Как работает ламповый усилитель
Перейти к содержимому

Как работает ламповый усилитель

  • автор:

Сеанс тёплой ламповой «магии» с разоблачением

Несмотря на несколько поутихший интерес многих аудиофилов и меломанов к ламповым усилителям, споры о преимуществах/недостатках этих архаичных долгожителей не утихает по сей день. Условно спорящих о ТЛЗ можно разделить на два лагеря. Первый — приверженцы прогресса, полагающие, что ламповой технике место на свалке истории или в лучшем случае в каком-нибудь техническом музее. Второй – ярые сторонники теплой ламповости, которые видят , слышат в ламповых УМЗЧ (непременно однотактных, без ООС, A class) возможность получить «духовное откровение» и «по-настоящему» красивый (TRUE, воздушный и т.п.) звук.

Ожесточенные баталии между ловерами и хейтерами ламп приводят к приступам дискуссионной гиперсаливации, выходу из строя клавиатур, и бурному словоизвержению на соответствующих форумах. Кроме этих враждующих сторон, темой ламповых УМЗЧ интересуются люди, не дискутирующие о нём – это: радиолюбители, создающие эти усилители и «не true» аудиофильствующие товарищи, которых устраивают особенности имеющейся техники вне парадигмы поиска бескомпромиссного звучания.

Сомневаюсь, что мой пост поставит в спорах о ТЛЗ жирную точку, но я попробую пролить луч света на «таинственный», «метафизический» «феномен» «живого» ТЛЗ.

Я не являюсь ни ярым хейтером, ни горячим приверженцем бескомпромиссной теплой ламповости, но как слушатель часто ощущаю существенную разницу между трактами с транзисторным/интегральным и ламповым усилением. Вопрос происхождения этой разницы для меня действительно интересен. Полуметафизические и маркетинговые объяснения меня устраивают мало, посему я решил структурировано изложить всё, что мне удалось найти, о так называемом ТЛЗ в одном небольшом посте.

История ламповой «магии»

С момента зарождения и массового распространения транзисторной техники появилось понятие «мертвый», «холодный» транзисторный звук, детально о причинах возникновения которого можно прочитать здесь.

Транзисторные усилители ушли далеко вперед с момента своего появления, и, благодаря совершенствованию схемотехники, феномен «транзисторного звука» перестал существовать.
При этом многими заинтересованными людьми отмечалось, что при прочих равных (КНИ, АЧХ, источник, тракт и т.п.) одно и то же произведение, при воспроизведении на ламповых и транзисторных УМЗЧ звучит по-разному. Эта разница, а также несколько подмоченная репутация транзисторных аппаратов и явились причинами представления о превосходстве ламп, формирования понятия ТЛЗ, а также многочисленных спекуляций на ламповой теме.

Рост массового выпуска недорогих интегральных усилителей и AV- ресиверов, при снижении их себестоимости (а соответственно и качества элементной базы), укрепил мнение некоторых аудиофилов о негодности транзисторных систем. Это явление стало известно как ренессанс ламповой техники в конце 90-х — начале нулевых.

Производители не стояли на месте, качество транзисторных и цифровых решений росло, при этом цены на теплые лампы кусались с остервенением американских бульдогов. Последнее обстоятельство сделало лампы интересными лишь узкому кругу фанатично настроенных искателей безупречного звука, очень богатых людей и радиолюбителей-энтузиастов.

Ламповая «магия» в психоакустике и схемотехнике

Психоакустика ТЛЗ

Когда мы говорим о ТЛЗ, мы имеем в виду тембральные особенности воспроизводимого звука, т.е. так называемую «окраску». По сути «окраска» — это ничто иное, как гармонические искажения + характерные особенности графика АЧХ. Полностью избавиться от искажений нельзя, но можно свести их присутствие в спектре к минимальным значениям, при которых человек не будет их воспринимать.
В случае с ламповыми усилителями – это преимущественно четные гармоники. Известно, что четные гармоники человек воспринимает как более благозвучные (приятные на слух) искажения. При этом в транзисторных усилителях КНИ, как правило, значительно ниже, что говорит о более высокой верности воспроизведения.

Именно благодаря большому количеству четных гармоник в спектре, ламповое усиление активно применяется для гитарной аппаратуры. Там искажения позволяют создать необходимое звучание (т.е. фактически усилитель является частью инструмента). При этом наличие их в звуковоспроизводящей аппаратуре многими считается недостатком, так как аппаратура должна максимально точно воспроизводить записанное, а не искажать (приукрашивать, изменять). Другие, напротив, считают этот эффект преимуществом, ввиду благозвучности таких искажений.

Также необходимо отметить, что человеческий слух по-разному воспринимает гармоники разного порядка. Scott Frankland, Ирина Алдошина, Александр Войшвилло и прочие замечательные люди, проводившие исследования на эту тему, пишут, что чем выше гармоника, тем она заметнее влияет на восприятие и тем субъективно хуже человеком оценивается звук. Например, 1% второй гармоники не смогут услышать даже эксперты-профессионалы, а в диапазоне 1,8-3,5% вторую гармонику способны обнаружить большинство людей. При этом десятую замечают уже при наличии 0,1%.

Психоакустические исследования выявили, что:
«Заметность на слух какой-либо гармоники прямо пропорциональна квадрату ее номера»

Характерная особенность: в спектре сигнала ламповых усилителей гармонических составляющих не более пяти, что существенно меньше, чем в спектре транзисторных устройств (где в него нередко «просачиваются» 9-я, 11-я и др. высокие гармоники).

Также было установлено, что присутствие одних гармоник способно маскировать другие. Например, наличие второй гармоники скрывает от восприятия третью. Эти исследования привели к выводу о том, что наиболее благозвучным для человеческого слуха является сочетание постепенно спадающих по уровню гармоник (вторая большая, третья меньше второй, четвертая меньше третьей и т.п.). Именно так дело обстоит с гармониками при использовании ламповых УМЗЧ.

Краткие сведения о схемотехнике ТЛЗ
«Магически» правильными, с точки зрения схемотехники, считаются однотактники без ООС. Линейные характеристики ламп, лучше, чем характеристики полупроводников. Отсутствие же ООС позволяет предотвратить появление значительного количества интермодуляционных искажений. С той же целью в

В сухом остатке, получается, что легендарный ТЛЗ – это:

  • Насыщенность звука четными гармониками;
  • Ограниченность порядка гармоник пятой;
  • Постепенный спад уровня в спектральном сочетании гармоник (чем больше порядок гармоники, тем ниже уровень)
  • Наличие характерных особенностей АЧХ обусловленных применением выходного трансформатора;

Суть ТЛЗ во вполне конкретных, типичных особенностях изменения (обработки, искажения) сигнала. Критика транзисторных усилителей должна остаться в далёких семидесятых, так как качественные образцы этой техники ничуть не уступают лампам, а порой значительно превосходят (при одинаковой стоимости), благо камни в работе уже больше 40 лет.

Ламповые УМЗЧ архаичны, с точки зрения схемотехники и философии HI-FI, но представляют высокую субъективную ценность для людей с определёнными вкусовыми предпочтениями. Лампам не пора на свалку, так как, не смотря на возможность полного цифрового эимулирования эффектов ТЛЗ (доказано гитарной аппаратурой), производители ориентируются на производство TRUE ЛУМЗЧ, угадывая ожидания традиционалистов от аудио. Кроме того лампы — предмет интересных экспериментов и опытов радиолюбителей, создающих звуковую аппаратуру.

Какой усилитель выбрать каждый решает сам, а последнее слово всегда остается за субъективным восприятием.

Ламповые усилители: особенности и принцип работы

Многие из нас слышали о «ламповом звуке» и недоумевали, почему же меломаны самых разных стран в наши дни предпочитают слушать музыкальные произведения именно с ними.

В чем же особенности этих устройств, каковы их достоинства и недостатки?

Сегодня мы поговорим о том, как правильно подобрать качественный ламповый усилитель.

Что это такое?

Ламповый усилитель используется для увеличения мощностных характеристик переменных электросигналов при помощи радиоламп.

Радиолампы, как и многие другие электронные элементы, имеют очень богатую историю. За годы от их создания до наших дней произошла серьезная эволюции технологии. Началось всё в самом начале XX столетия, а закат так называемой «ламповой эры» пришелся на 60-е годы, именно тогда свет увидела самая последняя разработка, а вскоре радиорынок повсеместно начали завоевывать более современные и дешевые транзисторы.

Однако во всей истории ламповых усилителей нас интересуют только основные вехи, когда были предложены базовые разновидности радиоламп и базовые схемы подключения.

Самым первым видом ламп, созданных специально для усилителей, стали триоды. Цифра три в их названии появилась не просто так — именно такое число активных выходов они имеют. Принцип действия элементов очень прост: между катодом и анодом радиолампы последовательно подключается источник электрического тока и производится первоначальная обмотка трансформатора, к следующей за ней вторичной уже будет подключаться акустика. Звуковая волна подаётся на сетку радиолампы, в момент, когда напряжение подаётся к резисторам, между анодом и катодом проходит поток электронов. Сетка, размещенная между ними, выводит данный поток и, соответственно, изменяет направление, уровень и мощность входного сигнала.

В процессе эксплуатации триодов в самых разных сферах возникла потребность в улучшении их технико-эксплуатационных характеристик. В частности, одной из них была проходная емкость, параметры которой существенно ограничивали возможную частоту работы радиоламп. Для того чтобы решить эту проблему, инженеры создали тетроды — радиолампы, которые имели внутри своей конструкции четыре электрода, в качестве четвертого была использована экранирующая сетка, вставленная между анодом и основной управляющей сеткой.

Такая конструкция полностью выполняла задачу увеличения рабочей частоты установки.

Это вполне удовлетворило на тот момент разработчиков, основной целью их было создать устройство, которое позволит приемникам функционировать в коротковолновом частотном диапазоне. Однако ученые продолжили работу над оборудованием, они использовали точно такой же подход — то есть добавили в рабочую конструкцию радиолампы еще одну, пятую, сетку и разместили ее между анодом и экранирующей сеткой. Это было нужно для того, чтобы погасить обратное движение электронов в направлении от анода к самой сетке. Благодаря введению этого дополнительного элемента процесс был приостановлен, таким образом выходные параметры лампы стали более линейными, а мощность возросла. Именно так и появились пентоды. Именно они и использовались в дальнейшем.

Плюсы и минусы

Прежде чем говорить о достоинствах и недостатках ламповых усилителей, стоит подробнее остановиться на мифах и заблуждениях, которые бытуют среди меломанов. Не секрет, что многие любители качественной музыки сомневаются и с большим недоверием относятся к подобным устройствам.

Миф 1

Ламповые усилители — это непрочная конструкция.

На самом деле такое утверждение абсолютно никак не подтверждено. Ведь вы будете использовать не магнитофон 60-х годов прошлого века, а качественную современную аппаратуру, при создании которой инженеры особое внимание уделяют надежности узлов конструкции. Все элементы, используемые для создания усилителей, проходят самый строгий отбор и рассчитаны на активную эксплуатацию в течение 10-15 тысяч часов, а если вы будете использовать их без фанатизма, то прослужит такое оборудование практически вечно.

Миф 2

У радиолампы слишком мало басов.

Как говорится, это было давно и неправда. Времена, когда изготовители экономили на трансформаторах давно прошли, современные производители используют только железо высокого качества и высокотехнологичные подходы к составлению своей продукции.

Благодаря чему современное оборудование поддерживает частотный диапазон в коридоре от нескольких единиц до тысяч герц.

Миф 3

Лампы могут изменять звучание.

Здесь мы во многом согласимся. Да, радиолампы имеют свой оттенок голоса, поэтому разработчику при их изготовлении необходимо иметь большой опыт с такими конструкциями и знание принципов их работы. Уверяем вас, что в качественном резисторе будет довольно сложно уловить ту или иную тональность.

Миф 4

Цена на ламповый ресивер сопоставима со стоимостью автомобиля.

Это не совсем верно, поскольку здесь многое зависит от изготовителя: чем более тщательно и скрупулезно он будет приходить к созданию своего усилителя, тем выше будет стоимость продукции.

Однако это вовсе не говорит о том, что бюджетный ламповик будет звучать плохо.

Ламповые усилители имеют немало достоинств, в пользу такого оборудования говорят некоторые факты.

  • Относительная простота конструкционной схемы. Принцип работы этих устройств намного проще, чем у моделей инверторного типа, соответственно, возможности ремонта и его стоимость в данном случае намного выгоднее.
  • Неповторимое звуковоспроизведение, обусловленное рядом аудиоэффектов, в том числе большим динамическим диапазоном, повышенный плавностью переходов и приятным овердрайвом.
  • Устойчивость прибора к коротким замыканиям под действием температурных колебаний.
  • Отсутствие шипения, типичного для полупроводниковых усилителей.
  • Стильный дизайн, благодаря чему любой усилитель будет гармонично вписываться в самые разные интерьеры.

Впрочем, нельзя сказать, что ламповый усилитель является средоточием одних достоинств. Лампы имеют и свои недостатки:

  • внушительные габариты и солидный вес, поскольку лампы намного больше, чем транзисторы;
  • высокий уровень шумности в процессе работы оборудования;
  • для выхода на оптимальный рабочий режим звуковоспроизведения лампе нужно некоторое время на предварительный прогрев;
  • повышенный выходной импеданс, этот фактор в некоторой степени ограничивает спектр использования акустических систем, с которыми могут совмещаться ламповые усилители;
  • меньшая, в сравнении с полупроводниковыми усилителями, линейность;
  • повышенное тепловыделение;
  • большой расход электроэнергии;
  • КПД не превышает 10%.

Учитывая такое количество недостатков, ламповые усилители никак нельзя назвать идеальными.

Тем не менее, уникальный звуковой окрас, который получается при использовании такого оборудования, во многом компенсирует все перечисленные минусы.

Принцип работы

Вернемся к истории создания ламповых усилителей. Все упомянутые типы конструкций в том либо ином варианте нашли свое применение в современной аудиотехнике. Долгие годы аудиоинженеры искали способы их использования и очень быстро пришли к пониманию, что участок включения экранирующей сетки пентода в схему работы усилителя представляет собой именно тот инструмент, который может коренным образом изменить характер его работы.

При подключении сетки к катоду получается типичный пентодный режим, но если переключить ее на анод, то это пентод будет работать как триод. Благодаря такому подходу стало возможным объединение двух разновидностей усилителей в одной конструкции с возможностью смены опций рабочего режима.

В середине прошлого столетия американские инженеры внесли предложение подключать эту сетку принципиально новым способом, подводя ее к промежуточным отводам обмотки выходного трансформатора.

Подобный тип подключения можно назвать золотой серединой между триодным включением и пентодным, поскольку он позволяет сочетать достоинства двух режимов.

Так, с режимами радиоламп, по сути, случилось то же самое, что прежде и с классами усилителей, когда связь категорий А и В послужила толчком к созданию комбинированного класса типа АВ, который сочетал в себе самые лучшие стороны обоих предыдущих.

Обзор видов

В зависимости от схемы работы устройства выделяют однотактные и двухтактные ламповые усилители.

Однотактные

Однотактные конструкции считаются более совершенными с точки зрения качества звуковоспроизведения. Простая схема, минимальное число усиливающих элементов, то есть ламп, а также короткий путь прохождения сигнала обеспечивают звучание самого высокого качества.

Однако обратной стороной является пониженная выходная мощность, которая находится в пределах 15 кВт. Это делает довольно жестким ограничение в плане выбора акустики, усилители сочетаются только с высокочувствительным оборудованием, которое доступно в акустических системах рупорного типа, а также в нескольких классических моделях, таких как Tannoy, Audio Note, Klipsch.

Двухтактные

В сравнении с однотактными двухтактные усилители звучат чуть грубее. Однако их мощность намного выше, благодаря чему становится возможным совместная работа усилителя с большим количеством современных акустических систем.

Это делает двухтактный усилитель практически универсальным устройством.

Лучшие модели

В основном пользователи отдают предпочтение японским и российским ламповым усилителям. Топ покупаемых моделей выглядят так.

Audio Note Ongaku имеет следующие характеристики:

  • интегральный стереоламповый механизм;
  • мощность на канал (8 Ом) 20 Вт;
  • класс А.

Согласно отзывам пользователей, этот японский резистор считается один из самых лучших из всех представленных на современном рынке. Из недостатков отмечают только его высокую стоимость, ценник на усилитель начинается от 500 тыс. рублей.

Magnat MA 600 обладает следующими достоинствами:

  • интегральный стереоламповый механизм;
  • мощность на канал – 70 Вт;
  • наличие фонокорректора;
  • соотношение сигнал/шум в пределах 98 дБ;
  • управление с пульта.

К достоинствам оборудования также относят наличие «блютуза» и возможность подключения через USB.

Некоторые пользователи отмечают: спустя пару-тройку часов работы система самопроизвольно отключается даже в том случае, если прослушивание велось на 50% мощности, вне зависимости от того, слушали вы музыку в наушниках или через акустику.

McIntosh MC275 включает следующие параметры:

  • ламповый резистор;
  • мощность на канал — 75 Вт;
  • уровень сигнал/шум — 100 дБ;
  • показатель гармонического искажения — 0,5%.

Как выбрать?

В наши дни промышленность предлагает множество устройств лампового типа, в продаже можно найти бестрансформаторные и гибридные модели, трехполосные и двухполосные, низковольтные, модели низкой звуковой частоты, предназначенные для дома и для профессионального использования.

Для того чтобы подобрать оптимальный ламповый усилитель для колонок, необходимо обратить внимание на определенные факторы.

Мощность

Для решения задач, стоящих перед ламповым резистором, подходящим параметром мощности будет уровень в 35 Вт, хотя многие любители музыки только приветствуют увеличение параметра до 50 Вт.

Однако нужно отметить, что подавляющее большинство современных девайсов отлично работают даже при мощности 10-12 Вт.

Частота

Оптимальным считается диапазон от 20 до 20000 Гц, поскольку он характерен для человеческого слуха. На сегодняшний день на рынке практически все ламповые устройства имеют именно такие параметры, в секторе Hi-End непросто отыскать оборудование, которое не доходило бы до этих значений, тем не менее, приобретая ламповый усилитель, обязательно проверьте, в каком именно частотном диапазоне он может звучать.

Гармонические искажения

Параметры гармонических искажений имеют принципиальное значение при выборе устройства. Желательно, чтобы величина параметра не превышала 0,6%, а если говорить в целом, то чем меньше будет это значение, тем более качественный звук вы получите на выходе.

Современные изготовители стремятся обеспечить минимальный показатель гармонических искажений, например, самые брендовые модели выдают его на уровне, которой не превышает 0,1%.

Конечно, цена на такие высококачественные изделия становится несопоставимо более высокой в сравнении с моделями конкурентов, но для многих меломанов стоимость зачастую является второстепенным вопросом.

Отношение сигнала к шуму

Большинство ресиверов поддерживают отношение сигнала к уровню шума в пределах 90 дБ, принято считать, что чем больше этот параметр, тем лучше работает система. Некоторые производители даже дают такие отношения, в которых сигнал относится к шуму с показателем 100.

Поддержка коммуникационных стандартов

Это важный показатель, но все же второстепенный, на него можно обратить внимание лишь том случае, если по всем перечисленным выше показателям имеются прочие равные параметры.

Ну и, конечно же, при покупке лампового оборудования большую роль играют некоторые субъективные факторы, например, дизайн, качество сборки, а также эргономика и уровень звуковоспроизведения. В этом случае покупатели выбор делают, исходя из своих личных предпочтений.

Подбирайте усилитель, минимально возможная нагрузка которого составляет 4 Ом, в этом случае у вас почти не будет никаких ограничений по параметрам нагрузки звуковой системы.

При выборе параметров выходной мощности обязательно учитывайте габариты помещения. К примеру, в комнате 15 кв. м будет более чем достаточно мощностных характеристик в 30-50 Вт, а вот более просторным залам, особенно если вы планируете использовать усилитель с парой колонок, нужно техника, в которой мощность составляет 80 Вт.

Особенности настройки

Для того чтобы выполнить настройку лампового усилителя, необходимо обзавестись специальным измерителем – мультимером, а если вы настраиваете профессиональное оборудование, то дополнительно стоит приобрести осциллограф, а также генератор звуковых частот.

Начинать настройку оборудования следует с установки параметров напряжения на катодах двойного триода, оно должно быть выставлено в пределах 1,3-1,5В. Ток в участке выхода лучевого тетрода должен находиться в коридоре от 60 до 65мА.

Если у вас нет мощного резистора с параметрами 500 Ом- 4 Вт, то его всегда можно собрать из пары 2-ваттных МЛТ, их включают параллельно.

Все прочие перечисленные в схеме резисторы можно взять любого типа, но предпочтение лучше отдать моделям С2-14.

Так же, как и в предусилителе, базовой составляющей считается разделяющий конденсатор С3, если под рукой его нет, то можно взять пленочные советские конденсаторы К73-16 или К40У- 9, хотя они чуть хуже импортных. Для корректной работы всей схемы данные выбирают с минимальным током утечки.

Ламповый усилитель — физика работы

Когда понятно, как работает делитель напряжения, проще понять работу лампового усилителя. Физика лампы проще чем физика транзистора, и на примере лампы соответственно проще описываются принципы управления — а именно на этих принципах основаны процессы усиления, генерации и обработки в радиоэлектронных устройствах.

Мы будем рассматривать эту схему включения лампового триода.

Триод включен в схему с общим катодом

Триод включен в схему с общим катодом

Вначале — несколько слов о том, как работает ламповый триод. Катод «к» нагревается спиралью накаливания (показана на схеме под катодом, подключение электропитания нагрева опущено чтобы не усложнять рисунок). Электроны, эмитируемые катодом под воздействием нагрева, притягиваются к аноду «а», на который подан положительный потенциал от батареи E2 через резистор R1. За счет этого потока электронов через лампу течет ток. Резистор R1 ограничивает ток через лампу, когда она полностью открыта, и одновременно задает правильное положение рабочей точки на прямой нагрузки (о рабочей точке и прямой нагрузки будет сказано далее).

Лампа — это печка с заслонкой

Вот и все. Катод — это печка, которая испускает дым, дым проходит по трубе (по лампе) потому что наверху расположена вытяжка (анод).

Электроны пролетают через сетку «с» с разной степенью успешности и через анод текут дальше, через резистор R1 к положительному полюсу батареи E2. Лампа «открыта». Сетка играет ключевую роль в работе лампы — она является элементом управления, который уменьшает анодный ток. Если на сетку подать отрицательное напряжение (как сделано в нашей схеме с помощью регулируемого источника напряжения E1), то за счет отрицательного заряда (электрон тоже отрицательно заряжен) и отталкивания электронов сетка будет тормозить поток. Чем больше отрицательный заряд на сетке, тем скуднее поток электронов и меньше анодный ток лампы. При определенном значении сеточного напряжения лампа «запрется» — ток через нее не будет проходить совсем.

Возвращаясь к аналогии с печкой, которая дымит, сетка играет роль печной заслонки. Вытащили заслонку — дым пошел, задвинули — перекрыли поток. Еще одно важное замечание: на рисунке приведена схема включения с общим катодом. Это означает, что управляющее сеточное напряжение прикладывается относительно катода. Это так, поскольку и катод и общая цепь батареи E1 соединены вместе (через «землю»). Включение с общим катодом является самым распространенным. Есть и другие схемы включения, но мы их рассматривать не будем. Нам важно понять сам принцип, а он везде одинаков.

Узнаем делитель напряжения

Еще раз внимательно смотрим на схему и замечаем, что резистор R1 и лампа образуют делитель напряжения. В этом делителе, подобно микрофону в предыдущей статье, лампа обладает свойством изменения сопротивления под влиянием внешнего воздействия. Только на этот раз это не голос, как в микрофоне, а изменение отрицательного сеточного напряжения. Чем больше минус на сетке — тем сильнее запирается лампа — тем выше ее сопротивление (нижний резистор делителя) — тем выше выходное напряжение анода Ua. Чем меньше минус на сетке — тем больше открывается лампа и ниже ее сопротивление — тем ниже напряжение на аноде Ua.

Вы наверное уже заметили что на сетку мы старательно подаем только отрицательное напряжение. Можно конечно подать и положительное, но это уже моветон и нарушение режима работы — электроны конечно будут ускоряться, ток через лампу еще возрастет, но сетка начнет выполнять роль анода, поскольку она становится под положительным потенциалом. Поэтому — подавать на сетку только минус!

Мы хотим знать…

Теперь, когда мы разобрались с включением и физикой процесса, обратимся к цифрам. Нам интересно знать следующее:

  • при каком отрицательном напряжении на сетке лампа запрется совсем (ток через нее будет равным нулю);
  • какой будет ток через лампу если она полностью открыта (при нулевом напряжении на сетке), заодно — какое при этом будет напряжение на аноде;
  • какой будет ток через лампу и напряжение на аноде если входное напряжение на сетке равно допустим минус 1 В;
  • какой будет ток через лампу и напряжение на аноде если входное напряжение на сетке равно допустим минус 2 В;

и наконец (забегая вперед):

  • если подать на лампу переменное напряжение амплитудой 1 В, переменное напряжение какой амплитуды будет на аноде?

Вы наверное уже поняли, к чему последний вопрос. Мы уже близко подобрались к тому, чтобы использовать эту схему в качестве лампового усилителя, возможно во входном каскаде высококачественного микрофонного усилителя звука, и хотим знать какой будет коэффициент усиления. Но обо всем — по порядку.

Как работают ламповые усилители, или Особенности теплого звука

Как работают ламповые усилители, или Особенности теплого звука

Классы усиления — вполне логичный и понятный способ отличить одну типовую схему от другой. Однако, применительно к ламповой схемотехнике такого подхода оказалось недостаточно. В зависимости от типа, лампы способны работать в различных режимах, которые при этом одинаково применимы в усилителях разных классов. Этот факт кратно увеличивает количество возможных сочетаний, не говоря уже о том, что режимы работы ламп можно модифицировать, комбинировать и объединять. Столь глубоко в схемотехнику мы, конечно, погружаться не будем, но постараемся разобраться в базовых понятиях.

История

Радиолампы, как и другие электронные компоненты, имеют богатую историю, в ходе которой произошла заметная эволюция. Началось все в нулевых годах прошлого века, а закатом ламповой эры можно считать шестидесятые годы, когда свет увидела последняя фундаментальная разработка — миниатюрные радиолампы нувисторы, а транзисторы уже начали активно завоевывать рынок. Но из всей истории нас интересуют лишь ключевые этапы, когда были созданы основные типы радиоламп и разработаны основные схемы их включения.

Первый в мире триод изобретателя Ли де Фореста, 1908 год

Первой разновидностью радиоламп, разработанной для создания усилителей, были триоды. Цифра 3 слышится в названии не случайно — именно столько активных выводов имеет триод. Принцип работы триода предельно прост. Между анодом и катодом лампы последовательно включаются источник питания и первичная обмотка выходного трансформатора (ко вторичной обмотке которого подключается акустика). Полезный сигнал подается на сетку лампы. При подаче напряжения в схему усилителя между катодом и анодом протекает поток электронов, а расположенная между ними сетка модулирует этот поток соответственно изменениям уровня входящего сигнала.

В ходе использования триодов в различных отраслях промышленности потребовалось улучшить их характеристики. Одной из таких характеристик была проходная емкость, величина которой ограничивала максимальную рабочую частоту лампы. В процессе решения этой проблемы появились тетроды — радиолампы, имеющие внутри не три, а четыре электрода. Четвертым стала экранирующая сетка, установленная между управляющей сеткой и анодом. Задачу повышения рабочей частоты это решало в полной мере, что вполне удовлетворило создателей технологии, разрабатывавших тетроды для того, чтобы радиостанции и радиоприемники работали в коротковолновом диапазоне, имеющим более высокие несущие частоты нежели средне- и длинноволновый.

Строение триода

С точки зрения качества воспроизведения звука тетрод не превзошел триод принципиально, поэтому другая группа ученых, озадаченная вопросами воспроизведения звуковых частот, усовершенствовала тетрод, используя, по сути, тот же подход — просто добавив в конструкцию лампы еще одну дополнительную сетку, располагающуюся между экранирующей сеткой и анодом. Это было необходимо для того, чтобы подавить динатронный эффект — обратную эмиссию электронов от анода к экранирующей сетке. Подключение дополнительной сетки к катоду препятствовало этому процессу, делая выходную характеристику лампы более линейной и повышая выходную мощность. Так появился новый тип ламп: пентод.

Принцип работы

Все вышеупомянутые типы ламп в том или ином виде нашли применение в аудиотехнике. При этом пытливые умы аудиоинженеров постоянно искали пути наиболее эффективного их использования. Довольно быстро они пришли к выводу, что место включения экранирующей сетки пентода в схему усилителя — это инструмент, с помощью которого можно принципиально изменить режим его работы. При подключении сетки к катоду мы имеем классический пентодный режим, если же переключить сетку на анод — пентод начинает работать в режиме триода. Это позволяет объединить два типа усилителя в одном с возможностью смены режима с помощью простого переключателя.

Так работает тетрод

Но и этим дело не ограничилось. В 1951 году американские инженеры Дэвид Хафлер и Харберт Керос предложили подключать сетку пентода совершенно иным способом: к промежуточным отводам первичной обмотки выходного трансформатора. Такое подключение является чем-то средним между чистым триодным и чистым пентодным включением, давая возможность комбинировать свойства обоих режимов.

Таким образом, с режимами ламп произошла та же история, что и с классами усиления, когда вслед за «чистыми» классами А и В появился комбинированный класс АВ, сочетающий сильные стороны двух предыдущих.

Обозначение разных типов ламп по ГОСТу

В том, что касается сочетания режимов работы ламп и классов усиления, они могут комбинироваться произвольным образом, что приводит к изрядной путанице и даже жарким спорам в рядах неофитов. Не добавляет ясности и тот факт, что разработчики ламповых усилителей в большинстве случаев указывают не класс усилителя, а принцип схемотехники: однотактный — SE (Single Ended) или двухтактный — PP (Push-Pull). В итоге, пентоды и тетроды нередко ассоциируют исключительно с классом АВ и двухтактной схемой в целом, а триод, напротив, считают синонимом класса А и сугубо однотактного включения. На самом же деле, ни что не препятствует переключить усилитель, работающий в классе А, в пентодный или ультралинейный режим, а на паре триодов можно собрать двухтактный усилитель, работающий в классе В или АВ.

Предпосылкой к неверным ассоциациям является частота использования тех или иных режимов в различных классах усиления. Триоды чаще используют в однотактных схемах и классе А. В свою очередь, пентоды и тетроды лучше подходят для работы в двухтактных схемах, хотя переключение их в триодный режим — реальная опция, встречающаяся на усилителях, работающих в классе АВ, и не имеющая ровным счетом никакого отношения к классу А.

Плюсы

Традиционный триодный режим работы лампы имеет как минимум одно значимое преимущество: способность работать без обратной связи. Пентодный режим имеет свои плюсы: большую линейность работы и возможность достигать более высокой мощности. Ультралинейный режим дает возможность отказаться от общей обратной связи и при этом сохранить мощность, близкую к пентодному включению. При этом триод при прочих равных обходит оба варианта по уровню собственного шума лампы.

Минусы

Слабые места одних режимов ламп вполне закономерно можно обнаружить там, где проявляются сильные места других. Триодный режим имеет меньший КПД и меньшую линейность, хуже переносит динамические нагрузки. Пентодный и ультралинейный режимы проигрывают по уровню шумов, к тому же на практике оказываются более зависимы от качества выходных трансформаторов. Пентодный усилитель невозможен без общей обратной связи, и она может понадобиться в некоторых вариантах ультралинейного режима.

Особенности

С точки зрения качества и характера звучания каждый тип ламп и каждый режим включения имеет свои особенности, настолько очевидные на слух, что даже ультралинейный режим, по факту, не стал золотой серединой. Триоды в чистом виде и триодное включение пентодов обеспечивают наиболее чистый и объемный звук до тех пор, пока дело не дойдет до энергичной музыки с быстрыми и значительными по амплитуде перепадами громкости. Иными словами — для спокойного джаза триоды подходят куда лучше, чем для прослушивания рока.

Пентодный и ультралинейный режимы, напротив, больше подходят для энергичной музыки, но в ряде случаев звучат недостаточно чисто, точно и детально. Особенно часто эти претензии относятся к пентодному режиму, а в целом характер звучания и пентодного, и ультралинейного режимов нередко сравнивают с транзисторными усилителями.

Практика

Ламповая схемотехника — дело тонкое, поэтому большинство производителей упражняются в совершенствовании какого-то одного сочетания режима работы ламп и класса усиления. Стремление разработчиков получать идеальный (согласно их представлениям) звук и следующий за этим отказ от любых альтернативных способов включения ламп вполне понятны, но при поиске испытуемого наша задача состояла как раз в обратном: иметь возможность сравнить один и тот же набор ламп как минимум в двух вариантах включения.

Это существенно сократило выбор кандидатов, однако, подходящий вариант был найден. Им стал Cayin CS-100A — аппарат, буквально созданный для разного рода экспериментов. Его конструкция допускает использование выходных ламп двух типов: тетродов KT88 и пентодов EL34. При этом есть возможность выбора между триодным и ультралинейным режимом с выходной мощностью 50 или 80 Вт на канал, соответственно. При этом схемотехника усилителя в обоих случаях двухтактная, и работает он в классе АВ.

Кроме прочего, Cayin CS-100A является хорошим примером современной реализации традиционного лампового усилителя. Он имеет классическую компоновку со съемной решеткой закрывающей лампы, несет на борту выходные трансформаторы солидных размеров, обеспечивающие не только достаточную мощность, но и широкий диапазон воспроизводимых частот. Комплектующие соответствуют современным требованиям качества: в усилителе применяются угольные резисторы, аудиофильские конденсаторы, тороидальный трансформатор питания и проводка серебряным кабелем. Монтаж при этом реализован навесным способом — так же, как это делали более полувека назад. Это является не столько данью истории, сколько способом сокращения путей сигнала. В целом, Cayin CS-100A — это аппарат, в полной мере попадающий под определение лампового High End.

Когда речь идет о High End-компонентах, особенно ламповых, не всегда удается четко провести грань между «усилитель не справился» и «так и было задумано». В конце концов, аудиоинженер в мире High End — это тоже в некотором роде художник и он имеет право на свое собственное представление о том, как должна звучать система. Избежать такого рода недоразумений помогло использование в процессе тестирования двух пар акустических систем, обладающих принципиально разными характеристиками. Специфические признаки недостатка мощности и роста искажений можно было заметить на тяжелой нагрузке и на громкости выше средней, что в общем соответствует заявленным характеристикам. С крупными полочниками или напольниками средних размеров со столь же среднестатистическими параметрами мощности, импеданса и чувствительности Cayin CS-100A вполне справится.

В триодном режиме усилитель выдает красивое, тембрально насыщенное звучание с богатым верхним и средним басом. Лучше всего звучала спокойная медленная музыка, вокал, аудиофильский джаз, камерная классика малых составов. Вполне можно было получить удовольствие от ранних Beatles и Led Zeppelin. При этом попытки послушать современный рок и металл не увенчались успехом. Звучание гитар было очень густое, тягучее, округлое и не особенно агрессивное. Самый злющий металл подавался так, словно его записывали в начале семидесятых.

Переключение в ультралинейный режим производится одним нажатием кнопки и меняет картину полностью: рок, металл, танцевальная электроника сбрасывают налет винтажности и начинают звучать не менее энергично, чем на транзисторных усилителях, работающих в классе АВ. В характере остается некоторая теплота и приятная округлость басовых нот, но в весьма умеренных количествах. На медленной музыке и малых составах ультралинейный режим не столь красив и выразителен, как триодный, музыка подается более спокойно и ровно.

Выводы

Каждый режим работы лампы в усилителе имеет свои плюсы и минусы, которые дают хорошо различимые на слух отличия в звучании. Учитывая, что ламповая техника — это всегда техника с характером, выбор усилителя, работающего в том или ином режиме (или переключение режимов на самом усилителе), является инструментом пользователя, позволяющим подобрать усилитель согласно индивидуальным предпочтениям.

Статья подготовлена при поддержке компании «Аудиомания», тестирование усилителей проходило в залах прослушивания салона.

Другие полезные материалы в разделе «Мир Hi-Fi» на сайте «Аудиомании» и Youtube-канале компании:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *