными верхними задними кромками благодаря несимметричности сечения под действием появляющейся пары сил при работе скручивается, благодаря чему существенно увеличивается удельное давление прилегания нижней его кромки к втулке цилиндра. Это обеспечивает его быструю прирабатываемость и благодаря появлению масляного клина при движении кольца вверх уменьшает поступление масла вверх, а при движении вниз способствует соскребыванию масла вниз.

В современных форсированных двигателях часто прибегают к повышению износостойкости рабочей поверхности поршневых колец путем хромирования. При этом используется технология, обеспечивающая пористое хромирование для лучшего удержания масла в порах в период приработки. Толщина хромирования достигает 0,5-1,0 мм. Хромирование применяется также для повышения износостойкости нижних полок канавок поршневых колец.

В последние годы стали применять молибденовое покрытие, обладающее отличными противоизносными и антикоррзионными свойствами. Использование этого покрытия открывает возможность применять для изготовления колец высокопрочные и хорошо противостоящие поломке материалы, но, к сожалению, обладающие низкими противоизносными характеристиками.

Замки (разрезы) поршневых колец (рис. 7.4). Замок с прямым разрезом наиболее простой и прочный, чаще применяется в высокооборотных двигателях. Замок с косым разрезом (б) является более герметичным и используется в большинстве мало- и среднеоборотных двигателей.

Герметичные ступенчатые (в) или с глухим стыком (г) имеют повышенную уплотняющую способность, но менее прочны и более сложны в изготовлении.

Маслосъемные кольца используются исключительно в 4-тактных двигателях со смазкой разбрызгиванием, при которой излишне большое и нерегулируемое количество масла забрасывается на стенки цилиндров.

В 2-тактных малооборотных двигателях подача масла регулируется с использованием лубрикаторов и поэтому необходимость в маслосъемных кольцах отсутствует.

Замки поршневых колец

Задача маслосъемных колец снять лишнее масло с поверхности цилиндра и тем самым сократить его расход. Следует отметить, что из общего расхода масла в двигателе до 90% приходится на его испарение и сгорание.

Работает кольцо следующим образом -при подъеме поршня между кольцом с конусным скосом и зеркалом цилиндра создается масляный клин, который давит на коническую поверхность кольца. Сила давления направлена перпендикулярно к поверхности кольца и раскладывается на две составляющие — одна прижимает кольцо к нижней полке канавки, а другая сжимает кольцо, утапливая его в канавке. Масло остается на зеркале. При опускании поршня кольцо выпрямляется в канавке под действием его сил упругости и пружины (экспандера) и прижимается к поверхности цилиндра. Острая кромка кольца снимает слой масла, и оно отводится через отверстие в кольце и канал в поршне вниз в картерное пространство.

Упругость колец (сила прижатия к втулке цилиндра) определяется технологией изготовления и применяемым материалом и, конечно, зависит от радиальной толщины кольца. Последняя в процессе эксплуатации по мере изнашивания уменьшается, и это отрицательно сказывается на силе прижатия кольца к втулке цилиндра. Так, уже при радиальном износе кольца на 15% сила прижатия уменьшается более чем на 50%. Если к этому еще добавить отрицательное влияние на силу прижатия тепловых перегрузок, которые кольцо испытывало в процессе работы, то потеря упругости окажется еще больше. Потеря упругости является одной из причин коллапса (вибрации) колец, приводящего к весьма серьезным повреждениям двигателя.

Маслосъемные кольца

Смазка цилиндров, поршней и колец

Надежность, износ и уплотняющая способность поршневой группы зависят от наличия на поверхностях скольжения эффективной масляной пленки. Толщина пленки по ходу поршня существенно меняется — от 1-2 мкм в районе ВМТ до 12-15 мкм внизу цилиндра. От того, какой устанавливается режим смазки и трения между кольцом и втулкой цилиндра, зависит величина их износа и эксплуатационный ресурс.

Рис. 7.6 иллюстрирует зависимость коэффициента трения от параметра R, определяемого отношением расстояния между трущимися слоями h, и высоты неровностей поверхностей t:

Если R=1 или меньше, то это означает, что поверхности находятся в непосредственном контакте и имеет место режим сухого трения, сопровождаемого чрезвычайно большими износами, задирами и пр.

Если давление в масляном слое между кольцом и втулкой увеличивается, то, как это видно из графика, устанавливается пограничный режим смазки, а по достижении R = 5-10 режим переходит в гидродинамический. Контакт между трущимися поверхностями осуществляется через слой масла, коэффициент трения снижается до минимума.

Задача поршневых колец создавать и поддерживать подобный режим, когда R больше 10. Величина этого параметра зависит от сил, определяющих контакт кольца с втулкой, скорости движения кольца и вязкости масла между компонентами трения. Скорость движения меняется от нуля до максимума и обратно к нулю. Непрерывно меняются направление движения и давление за кольцами, определяющее силу их прижатия к зеркалу цилиндра. Вязкость масла в районе ВМТ минимальна, так как здесь действуют высокие температуры, ближе к НМТ вязкость значительно выше. В этой связи параметр R удерживать на одном уровне > 10 практически невозможно. Только в середине хода поршня он может достигать 10, здесь отмечаются и минимальные износы втулок цилиндров. В поддержании достаточно толстой пленки масла существенную роль играет форма рабочей поверхности поршневого кольца. Небезынтересно отметить, что поршневое кольцо, имевшее первоначальную форму прямоугольника, в процессе приработки и последующей работы в цилиндре по мере износа приобретает форму, представленную на рис; 7.7. Здесь мы видим, что при движении кольца вверх работает верхняя коническая часть, под которой создается масляный клин, отжимающий кольцо внутрь канавки и не дающий ему соскребывать масло с поверхности цилиндра. При движении вниз работает нижняя коническая часть, выполняющая ту же роль, что и верхняя.

Режимы трения

Замечание: при установке новых колец отдельные механики вручную припиливают фаски, что неверно, так как кольцо само в процессе приработки приобретет оптимальную форму. Ручная припиловка с помощью напильника может только ухудшить последующую работу кольца.

Возвращаясь к вопросу оптимизации режимов смазки, еще раз отметим, что толщина и состояние масляной пленки зависят от количества подаваемого на смазку ЦПГ масла, работы маслосъемных колец, растаскивания масла компрессионными кольцами и его испарения и выгорания, особенно интенсивного в районе ВМТ. Здесь обычно в связи с нехваткой масла создаются условия полусухого трения и вызванные этим высокие износы. На остальной части втулки, как уже отмечалось, имеет место гидродинамический режим смазки и скорости износов должны лежать в пределах 0,02-005 мм/1000 часов. Одним из условий существования масляной пленки на стенках цилиндра и на поверхности колец является плотность прилегания колец к втулке, исключающая прорыв газов.

Смазка существенно затрудняется или нарушается там, где имеется пропуск газов — независимо от того, вызван ли он износом цилиндров или нарушениями в работе колец. В местах прорыва газов масляная пленка перегревается, окисляется и сгорает. Что способствует коррозионному и эрозионному изнашиванию. Признаком прорыва газов является потемнение соответствующих участков кольца, образование лаковых отложений на зеркале цилиндра, а в последующем продольных полос повышенного износа .

Изменение формы кольца в процессе его приработки

Особенно большое влияние оказывает пропуск газов через первое кольцо, в меньшей степени — утечки через остальные кольца. В принципе, сечение для прохода газов всегда имеется, особенно через открытые замки колец. Поэтому смазка концов колец и участков следующего кольца, расположенного под замком, всегда нарушается или становится недостаточной.

В целях улучшения смазки в зоне ВМТ фирма «Зульцер» проводила эксперименты по выбору высоты расположения масляных штуцеров по отношению к ВМТ и пришла к выводу, что наилучший вариант смазки обеспечивается при расположении штуцеров в два ряда В + С (см. рис. 7.9). Положение штуцеров в позиции А дает несколько большую толщину пленки в районе ВМТ, но значительно ухудшается смазка в средней части хода поршня. Поэтому было принято решение установить на втулках двигателей RTA два ряда штуцеров в В и С.

