Что такое бесколлекторный двигатель постоянного тока и его принцип работы
Бытовая и медицинская техника, авиамоделирование, трубозапорные приводы газо- и нефтепроводов – это далеко не полный перечень областей применения бесколлекторных двигателей (БД) постоянного тока. Давайте рассмотрим устройство и принцип действия этих электромеханических приводов, чтобы лучше понять их достоинства и недостатки.
Общие сведения, устройство, сфера применения
Одна из причин проявления интереса к БД — это возросшая потребность в высокооборотных микродвигателях, обладающих точным позиционированием. Внутренне устройство таких приводов продемонстрировано на рисунке 2.
Рис. 2. Устройство бесколлекторного двигателя
Как видите, конструкция представляет собой ротор (якорь) и статор, на первом имеется постоянный магнит (или несколько магнитов, расположенных в определенном порядке), а второй оборудован катушками (В) для создания магнитного поля.
Примечательно, что эти электромагнитные механизмы могут быть как с внутренним якорем (именно такой тип конструкции можно увидеть на рисунке 2), так и внешним (см. рис. 3).
Рис. 3. Конструкция с внешним якорем (outrunner)
Соответственно, каждая из конструкций имеет определенную сферу применения. Устройства с внутренним якорем обладают высокой скоростью вращения, поэтому используются в системах охлаждения, в качестве силовых установок дронов и т.д. Приводы с внешним ротором используются там, где требуется точное позиционирование и устойчивость к перегрузкам по моменту (робототехника, медицинское оборудование, станки ЧПУ и т.д.).
Бесколлекторный двигатель в компьютерном дисководе
Принцип работы
В отличие от других приводов, например, асинхронной машины переменного тока, для работы БД необходим специальный контроллер, который включает обмотки таким образом, чтобы векторы магнитных полей якоря и статора были ортогональны друг к другу. То есть, по сути, устройство-драйвер регулирует вращающий момент, действующий на якорь БД. Наглядно этот процесс продемонстрирован на рисунке 4.
Фазы работы бесколлекторного привода
Как видим, для каждого перемещения якоря необходимо выполнять определенную коммутацию в обмотке статора двигателя бесколлекторного типа. Такой принцип работы не позволяет плавно управлять вращением, но дает возможность быстро набрать обороты.
Отличия коллекторного и бесколлекторного двигателя
Привод коллекторного типа отличается от БД как конструктивными особенностями (см. рис 5.), так и принципом работы.
Рис. 5. А – коллекторный двигатель, В – бесколлекторный
Рассмотрим конструктивные отличия. Из рисунка 5 видно, что ротор (1 на рис. 5) двигателя коллекторного типа, в отличие от бесколлекторного, имеет катушки, у которых простая схема намотки, а постоянные магниты (как правило, два) установлены на статоре (2 на рис. 5). Помимо этого на валу установлен коллектор, к которому подключаются щетки, подающие напряжение на обмотки якоря.
Кратко расскажем о принципе работы коллекторных машин. Когда на одну из катушек подается напряжение, происходит ее возбуждение, и образуется магнитное поле. Оно вступает во взаимодействие с постоянными магнитами, это заставляет проворачиваться якорь и размещенный на нем коллектор. В результате питание подается на другую обмотку и цикл повторяется.
Частота вращения якоря такой конструкции напрямую зависит от интенсивности магнитного поля, которое, в свою очередь, прямо пропорционально напряжению. То есть, чтобы увеличить или уменьшить обороты, достаточно повысить или снизить уровень питания. А для реверса необходимо переключить полярность. Такой способ управления не требует специального контролера, поскольку регулятор хода можно сделать на базе переменного резистора, а обычный переключатель будет работать как инвертор.
Конструктивные особенности двигателей бесколлекторного типа мы рассматривали в предыдущем разделе. Как вы помните, их подключение требует наличия специального контролера, без которого они просто не будут работать. По этой же причине эти двигатели не могут использоваться как генератор.
Стоит также отметить, что в некоторых приводах данного типа для более эффективного управления отслеживаются положения ротора при помощи датчиков Холла. Это существенно улучшает характеристики бесколлекторных двигателей, но приводит к удорожанию и так недешевой конструкции.
Как запустить бесколлекторный двигатель?
Чтобы заставить работать приводы данного типа, потребуется специальный контроллер (см. рис. 6). Без него запуск невозможен.
Рис. 6. Контроллеры бесколлекторных двигателей для моделизма
Собирать самому такое устройство нет смысла, дешевле и надежней будет приобрести готовый. Подобрать его можно по следующим характеристикам, свойственным драйверам шим каналов:
- Максимально допустимая сила тока, эта характеристика приводится для штатного режима работы устройства. Довольно часто производители указывают такой параметр в названии модели (например, Phoenix-18). В некоторых случаях приводится значение для пикового режима, который контролер может поддерживать несколько секунд.
- Максимальная величина штатного напряжения для продолжительной работы.
- Сопротивление внутренних цепей контроллера.
- Допустимое число оборотов, указывается в rpm. Сверх этого значения контроллер не позволит увеличить вращение (ограничение реализовано на программном уровне). Следует обратить внимание, что частота вращения всегда приводится для двухполюсных приводов. Если пар полюсов больше, следует разделить значение на их количество. Например, указано число 60000 rpm, следовательно, для 6-и магнитного двигателя частота вращения составит 60000/3=20000 prm.
- Частота генерируемых импульсов, у большинства контролеров этот параметр лежит в пределах от 7 до 8 кГц, более дорогие модели позволяют перепрограммировать параметр, увеличив его до 16 или 32 кГц.
Обратим внимание, что первые три характеристики определяют мощность БД.
Управление бесколлекторным двигателем
Как уже указывалось выше, управление коммутацией обмоток привода осуществляется электроникой. Чтобы определить, когда производить переключения, драйвер отслеживает положение якоря при помощи датчиков Холла. Если привод не снабжен такими детекторами, то в расчет берется обратная ЭДС, которая возникает в неподключенных катушках статора. Контроллер, который, по сути, является аппаратно-программным комплексом, отслеживает эти изменения и задает порядок коммутации.
Трёхфазный бесколлекторный электродвигатель постоянного тока
Большинство БД выполняются в трехфазном исполнении. Для управления таким приводом в контролере имеется преобразователь постоянного напряжения в трехфазное импульсное (см. рис.7).
Рисунок 7. Диаграммы напряжений БД
Чтобы объяснить, как работает такой вентильный двигатель, следует вместе с рисунком 7 рассматривать рисунок 4, где поочередно изображены все этапы работы привода. Распишем их:
- На катушки «А» подается положительный импульс, в то время как на «В» — отрицательный, в результате якорь сдвинется. Датчиками зафиксируется его движение и подастся сигнал для следующей коммутации.
- Катушки «А» отключается, и положительный импульс идет на «С» («В» остается без изменения), далее подается сигнал на следующий набор импульсов.
- На «С» — положительный, «А» — отрицательный.
- Работает пара «В» и «А», на которые поступают положительный и отрицательный импульсы.
- Положительный импульс повторно подается на «В», и отрицательный на «С».
- Включаются катушки «А» (подается +) и повторяется отрицательный импульс на «С». Далее цикл повторяется.
В кажущейся простоте управления есть масса сложностей. Нужно не только отслеживать положение якоря, чтобы произвести следующую серию импульсов, а и управлять частотой вращения, регулируя ток в катушках. Помимо этого следует выбрать наиболее оптимальные параметры для разгона и торможения. Стоит также не забывать, что контроллер должен быть оснащен блоком, позволяющим управлять его работой. Внешний вид такого многофункционального устройства можно увидеть на рисунке 8.
Рис. 8. Многофункциональный контроллер управления бесколлекторным двигателем
Преимущества и недостатки
Электрический бесколлекторный двигатель имеет много достоинств, а именно:
- Срок службы значительно дольше, чем у обычных коллекторных аналогов.
- Высокий КПД.
- Быстрый набор максимальной скорости вращения.
- Он более мощный, чем КД.
- Отсутствие искр при работе позволяет использовать привод в пожароопасных условиях.
- Не требуется дополнительное охлаждение.
- Простая эксплуатация.
Теперь рассмотрим минусы. Существенный недостаток, который ограничивает использование БД – их относительно высокая стоимость (с учетом цены драйвера). К числу неудобств следует отнести невозможность использования БД без драйвера, даже для краткосрочного включения, например, чтобы проверить работоспособность. Проблемный ремонт, особенно если требуется перемотка.
Бесколлекторные двигатели: преимущества и недостатки
Бесколлекторные двигатели — это вид синхронных устройств с постоянными магнитами, питаемыми от цепи постоянного тока через инвертор, управление которым осуществляется при помощи коллектора с обратной связью.
Преимущества и недостатки устройств
Бесколлекторный двигатель имеет следующие плюсы и минусы:
1. Наличие сложных электронных компонентов (к примеру, датчиков Холла). Они отличаются уязвимостью для действия жестких условий со стороны окружающей среды (высокой и низкой температуры, ионизирующих излучений и так далее). Если рассматривать коллекторные двигатели, то они вовсе не имеют электроники, из-за чего у них отсутствует данная уязвимость.
2. Сведение к минимуму электромагнитных помех, которые исходят от устройства. Во время работы щеточно-коллекторный контакт создает сильные помехи. Их частота зависит от частоты вращения мотора. А вот у бесколлекторной модели устройств основным источником помех можно назвать ШИМ силовых ключей, частота которого постоянна.
3. Требуется больше проводов для подключения. Если устройство работает в сложных условиях, то рекомендуется вынести управляющую электронику на большое расстояние. В таком случае каждая дополнительная цепь для подсоединения устройства требует наличия дополнительных жил в кабеле, что увеличивает его массу и габариты.
4. Отличный отвод тепла от обмотки. Последняя надежно закреплена на статоре и поэтому возможно обеспечить ее хороший тепловой контакт вместе с корпусом (корпус передает тепло, появляющееся в устройстве, в окружающую среду). У бесколлекторного мотора тепловой контакт с корпусом значительно лучше, чем у коллекторного электродвигателя.
5. Повышенная мощность. Это следствие высокой скорости вращения.
6. Большая скорость вращения. Коллекторные двигатели отличаются тем, что они имеют ограниченную скорость перемещения щетки по коллектору. Предельная скорость существенно ограничена. Бесколлекторные электродвигатели не имеют такого ограничения. Благодаря этому они могут работать на скоростях до нескольких сотен тысяч оборотов в минуту.
7. Сложная схема управления. Для управления коллекторным мотором нужен источник питания, а для бесколлекторного такой подход не подойдет (ему требуется контроллер).
8. Нет нужды в обслуживании коллекторного узла. Это актуально для моторов крупных и средних габаритов.
9. Надежность (по причине отсутствия коллектора). Это и есть главное отличие бесколлекторных двигателей.
Бесколлекторные модели устройств получили широкое применение в областях, где их технические характеристики дают им преимущество перед устройствами других типов (к примеру, там, где требуется скорость до нескольких десятков тысяч оборотов в минуту).
Преимущества бесколлекторных двигателей
Чтобы лучше понять, что такое бесколлекторные двигатели и как они работают, нам нужно взглянуть на их классических предшественников коллекторные двигатели. Двигатели постоянного тока существуют уже более ста лет и долгое время считались стандартной технологией двигателей. Несмотря на развитие бесколлекторных двигателей, коллекторные двигатели остаются актуальными до сегодняшнего дня, особенно для недорогих применений.
Бесколлекторные двигатели были впервые разработаны в 1960-х годах и считались более эффективной альтернативой коллекторным двигателям. В настоящее время бесколлекторные двигатели можно найти в высококлассных приложениях и устройствах, таких как компьютерные жесткие диски, электромобили и DVD-плееры. Они особенно предпочтительны для устройств с батарейным питанием, таких как беспроводные инструменты, из-за их повышенной эффективности, что приводит к более длительным циклам работы батареи.
Бесколлекторные двигатели имеют роторы и статоры. Как следует из их названий, ротор-это компонент двигателя, который вращается, в то время как статор-это компонент, который остается неподвижным. В коллекторном двигателе ротор расположен в центре двигателя, окруженный статором, который имеет пару магнитов с противоположной полярностью.
Вращение ротора коллекторного двигателя приводится в движение изменяющимся магнитным полем. Это изменяющееся магнитное поле становится возможным благодаря коллектору со щетками, которые входят в контакт с источником тока при вращении центрального вала.
Бесколлекторные двигатели используют совершенно иной подход к созданию изменяющегося магнитного поля. Вместо центрального ротора ротор бесколллекторного двигателя фактически окружает статор. В этом случае ротор имеет постоянный набор магнитов, который реагирует на изменение магнитного поля статора.
Статор бесколлекторного мотора может состоять из 6 или более пар электрических катушек, каждая из которых способна генерировать собственное магнитное поле. По мере вращения ротора магнитное поле каждой катушки изменяется поочередно, что еще больше стимулирует вращение ротора. Регулирование тока в каждой электрической катушке осуществляется с помощью электронного регулятора скорости (ESC), так называемого потому, что он способен контролировать пропускную способность всего двигателя.
На поверхности легко отличить коллекторный двигатель от его бесколлекторного аналога. Коллекторные двигатели имеют более длинную и цилиндрическую форму из-за увеличенной массы. Они также часто имеют вентиляционные отверстия, так как постоянный контакт щеток через некоторое время генерирует тепло. Из них торчат два провода, которые соединяются с положительными и отрицательными клеммами источника питания.
Бесколлекторные двигатели короче и компактнее. Они имеют меньше движущихся частей, а бесконтактная технология означает, что она генерирует меньше тепла из-за трения. Бесколлекторные двигатели обычно имеют три или более проводов, выступающих из них, и они обычно подключаются к ЭКУ.
В настоящее время бесколлекторные двигатели можно найти в большинстве современных электронных устройств. Они используются в промышленных приложениях, таких как самолеты, медицинские приборы, производственное оборудование и инструменты, а также робототехника. В потребительских товарах их можно найти в электрических скутерах, беспроводных дрелях, DVD-плеерах, пылесосах и стиральных машинах. Несмотря на сохраняющуюся популярность коллекторных моторов, нетрудно представить, что это часть технологии, которая в конечном итоге будет считаться устаревшей.
Преимущества бесколлекторных двигателей
1. Меньше обслуживания
Коллекторные двигатели печально известны тем, что имеют детали, которые через некоторое время изнашиваются, требуя частого демонтажа и замены деталей. Это связано с тем, что щетки коммутатора должны поддерживать почти постоянный контакт с клеммами источника питания, даже когда коммутатор быстро вращается. Когда щетки изнашиваются и больше не могут поддерживать контакт, коллекторный двигатель постоянного тока в основном становится бесполезным. На самом деле между ротором и статором бесколлекторного двигателя практически нет контакта, поэтому износ значительно снижается.
2. Более эффективный
Постоянный контакт щеток с силовыми клеммами коллекторного двигателя необходим для поддержания его вращения. Однако трение, которое это создает, означает, что огромная часть энергии, генерируемой вращательным движением, тратится впустую в виде тепла. Как правило, КПД коллекторных двигателей ограничен в диапазоне от 75% до 80%.
С другой стороны, бесколлекторные двигатели генерируют очень мало тепла. При быстром вращении ротора все еще есть некоторая потеря энергии из-за трения воздуха, но она минимальна. Такие двигатели способны обеспечить КПД до 90%.
3. Более длительный срок службы
Ускоренный износ из-за постоянного контакта щеток и энергии, выделяемой в виде тепла, означает, что коллекторные двигатели, как ожидается, сломаются гораздо раньше, чем бесколлекторные. Без возможности остыть накопление тепла в коллекторных двигателях может легко нарушить целостность их катушек или щеток.
Было показано, что бесколлекторные двигатели служат несколько лет при минимальном техническом обслуживании, пока они не повреждаются из-за аварии. Возможно смещение центрального вала или попадание мелких частиц песка и грязи в механизм двигателя. Эти условия, безусловно, уменьшат долговечность мотора.
4. Меньше по размеру
Бесколлекторные двигатели имеют меньшее количество движущихся частей, что дает им преимущество в компактности.
Большая часть шума, создаваемого коллекторными двигателями, происходит из-за контакта щеток с клеммами питания. Несмотря на использование смазочных материалов для уменьшения трения, это неприятность, которая неизбежна при использовании коллекторных моторов.
Бесколлекторные двигатели гораздо тише. Хотя быстрое вращение ротора все еще создает характерный “жужжащий” звук, это все еще огромное улучшение по сравнению с визжащим звуком, к которому мы привыкли с коллекторными двигателями. Более поздние разработки также привели к появлению бесколлекторных двигателей, которые вращаются более плавно, устраняя шум.
Недостатки бесколлекторных двигателей
Причина номер один, почему бесколлекторные двигатели не получили такого широкого распространения, как мы ожидали, заключается в том, что они намного дороже.
Бесколлекторные двигатели имеют более сложный набор электромагнитов. Больше электромагнитов означает больше проводящего материала катушки, который часто является одним из самых дорогих компонентов двигателя. Бесколлекторные двигатели также требуют дополнительного обслуживания.
2. Сложная проводка
Бесколлекторные двигатели не так просты, как кажется. Еще одним огромным преимуществом коллекторного двигателя является то, что он может быть легко подключен к источнику постоянного тока для его работы. Исходя из концепции работы коллекторного двигателя, все, что ему нужно, — это быть подключенным к отрицательным и положительным клеммам источника питания.
Заключительные мысли
Способность преобразовывать электрическую энергию во вращательное движение является одним из величайших технологических достижений нашего времени, открытием, которое породило многие аспекты современной технологии, как мы ее знаем. коллекторные моторы господствуют уже почти сто лет, но бесколлекторные моторы быстро находят свое место в современном мире, где приоритет отдается использованию компактных, надежных и эффективных технологий.
Сравнение коллекторного и бесколлекторного двигателя
Наша жизнь немыслима без всевозможных механизмов. Это детские игрушки, бытовая техника сложная электроника, промышленное оборудование и т.п. Во всех этих приборах и устройствах применяются электродвигатели ,
работающие от различных источников питания. В этой статье мы решили рассмотреть, чем отличаются коллекторные и бесколлекторные двигатели, а также какой тип двигателей лучше и почему.
Коллекторные двигатели
Электродвигатели, используемые в детских игрушках, имеют небольшие габариты и малую мощность. Конструктивно коллекторный двигатель представляет собой два постоянных магнита, установленных на статоре, и ротор (якорь) с обмотками. Отметим, что на статоре могут быть и обмотки возбуждения, вместо постоянных магнитов.
К обмоткам подводится постоянное напряжение через ламели коллектора. Для подачи напряжения используются графитовые щетки. В двигателях малой мощности в качестве щеток применяются медные пластины.
Питаются коллекторные двигатели как от постоянного тока, так и от переменного. Для подключения питания они имеют два провода.
Бесколлекторные двигатели
Название электродвигателя говорит об отсутствии токосъемного устройства. Что является основной конструктивной разницей. Это позволяет снизить потери на трение и повысить мощность. При этом постоянные магниты смонтированы на роторе, а обмотки размещены на статоре.
Выпускаются бесколлекторные двигатели, у которых магниты смонтированы на корпусе. В этом случае корпус выполняет функцию ротора.
Для пуска двигателя требуется специальное устройство (контроллер или коммутатор), что увеличивает стоимость бесколлекторных электродвигателей.
Плюсы и минусы сравниваемых двигателей
Электродвигатели с коллектором применяются в детских игрушках, моделях автомобиля, судомоделировании и т.п. Более мощные устройства с обмоткой возбуждения применяются в автомобилестроении, бытовой технике, в токарном станке или сверлильном и т.д.
Широкое применение обусловлено:
- Невысокой ценой.
- Простотой управления. Для регулировки скорости достаточно иметь реостат, а для осуществления реверса — изменить полярность в цепи возбуждения или якоря.
- Можно подключать непосредственно к питающей сети.
- Скорости вращения ротора можно менять в широком диапазоне.
- Небольшие пусковые токи.
Но при простоте устройства коллекторные двигатели имеют недостатки:
- Невысокий КПД.
- Ограниченный срок службы.
- Необходимость в постоянном обслуживании.
- Невысокая надежность устройства.
При этом такие двигатели применяются не во всех отраслях промышленности. Их нельзя использовать во взрывоопасных помещениях. При эксплуатации на высоких скоростях быстро выходит из строя коллектор и щетки.
В результате происходит снижение мощности, а токоподводящие щетки начинают искрить. Такое конструктивное отличие приводит к быстрому выходу из строя ламелей коллектора, создаются помехи в радиоаппаратуре.
Щетки приходится менять, а коллектор протачивать, что сокращает срок службы двигателя. Это является основным недостатком таких устройств.
В бесколлекторных электродвигателях отсутствует коллектор. В этом состоит отличие бесеколлекторных двигателей от коллекторных, в связи с чем и отсутствуют указанные выше недостатки.
Достоинствами таких электрических машин являются:
- Отсутствие трущихся частей позволяет сократить потери мощности на трение. Не требуется постоянно следить за состоянием щеток, так как они отсутствуют. Это отличие позволяет увеличить межремонтный период.
- Возможность использования корпуса в качестве рабочего органа. Эта конструктивная разница позволяет применять механизмы непосредственно в качестве колес.
- Бесколлекторные электродвигатели, в отличие от коллекторных более долговечны. При этом они менее подвержены перегреву, т.к. отсутствует коллектор и щетки, которые в процессе работы сильно нагреваются.
- Мгновенно набирают обороты.
- Могут применяться во всех отраслях промышленности, в пожаро- и взрывоопасных помещениях. Из-за отсутствия коллектора не возникает искрения, чем они и лучше.
Но у данного типа двигателя имеется существенный недостаток: бесколлекторные модели можно использовать только с драйвером-коммутатором. С помощью этого устройства задаются режимы работы, скорость и направление вращения. При этом стоимость бесколлекторных двигателей значительно выше. Разница в стоимости может быть значительной. Это то, чем отличаются они от устройств с коллектором.
Малый вес и высокая мощность — это то, что лучше сочетается в приборах с дистанционным управлением, например, для квадрокоптера, где от веса и КПД зависит дальность и время полёта.
Заключение
Итак, подведем итоги и обозначим в чем разница между коллекторным и бесколлекторным двигателем, перечислив их особенности.
- Есть щетки и коллектор, которые искрят и изнашиваются.
- Нужно чаще обслуживать, соответственно и срок службы не слишком долгий.
- Легко регулировать скорость лишь изменением напряжения.
- Для реверса нужно просто сменить полярность.
- Два предыдущих факта позволяют их использовать в бюджетных устройствах без сложных электросхем.
- Для запуска нужен контроллер, который хоть и не слишком дорого стоит, но увеличивает конечную стоимость, схемотехнику и вес изделия.
- Весят меньше чем коллекторные, при одинаковой мощности (но это частично компенсируется предыдущим фактом).
- Нет щеток и коллектора, поэтому не требуют обслуживания, не искрят.
- Больший срок службы, он ограничен лишь ресурсом подшипников ротора.
- Стоят обычно дороже чем коллекторные.
- Зачастую выдают больший момент на валу и обороты.
- При наличии датчиков положения вала обеспечивают большую стабильность оборотов при изменении нагрузки (жесткая механическая характеристика). Это особенно важно при использовании на станках и ручном инструменте.
Добавлю то, что нельзя однозначно сказать какой лучше или какой мощнее, можно найти коллекторный двигатель размером с холодильник, а можно бесколлекторный размером с ноготь. При этом оба будут отлично выполнять те функции, на которые рассчитаны и использоваться в конкретных устройствах с учетом требований к их надежности и особенностям эксплуатации. Каждый вид электропривода хорош по своему и идеален по конструкции как таковой.
Теперь вы знаете, в чем разница между коллекторным и бесколлекоторным двигателем, а также какие плюсы и минусы у каждого варианта исполнения. Надеемся, предоставленная информация была для вас полезной и интересной!