Толщина масляной пленки в зависимости от расположения масляных штуцеров по высоте втулки

В общем случае расход масла в процессе эксплуатации двигателя зависит от:

  • износа колец, потери их упругости;
  • износа поршня и особенно поршневых канавок;
  • износа втулки рабочего цилиндра;
  • качества смазочного масла;
  • тепловых и механических нагрузок, определяемых преимущественным режимом работы двигателя.

Нарушения в работе колец

К наиболее серьезным нарушениям в работе колец относятся их заклинивание и поломка, нередко приводящие к следующим весьма серьезным последствиям:

  • усиленный пропуск газов и как следствие — повышение температуры поршня, стенок цилиндра, находящегося на них масла;
  • выдувание с поверхностей масла, интенсификация локальных износов и повышенный расход масла;
  • снижение компрессии и ухудшение процесса сгорания, увеличение расхода топлива.

Заклинивание колец вызывается отложениями клейких продуктов окисления масла со слабой детергентно-диспергирующей способностью в канавках поршня. Эти отложения, сперва вязкие и клейкие, затем становятся тестообразными и твердыми. Они препятствуют свободе перемещения колец. Сперва подвижность их ограничивается и, наконец, совершенно прекращается. Заклинивание сначала начинается в каком-либо одном месте, затем распространяется по периметру кольца. Заклинившее кольцо все больше вдавливается в канавку, располагаясь заподлицо с наружной поверхностью поршня и таким образом теряя свою уплотняющую способность. В коксообразовании участвует и неполностью сгоревшее топливо, что обычно отмечается при работе на тяжелых высоковязких топливах.

Заклинивание колец может также вызываться чисто механическими причинами:

  • недостаточный зазор между кольцом и канавкой по высоте;
  • деформация канавки, вызванная деформацией головки поршня под суммарным действием тепловых (особенно) и механических нагрузок (это было типично для поршней двигателей МАН с контурными схемами газообмена).

Поломка колец обычно наблюдается у двухтактных двигателей с контурными схемами газообмена при попадании концов колец в окна (недостаточное запиливание колец в районе замка, исчезновение вследствие износа проточки цилиндра в зоне окон); в четырехтактных двигателях с высоким уровнем форсировки и работающих на тяжелых топливах. Поломку колец можно обнаружить по снижению компрессии, ухудшению сгорания и повышению температуры выхлопа в соответствующих цилиндрах.

Поломка кольца реже происходит в спинке, хотя здесь действует наибольший изгибающий момент. Если поломка не сопровождалась появлением на рабочих поверхностях кольца следов значительного пропуска газа или его заедания, то поломка в спинке могла произойти из-за наличия порока в металле или трещины, образовавшейся при неаккуратном одевании кольца на поршень.

Как правило, на практике отламываются короткие куски кольца в районе замка. Если это осталось незамеченным и двигатель продолжает работать, то снова отламывается короткий кусок и т.д. Таким образом, в последующем можно обнаружить в одной канавке ряд коротких кусков кольца. Эти куски, будучи свободными, могут вызвать серьезные повреждения торцевых поверхностей канавок. В поршнях из алюминиевого сплава под действием сил инерции они пробивают тело канавок и, попадая в зазор между поршнем и цилиндром, могут вызвать заклинивание поршня, деформацию или поломку шатуна. Попадание осколков в камеру сгорания приводит к повреждению клапанов, огневого днища крышки цилиндра.

Поломке колец способствуют следующие, часто совместно действующие факторы:

  • на поршне: неплоские торцовые поверхности канавок вследствие износа; перекос этих поверхностей по отношению к оси поршня вследствие коробления от нагрева;
  • в цилиндрах: большой износ, появление ступенчатого износа вблизи ВМТ;
  • на кольцах: слишком высокая температура колец и потеря упругости, недостаточная смазка и местное пригорание; резкое повышение давления сгорания.

К поломке колец может приводить действие следующих сил.

В плоскости кольца: силы сжатия, вызванные слишком малым зазором в замке и ударами концов кольца друг о друга; силы ударов концов кольца по дну канавки или по стенке цилиндра при вибрации колец (коллапс). Зазор в замках колец, если он вначале был установлен очень малым, при повышении температуры вследствие сухого трения при недостатке масла может настолько уменьшиться, что это приведет к взаимному соприкосновению концов кольца и ударам.

Перпендикулярно к плоскости кольца: ударная посадка колец на торцевые поверхности канавок при резких повышениях давления в цилиндре (жесткое сгорание), изгиб вертикальными составляющими сил давления газов при неплотной посадке колец на торцевые поверхности кепов (проверьте состояние кепов), тарельчатый прогиб или скручивание колец из-за неравномерного в радиальном направлении распределения давления газов на торцевые поверхности (при слишком большом вертикальном зазоре кольца в кепе). Иногда даже наблюдается остаточная деформация колец, принимающая тарельчатую форму.

Распределение давлений внутри лабиринта колец также влияет на их поломку, в частности — на поломку нижних колец. Так, в двухтактных двигателях западанию колец в окна служит давление газов, создавшееся в поршневой канавке в момент прохождения кольцом окон.

Как уже отмечалось, изменение давления в первой канавке следует за изменением давления в цилиндре, почти повторяя его; наоборот, давление в других канавках, как известно, тем больше сдвинуто по фазе, чем ниже расположено данное кольцо и чем больше объем канавки за кольцом. Таким образом, может случиться, что в объеме канавки за первым кольцом, при достижении им окон, практически нет давления, в то время как давление в канавке за третьим кольцом только достигло своего максимума.

Визуальная оценка состояния колец

В итоге именно третье кольцо будет вдавлено в окно и, в конечном счете, сломается.

У 4-тактных двигателей из-за фазового сдвига волны давления внутри лабиринта колец кольцо, расположенное внизу, может оказаться разгруженным от давления газов в его затылочной части, и это может привести к его вибрации (коллапсу) и вызванной ею поломке. На нижеприведенном рисунке показаны примеры, по которым легко оценить состояние поршневых колец.

По окончании приработки рабочая поверхность колец должна приобрести полированную поверхность (кольцо вверху рисунка), аналогичная поверхность должна быть и у нижней плоскости канавки поршня.

Профиль кольца должен приобрести бочкообразную форму.

Если с течением времени масляная пленка частично исчезает и на зеркале цилиндра появляются сухие участки, последние и поверхность колец под действием трения и нагрева упрочняются и подвергаются микрозадирам. На них появляются темные пятна, зеркальная поверхность нарушается (кольцо второе сверху).

В случае появления обширных микрозадиров на кромках колец могут появиться острые заусенцы (кольцо третье сверху). Поверхность с микрозадирами, признаком которых являются вертикальные полоски, становится относительно твердой и может привести к интенсивному износу цилиндров. С увеличением подачи масла на смазку цилиндра может начаться восстановление, поврежденные участки медленно исчезают и по краям кольца появляются мягкие приработанные участки (кольцо четвертое сверху). При затягивании на рабочую поверхность колец твердых частиц нагара, отколовшихся с перемычек или боковой поверхности поршня над кольцами, на ней образуются довольно глубокие риски, провоцирующие прогрессивный износ и нагрев (см. рис. 7.10).

  • Поршневые кольца — поршень и втулка цилиндра являются основным элементом двигателя, от которого зависят его надежность, долговечность и экономичность. Особо тщательно следите за их состоянием и соблюдайте все требования двигателестроителя.
  • Периодически проверяйте подачу масла на зеркало цилиндра, не допускайте «сухого» состояния колец и поршней, равно как и излишне большой подачи. Это приведет к нагарообразованиям и последующим абразивным износам.
  • При смене колец проверяйте состояние кепов и при большом их износе не пытайтесь устанавливать в них новые кольца -уплотнения цилиндра не достигнете, а скорая поломка колец гарантирована.
  • При одевании колец на поршень растягивайте их только на величину, которая позволит одеть кольцо. Большее растяжение приведет к образованию трещин, которые Вы можете не заметить, но при работе кольцо сломается.
  • ПОСЛЕДНЕЕ — не экономьте на стоимости колец при их заказе, от их качества слишком много зависит. Покупайте оригинальные кольца только ведущих фирм.

Литература

Судовые двигатели внутреннего сгорания — Возницкий И.В. Пунда А.С. [2010]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *