Как правильно переменный ток или переменное напряжение
Ноябрь 15th, 2010 Айрат
Что такое переменный ток и переменное напряжение?
Ток бывает двух основных видов — постоянный и переменный. Чтобы разобраться с этими терминами, необходимо вспомнить, что ток — это упорядоченное движение электронов. И вот когда эти электроны все время движутся в одном и том же направлении, то такой ток называется постоянным. Но под понятием упорядоченное движение следует также понимать то что в один момент электроны движутся в одном направлении а во второй момент — в обратном и так без остановки. Вот такой ток уже называется переменным. Если говорят о постоянном и переменном напряжении, то имеется в виду что у постоянного напряжения + и — всегда «находятся на одном месте».
Примером постоянного напряжения может послужить обыкновенная батарейка, на её корпусе вы всегда найдете обозначения + и -. А у переменного + и — меняются через некоторой отрезок времени. Следственно постоянное напряжение создает постоянный ток, и соответственно переменное напряжение — переменный ток. Примером переменного напряжения может послужить обыкновенная электросеть. Постоянный ток обозначается одной прямой линией, а переменный одной волнистой линией.
Я думаю, вам не раз приходилось видеть надписи 220В, перед которой стоит горизонтальная волнистая линия. Это и есть обозначение переменного тока.
Обратите внимание на то, что устройства, в который используется постоянный ток, в подавляющем количестве, не допускают чтобы при подключения к ним питания контакты + и — перепутались между собой, поскольку если их перепутать то прибор может попросту «сгореть». А вот для переменного напряжения это уже не актуально, припустим, вы включаете в розетку… да что угодно, и не важно какой именно стороной вставить вилку в розетку, прибор все ровно будет работать. Наверняка, вам также приходилось возле надписей 220В замечать и надпись на подобие 50Гц. Это частота переменного тока. И означает она, сколько раз в секунду меняется «плюс с минусом» местами. Надпись 50Гц (Герц) означает, что за одну секунду полярность напряжения меняется 50 раз.
Графики
Для того чтобы представить, как именно происходит изменение полярности переменного напряжения необходимо разбираться в графиках, которые показывают напряжение в разные моменты времени. Давайте посмотрим на график, демонстрирующий постоянное напряжение (он слева). Припустим, что этот график показывает напряжение на контактах лампочки фонарика.
Начиная с точки 0 и до точки «а» график показывает, что напряжение равно нулю. Или другими словами говоря его там вообще нет (фонарик выключен). В момент времени «а» (в нашем варианте на контактах лампочки) появляется напряжение равное U1, которое остается без изменений в течении времени от «а» до «б» (фонарик включен). В момент времени «б» Напряжение снова пропадает (стает равным нулю). Если посмотреть на второй график, который отображает переменное напряжение, то думаю, несложно разобраться что именно происходит с переменным напряжением в разные моменты времени. В нулевой точке оно равно нулю. На протяжении времени от «0″ до «а» напряжение плавно возрастает до значения U1 и в этот же момент начинает спадать. В результате чего в момент времени «б» достигает нулевой отметки. Но как видно на графике, напряжение продолжает падать и становится отрицательным. В точке «г» достигает минимума, и снова начинает возрастать. Это явление повторяется на протяжении существования напряжения (пока свет не отключат . Следует заметить, что переменное напряжение может быть не только такой формы. Оно может быть, например, прямоугольной или практически любой другой формы. Теперь еще раз взгляните на этих два графика, и вспомните, как обозначается постоянный и переменный ток (напряжение).
Постоянное и переменное напряжение
Ноябрь 15th, 2010 Айрат
Что такое переменный ток и переменное напряжение?
Ток бывает двух основных видов — постоянный и переменный. Чтобы разобраться с этими терминами, необходимо вспомнить, что ток — это упорядоченное движение электронов. И вот когда эти электроны все время движутся в одном и том же направлении, то такой ток называется постоянным. Но под понятием упорядоченное движение следует также понимать то что в один момент электроны движутся в одном направлении а во второй момент — в обратном и так без остановки. Вот такой ток уже называется переменным. Если говорят о постоянном и переменном напряжении, то имеется в виду что у постоянного напряжения + и — всегда «находятся на одном месте».
Примером постоянного напряжения может послужить обыкновенная батарейка, на её корпусе вы всегда найдете обозначения + и -. А у переменного + и — меняются через некоторой отрезок времени. Следственно постоянное напряжение создает постоянный ток. и соответственно переменное напряжение — переменный ток. Примером переменного напряжения может послужить обыкновенная электросеть. Постоянный ток обозначается одной прямой линией, а переменный одной волнистой линией.
Я думаю, вам не раз приходилось видеть надписи 220В, перед которой стоит горизонтальная волнистая линия. Это и есть обозначение переменного тока.
Обратите внимание на то, что устройства, в который используется постоянный ток, в подавляющем количестве, не допускают чтобы при подключения к ним питания контакты + и — перепутались между собой, поскольку если их перепутать то прибор может попросту «сгореть». А вот для переменного напряжения это уже не актуально, припустим, вы включаете в розетку… да что угодно, и не важно какой именно стороной вставить вилку в розетку, прибор все ровно будет работать. Наверняка, вам также приходилось возле надписей 220В замечать и надпись на подобие 50Гц. Это частота переменного тока. И означает она, сколько раз в секунду меняется «плюс с минусом» местами. Надпись 50Гц (Герц) означает, что за одну секунду полярность напряжения меняется 50 раз.
Для того чтобы представить, как именно происходит изменение полярности переменного напряжения необходимо разбираться в графиках, которые показывают напряжение в разные моменты времени. Давайте посмотрим на график, демонстрирующий постоянное напряжение (он слева). Припустим, что этот график показывает напряжение на контактах лампочки фонарика.
Начиная с точки 0 и до точки «а» график показывает, что напряжение равно нулю. Или другими словами говоря его там вообще нет (фонарик выключен). В момент времени «а» (в нашем варианте на контактах лампочки) появляется напряжение равное U1, которое остается без изменений в течении времени от «а» до «б» (фонарик включен). В момент времени «б» Напряжение снова пропадает (стает равным нулю). Если посмотреть на второй график, который отображает переменное напряжение, то думаю, несложно разобраться что именно происходит с переменным напряжением в разные моменты времени. В нулевой точке оно равно нулю. На протяжении времени от «0″ до «а» напряжение плавно возрастает до значения U1 и в этот же момент начинает спадать. В результате чего в момент времени «б» достигает нулевой отметки. Но как видно на графике, напряжение продолжает падать и становится отрицательным. В точке «г» достигает минимума, и снова начинает возрастать. Это явление повторяется на протяжении существования напряжения (пока свет не отключат . Следует заметить, что переменное напряжение может быть не только такой формы. Оно может быть, например, прямоугольной или практически любой другой формы. Теперь еще раз взгляните на этих два графика, и вспомните, как обозначается постоянный и переменный ток (напряжение).
По материалам сайта: http://radio-electro.narod.ru/kurs/2peremen.htm
Нет похожих постов.
Чем постоянный ток отличается от переменного и как преобразовывается?
Постоянный электрический ток — это движение частиц с зарядом в определенном направлении. То есть его напряжение или сила (характеризующие величины) имеют одно и то же значение и направление. Это то, чем постоянный ток отличается от переменного. Но рассмотрим все по порядку.
История появления и «войны токов»
Постоянный ток раньше называли гальваническим из-за того, что его открыли в результате гальванической реакции. Томас Эдисон пробовал передавать его по линиям электрических передач. В то время велись нешуточные споры между учеными по этому вопросу. Они даже получили название «войны токов». Решался вопрос о выборе в качестве основного, переменного или постоянного. «Борьба» была выиграна переменным видом, так как постоянный несет существенные потери, передаваясь на расстоянии. Зато трансформировать переменный вид не составляет никакого труда, это то, чем постоянный ток отличается от переменного. Поэтому последний легко передавать даже на огромные расстояния.
Источники постоянного электрического тока
В качестве источников могут служить аккумуляторы или другие приборы, где он возникает посредством химической реакции.
Это и генераторы, где он получается в результате электромагнитной индукции, а после этого выпрямляется за счет коллектора.
Применение
В различных устройствах постоянный ток применяется довольно часто. С ним работают, например, многие бытовые приборы, зарядные устройства и генераторы автомобиля. Любой портативный аппарат запитывается от источника, вырабатавающего постоянный вид.
В промышленных масштабах его применяют в двигателях и аккумуляторах. А в некоторых странах им оснащают высоковольтные линии электропередач.
В медицине с помощью постоянного электрического тока проводят оздоровительные процедуры.
На железной дороге (для транспорта) используют и переменный, и постоянный виды.
Переменный ток
Чаще всего, впрочем, применяют именно его. Здесь среднее значение силы и напряжения за определенный период равны нулю. По величине и направлению он постоянно изменяется, причем с равными промежутками времени.
Чтобы вызвать переменный ток, используют генераторы, в которых во время электромагнитной индукции возникает электродвижущая сила. Это осуществляется при помощи магнита, вращаемого в цилиндре (роторе), и статора, выполненного в виде неподвижного сердечника с обмоткой.
Переменный ток используют в радио, телевидении, телефонии и многих других системах ввиду того, что его напряжение и силу возможно преобразовывать, почти не теряя энергию.
Широко применяют его и в промышленности, а также в целях освещения.
Он может быть однофазным и многофазным.
Переменный ток, который изменяется согласно синусоидальному закону, является однофазным. Он изменяется в течение определенного промежутка времени (периода) по величине и направлению. Частота переменного тока является числом периодов за секунду.
Во втором случае самое большое распространение получил трехфазный вариант. Это система из трех электроцепей, которые имеют одинаковую частоту и ЭДС, сдвинуты по фазе на 120 градусов. Ее используют для питания электрических двигателей, печей, осветительных приборов.
Многими разработками в сфере электричества и практическим их применением, а также воздействием на переменный ток высокой частоты человечество обязано великому ученому Николе Тесла. До сих пор не все его труды, оставшиеся потомкам, являются познанными.
Чем постоянный ток отличается от переменного и каков его путь от источника до потребителя?
Итак, переменным называют ток, способный меняться по направлению и величине в течение определенного времени. Параметры, на которые при этом обращают внимание, это частота и напряжение. В России в бытовых электрических сетях подают переменный ток, имеющий напряжение 220 В и частоту 50 Гц. Частота переменного тока — это количество изменений направления частиц определенного заряда за секунду. Получается, что при 50 Гц он меняет свое направление пятьдесят раз, в чем постоянный ток отличается от переменного.
Его источником являются розетки, к которым подключают бытовые приборы под различным напряжением.
Переменный ток начинает свое движение от электрических станций, где имеются мощные генераторы, откуда он выходит с напряжением от 220 до 330 кВ. Далее переходит в трансформаторные подстанции, которые находятся вблизи домов, предприятий и остальных конструкций.
В подстанции ток попадает под напряжением 10 кВ. Там он преобразовывается в трехфазное напряжение 380 В. Иногда с таким показателем ток переходит непосредственно на объекты (где организовано мощное производство). Но в основном его снижают до привычных во всех домах 220 В.
Преобразование
Понятно, что в розетках мы получаем переменный ток. Но часто для электрических приборов необходим постоянный вид. Для этой цели служат специальные выпрямители. Процесс состоит из следующих действий:
- подключение моста с четырьмя диодами, имеющих необходимую мощность;
- подключение фильтра или конденсатора на выход с моста;
- подключение стабилизаторов напряжения для уменьшения пульсаций.
Преобразование может происходить как из переменного в постоянный ток, так и наоборот. Но последний случай будет реализовать значительно труднее. Потребуются инверторы, которые, помимо прочего, стоят совсем недешево.
11 странных признаков, указывающих, что вы хороши в постели Вам тоже хочется верить в то, что вы доставляете своему романтическому партнеру удовольствие в постели? По крайней мере, вы не хотите краснеть и извин.
10 очаровательных звездных детей, которые сегодня выглядят совсем иначе Время летит, и однажды маленькие знаменитости становятся взрослыми личностями, которых уже не узнать. Миловидные мальчишки и девчонки превращаются в с.
9 знаменитых женщин, которые влюблялись в женщин Проявление интереса не к противоположному полу не является чем-то необычным. Вы вряд ли сможете удивить или потрясти кого-то, если признаетесь в том.
15 симптомов рака, которые женщины чаще всего игнорируют Многие признаки рака похожи на симптомы других заболеваний или состояний, поэтому их часто игнорируют. Обращайте внимание на свое тело. Если вы замети.
Наши предки спали не так, как мы. Что мы делаем неправильно? В это трудно поверить, но ученые и многие историки склоняются к мнению, что современный человек спит совсем не так, как его древние предки. Изначально.
7 частей тела, которые не следует трогать руками Думайте о своем теле, как о храме: вы можете его использовать, но есть некоторые священные места, которые нельзя трогать руками. Исследования показыва.
Электрический ток постоянный и переменный
В самом начале, давайте дадим короткое определение электрическому току. Электрическим током называют упорядоченное (направленное) движение заряженных частиц. Ток — это движение электронов в проводнике, напряжение — это то, что приводит их (электроны) в движение.
Теперь рассмотрим такие понятия, как постоянный и переменный ток и выявим их принципиальные отличия.
Отличие постоянного тока от переменного
Основная особенность постоянного напряжения в том, что оно постоянно как по своей величине, так и по знаку. Постоянный ток, "течет" в все время одну сторону. Например, по металлическим проводам от плюсового зажима источника напряжения к минусовому (в электролитах его создают положительные и отрицательные ионы). Сами же электроны движутся от минуса к плюсу, но ещё до открытия электрона договорились считать, что ток течет от плюса к минусу и до сих пор при расчетах придерживаются этого правила.
Чем же от постоянного отличается переменный ток (напряжение)? Из самого названия следует, что он меняется. Но — как именно? Переменный ток меняет за период как свою величину, так и направление движения электронов. В наших бытовых розетках — это ток с синусоидальными (гармоническими) колебаниями частотой 50 герц (50 колебаний в секунду).
Если рассмотреть замкнутую цепь на примере лампочки, то мы получим следующее:
- при постоянном токе электроны будут течь через лампочку всегда в одном направлении от (-) минуса к (+) плюсу
- при переменном направление движения электронов будет меняться в зависимости от частоты генератора. т. е. если в нашей сети частота переменного тока 50 герц (Hz), то направление движения электронов за 1 секунду поменяется 100 раз. Таким образом + и — в нашей розетке меняются местами сто раз в секунду (именно поэтому мы можем воткнуть электрическую вилку в розетку "вверх ногами" и все будет работать).
Переменное напряжение в нашей бытовой розетке изменяется по синусоидальному закону. Что это значит? Напряжение от нуля увеличивается до положительного амплитудного значения (положительный максимум), потом уменьшается до нуля и продолжает уменьшаться дальше — до отрицательного амплитудного значения (отрицательный максимум), затем снова увеличивается, переходя через ноль и возвращается к положительному амплитудному значению.
Говоря другими словами, при переменном токе постоянно меняется его заряд. Это значит, что напряжение составляет то 100%, то 0%, то снова 100%. Получается, что за секунду электроны 100 раз меняют направление своего движения и свою полярность, с положительной на отрицательную (помните, что их частота составляет 50 герц — 50 периодов или колебаний в секунду?).
Первые электрические сети были постоянного тока. С этим было связано несколько проблем, одна из них — сложность конструкции самого генератора. А генератор переменного тока обладает более простой конструкцией, а потому прост и дешев в эксплуатации.
Дело в том, что одинаковую мощность можно передать высоким напряжением и маленьким током или наоборот: низким напряжением и большим током. Чем больше ток, тем больше нужно сечение провода, т.е. провод должен быть толще. Для напряжения толщина провода не важна, были бы изоляторы хорошие. Переменный ток (в отличие от постоянного) просто легче преобразовывать.
И это — удобно. Так по проводу относительно небольшого сечения электростанция может отправить пятьсот тысяч (а иногда и до полутора миллионов) вольт энергии при токе в 100 ампер практически без потерь. Потом, например, трансформатор городской подстанции "заберет" 500 000 вольт при токе в 10 ампер и "отдаст" в городскую сеть 10 000 вольт при 500 амперах. А районные подстанции уже преобразуют это напряжение в 220/380 вольт при токе порядка 10 000 ампер, для нужд жилых и промышленных кварталов города.
Разумеется схема упрощена и имеется в виду вся совокупность районных подстанций в городе, а не какая-то конкретно.
Персональный компьютер (ПК) работает по схожему принципу, но — в обратную сторону. Он преобразует переменный ток в постоянный а затем, при помощи блока питания. понижает его напряжение до значений, необходимых для работы всех компонентов внутри корпуса компьютера .
В конце 19-го века всемирная электрификация вполне могла пойти и другим путем. Томас Эдисон (считается, что именно он изобрел одну из первых коммерчески успешных ламп накаливания) активно продвигал свою идею постоянного тока. И если бы не исследования другого выдающегося человека, доказавшего эффективность тока переменного, то все могло бы быть по другому.
Гениальный серб Никола Тесла (некоторое время работавший у Эдисона), первым спроектировал и построил генератор многофазного переменного тока, доказав его эффективность и преимущество по сравнению с аналогичными разработками, работавшими с постоянным источником энергии.
Сейчас давайте рассмотрим "места обитания" постоянного и переменного тока. Постоянный, например, находится в нашем телефонном аккумуляторе или батарейках. Зарядные устройства трансформируют переменный ток из сети в постоянный, и уже в таком виде он оказывается в местах его хранения (аккумуляторах).
Источники постоянного напряжения это:
- обычные батарейки применяемые в различных приборах (фонарики, плееры, часы, тестеры и т.д.)
- различные аккумуляторы (щелочные, кислотные и т. п.)
- генераторы постоянного тока
- другие специальные устройства, например: выпрямители, преобразователи
- аварийные источники энергии (освещение)
Например, городской электротранспорт работает на постоянном токе напряжением в 600 Вольт (трамваи, троллейбусы). Для метрополитена оно выше — 750-825 Вольт.
Источники переменного напряжения:
- генераторы
- различные преобразователи (трансформаторы)
- бытовые электросети (домашние розетки)
О том, как и чем измерять постоянное и переменное напряжение мы с Вами говорили вот в этой статье. а напоследок (всем тем кто дочитал статью до конца) хочу рассказать небольшую историю. Озвучил ее мне мой шеф, а я перескажу с его слов. Уж больно она к нашей сегодняшней теме подходит!
Поехал он как-то в служебную командировку с нашими директорами в соседний город. Налаживать дружественные отношения с тамошними IT-шниками А сразу возле трассы там такое замечательное местечко есть: родник с чистой водой. Возле все обязательно останавливаются и воду набирают. Это, своего рода, уже традиция.
Местные власти, решив облагородить данное место, сделали все по последнему слову техники: вырыли сразу под родничком большую прямоугольную яму, обложили ее ярким кафелем, перелив сделали, подсветку светодиодную, бассейн получился. Дальше — больше! Сам родник "упаковали" в крапленую гранитную крошку, придали ему благородную форму, иконку над жерлом под стекло вмуровали — святое место, значится!
И последний штрих — поставили систему подачи воды на фотоэлементе. Получается, что бассейн всегда наполнен и в нем "булькает", а чтобы набрать воду непосредственно из родничка, нужно поднести руки с сосудом к фотоэлементу и оттуда — "проистекает"
Надо сказать, что по дороге к источнику наш шеф рассказывал одному из директоров, как это круто: новые технологии, вайфай, фотоэлементы, сканирование по сетчатке глаза и т.д. Директор был классическим технофобом, поэтому придерживался противоположного мнения. И вот, подъезжают они к родничку, подносят руки куда следует, а вода не течет!
Они и так, и сяк, а результата — ноль! Оказалось, что тупо не было напряжения в электрической сети, которая питала эту шайтан-систему Директор был "на коне"! Отпустил несколько "контрольных" фраз по поводу всех этих п. х технологий, таких же п. х элементов, всех машин вообще и данной конкретной в частности. Зачерпнул канистрой прямо из бассейна и пошел в машину!
Вот и получается, мы можем настроить все что угодно, "поднять" навороченный сервер, предоставить лучший и востребованный сервис, но, все равно, самый главный человек — это дядя Вася-электрик в ватнике, который одним движением руки может организовать полный skipped всей этой технической мощи и изяществу
Так что помните: главное — качественное электропитание. Хороший серверный UPS (источник бесперебойного питания) и стабильное напряжение в розетках, а все остальное — приложится
На сегодня у нас — все и до следующих статей. Берегите себя! Ниже — небольшое видео по теме статьи.
Основные отличия постоянного и переменного тока
Электричество, исходя из способа протекания, классифицируют на два вида: постоянный и переменный ток. В английском языке для постоянного электротока принято обозначение DC (Direct Current), а для переменного — AC (Alternating Current). Как видно из английских названий, постоянный ток течет лишь в одном направлении и не изменяется линейно, переменный — в переменных направлениях.
Чем отличаются электротоки
Вероятно, самый знакомый постоянный электроток — это батарея сухих элементов, а самый знакомый переменный электроток – это розетка в доме, которой каждый из нас пользуется ежедневно.
Что такое — постоянный электроток? Если объяснять простыми словами для так называемых «чайников», то это вид электричества, которое всегда течет в определенном направлении, как при течении реки. Таким является поток электроэнергии от аккумуляторов и солнечных батарей.
С другой стороны, переменный электроток — это вид электричества, при котором положительные и отрицательные заряды всегда циклически переключаются, направление потока электроэнергии также постоянно меняется соответствующим образом. Переменный электрический ток вырабатывается генераторами. Электроэнергия, получаемая на электростанциях, также подается потребителям в виде переменного электротока.
В источнике постоянного тока всегда поддерживается постоянное электронапряжение. Чем дольше используются сухие элементы и аккумуляторные батареи, тем больше они разряжаются и их запас напряжения уменьшается, но направление напряжения остается неизменным.
Источник переменного тока обеспечивает электронапряжение, меняющееся от положительного до отрицательного в определенном цикле.
Чем отличается переменный ток от постоянного, демонстрируют графики, представленные на рисунке ниже.
Постоянный или переменный ток никак не превосходят друг друга, у каждого вида свои положительные и отрицательные стороны. В зависимости от цели использования электроэнергии и оборудования выбирается источник тока, наиболее соответствующий требованиям. И постоянный, и переменный электроток имеет свою сферу применения.
Плюсы и минусы постоянного электротока
При постоянном все электричество проходит через нагрузку, поскольку ток всегда течет в одном направлении. Таким образом, реактивная мощность не генерируется, энергия используется эффективно. Еще преимущество постоянного тока в том, что его можно накапливать, используя батареи, аккумуляторы и конденсаторы.
При переменном электротоке, если в цепь включен конденсатор или катушка, будет наблюдаться задержка или опережение тока, протекающего через нагрузку, по отношению к поведению напряжения. Проще говоря, в этих компонентах при прохождении переменного тока возникает реактивное сопротивление. В результате на выполнение полезной работы тратится не вся мощность оборудования, некоторая ее часть, которая называется реактивной, бесполезно перемещается между нагрузкой и генератором.
Реактивную мощность стараются сделать минимальной. Ее наличие часто используют, как основной аргумент, когда пытаются объяснить, какими преимуществами обладает переменный ток по сравнению с постоянным.
Нельзя не отметить, что постоянный электроток имеет определенные недостатки. Одним из них является сложность прерывания. Поскольку постоянный электроток — это всегда постоянное электронапряжение, то в момент прерывания могут возникнуть проблемы, такие как дуга (искрение) и риск поражения электрическим током в окружающем пространстве.
В случае переменного электротока электронапряжение кратковременно уменьшается до нуля при его переключении с положительного на отрицательное или с отрицательного на положительное значение. Если электронапряжение направлено на низкий уровень, электроток может быть прерван более безопасно, чем при постоянном электронапряжении.
Как постоянное, так и переменное напряжение часто бывает необходимо повысить или понизить. Преобразование переменного осуществляется легко и непринужденно с помощью трансформаторов. Чтобы это сделать с постоянным, нужно его сначала преобразовать в переменное, а затем назад в постоянное, но уже с другими параметрами. В результате оборудование для преобразования постоянного напряжения является более крупным и дорогостоящим, чем для переменного.
Еще одним недостатком постоянного электротока является то, что подземные трубы, используемые для передачи электроэнергии, подвержены сильной коррозии. Поскольку электричество всегда течет в одном направлении с постоянным электротоком, электростатическая индукция и электролитическая коррозия вызывают повреждение передающего оборудования.
Следовательно, можно выделить такие преимущества постоянного электротока:
- Отсутствие опережения или задержки в электроцепи.
- Реактивная мощность не генерируется.
- Возможность накапливания электроэнергии.
Определившись с преимуществами, среди недостатков следует отметить:
- Сложность прерывания электротока.
- Сложность преобразования напряжения.
- Сильное действие электролитической коррозии.
В обычных домашних хозяйствах используется переменный электроток, а в электронном оборудовании, например, компьютерах, телевизорах — постоянный электроток. Необходимый для работы подобного оборудования переменный электроток из розетки в квартире преобразуется в постоянный с помощью конденсатора или аналогичного устройства. Однако в центрах обработки данных продвигаются источники питания постоянного электротока, чтобы снизить потери при преобразовании переменного электротока в постоянный.
Плюсы и минусы переменного тока
И переменный, и постоянный ток большой мощности невозможно получать непосредственно возле потребителей. Последние могут располагаться от устройства, вырабатывающего электроток, на расстоянии многих сотен и даже тысяч километров. Передачу электроэнергии на дальние расстояния эффективнее осуществлять при очень высоком электронапряжении. Передача с использованием низкого электронапряжения приводит к довольно внушительным потерям мощности. Это связано с тем, что при протекании электричества по проводам выделяется тепло, а тепло — это энергия, которая уходит наружу, поэтому это потеря мощности.
Например, если требуется 3000 Вт (ватт) электроэнергии, то при напряжении 100 В ток должен составлять 30 А (ампер), а при напряжении 1000 В только 3 А. Другими словами, если электронапряжение увеличивается в 10 раз, величина электротока уменьшается в 10 раз. Потери мощности можно узнать, используя простейшую формулу:
Как видим, потери мощности при уменьшении электронапряжения в десять раз снижаются в сто раз. Это главная причина, почему передачу электроэнергии на большие расстояния осуществляют высоковольтными линиями. Конечно, таким электронапряжением нельзя пользоваться в домах и офисах. Поэтому его понижают, используя трансформаторы. В отличие от постоянного, переменный электроток преобразовывается намного проще, поэтому он лучше подходит для электроснабжения инфраструктуры.
Еще одно различие между переменным током и постоянным связано с тем, что подачу питания при использовании переменного электронапряжения намного легче прервать. Разница заключается еще и в том, что при пользовании переменным напряжением не имеет значения полярность. Например, при подключении к розетке никто не задумывается, где плюс или минус у электрочайника или холодильника.
С другой стороны, переменный электроток требует более высокого электронапряжения, чем целевое электронапряжение для используемого электрооборудования, поскольку значение напряжения постоянно меняется, и бывают моменты, когда напряжение падает до нуля. Форма волны переменного напряжения синусоидальная, а максимальное напряжение в √2 раз больше текущего значения. Характеристики изоляции и технические характеристики оборудования должны быть выше эффективного значения.
Другой отличающейся особенностью переменного электротока является то, что на него сильно влияют катушки и конденсаторы. Они генерируют напряжение, которое заставляет ток течь в противоположном направлении, что вызывает опережение или задержку электротока в цепи.
Следовательно, преимуществом переменного электротока является:
- Возможность более выгодной транспортировки.
- Более простой процесс преобразования.
- Легкость отключения от сети питания.
- Нет необходимости беспокоиться о плюсах и минусах.
Основной минус переменного электротока — наличие реактивной мощности. Еще одним недостатком считается то, что при прохождении электротока задействуется не все сечение проводника, происходит вытеснение заряда к поверхности. Из-за этого уменьшается площадь протекания электротока, что способствует увеличению сопротивления самого проводника, а также возникновению потерь мощности в нем.
Система электроснабжения становится еще более эффективной при использовании трехфазного переменного электротока. График такого электротока представляет собой три волны, смещенные относительно друг друга на 120 градусов.
Для передачи трехфазного электричества требуется меньшее количество проводов, чем для передачи однофазного аналогичной мощности. Трехфазные трансформаторы отличаются меньшими габаритами, чем однофазные. Конструкция трехфазных асинхронных электродвигателей не предусматривает коллекторно-щеточного узла. Данное обстоятельство существенно снижает расходы, связанные и изготовлением и эксплуатацией моторов. Благодаря отсутствию коллекторно-щеточного узла электродвигатели развивают мощность в разы превышающую мощность моторов постоянного электротока.
Основы электротехники 4 – Переменный ток
Этим постом мы продолжаем серию публикаций, посвящённых основам электротехники. В нём мы поговорим о переменном токе. Основные задачи электротехники – это произвести, передать и распределить энергию, по пути её к тому же приходится, преобразовывать. Всё это проще делать на переменном токе, чем на постоянном. Вообще говоря, переменный – это всё, что не постоянно, но мы будем говорить о синусоидальных токах и напряжениях, потому что именно их используют на практике.
Почему это пошло от генераторов электроэнергии? Их проще всего сделать так, чтобы они выдавали синусоидальное напряжение, а синусоидальное напряжение по природе своей точно такое же, как постоянное, только его значение изменяется во времени по закону синуса. Вообще переход от вращения к синусоиде очень простой. Поэтому, например, синусоиду удобно описывать с помощью угловой частоты Ω. Об этом мы поговорим ещё позже. Раз уж мы заговорили об описании синусоиды, то остановимся пока на этом и дадим несколько определений.
Мгновенное значение – это значение в данный момент времени.
Амплитудное значение – наибольшее значение которого достигает сигнал.
Действующее значение – это такое значение постоянного напряжения, которое производит такой же тепловой эффект, как и рассматриваемые синусоидальные.
Период – наименьший период времени между двумя одинаковыми значениями сигнала.
Частота линейная – это величина обратная периоду, угловая – 2 π f. Об этом поговорим чуть позже.
Фаза – это то, насколько синусоида сдвинута относительно начала координат в момент времени 0.
Когда говорят о переменном напряжении или токе, говорят обычно действующее значение и частоту. Например, в розетке 220 Вольт, 50 Герц. Это значит, что действующее значение 220 Вольт, а линейная частота 50 Герц, период 20 миллисекунд кстати.
Теперь о том, как ведут себя элементы цепи на переменном токе. С резистором ничего нового, но появляются два новых элемента: ёмкость и индуктивность.
Начнём с ёмкости, то есть конденсатора. Конденсатор представляет из себя две пластины, разделенные диэлектриком. Прикладываем напряжение, побежали электроны, то есть потек ток. Бежать они могут только до пластины, дальше некуда. На пластинах место ограничено, поэтому чем больше электронов там уже есть, тем медленнее прибегают новые, то есть ток постепенно спадает.
Из-за того, что напряжение у нас синусоидальное, ток спадает до 0 ровно в тот момент, когда напряжение достигает максимума. Не будем сейчас лезть в математику, просто примем это на веру. Напряжение у нас теперь начинает уменьшаться, значит электроны на пластине ему уже удерживать сложнее. Они начинают бежать обратно, то есть ток меняет знак. Быстрее всего они бегут тогда, когда напряжение равно нулю, ток становится максимальным. Дальше всё повторяется в обратную сторону и так далее.
Если посмотреть теперь на график тока и напряжения, можно увидеть, что ток достигает какого-то значения раньше, чем напряжение. Например, в нулевой момент времени напряжение ещё равно нулю, а ток уже максимальный. Поэтому говорят, что на ёмкости ток опережает напряжение. В идеальном случае это опережение составляет четверть периода или π/2 (если переходят в угловые меры).
Чтобы определить какой ток потечёт через конденсатор, нам понадобится сделать некоторые математические выкладки. Сначала охарактеризуем конденсатор численно и введем для этого понятия ёмкости. Ёмкость – это отношение заряда на пластинах к напряжению, при котором оно возникает.
Теперь вспоминаем что ток – это производная заряда по времени. Отсюда получаем выражение для тока через напряжение. Подставим теперь переменное напряжение, пропустим скучноватую математику и получим выражение для тока. Осталось поделить напряжение для тока и получаем выражение для ёмкостного сопротивления.
Второй новый элемент – индуктивность. Самый простой индуктивный элемент – это катушка из провода.
Для понимания её работы нам понадобится еще один вспомогательный закон (закон электромагнитной индукции). На нём строится почти вся теория электрических машин, но для нас сейчас это не более чем вспомогательный факт. Суть этого закона в том, что переменное магнитное поле порождает электрическое и главное наоборот. То есть вокруг любого проводника с переменным током есть магнитное поле, но, когда провод сворачивается в катушку почти всё порождаемое им поле концентрируется внутри катушки и начинает влиять на неё саму.
Влияние это заключается в том, что магнитное поле, порождённое катушкой, начинает создавать в ней самой поле электрическое. Звучит так, как будто “Мюнхаузен вытаскивает сам себя за волосы”, но всё дело в направлении этого наведённого поля. Его можно вывести математически, для синусоиды это несложно, но мы воспользуемся очень удобным и простым правилом Ленца, которое есть не что иное как красиво сформулированный закон зловредства. Наведённое ЭДС всегда направлено так, чтобы противодействовать полю её породившему. То есть наведенное ЭДС направлено навстречу напряжению на катушке и мешает току протекать через неё. Иногда для того, чтобы лучше запоминалось, говорят, что ток запутывается в витках катушки. Как бы то ни было, приводит это к тому, что ток через катушку отстаёт от напряжения и тоже на четверть периода, те π/2.
Индуктивное сопротивление математически выводится похоже на то, как выводится ёмкостное, только исходная характеристика здесь не ёмкость, а индуктивность, отношение магнитного потока в катушке к току, которой её породил. Затем берем закон электромагнитной индукции и связываем ток с напряжением через дифференциальные уравнения. Дальше опять немного скучная, но простая математика, и в результате несложных выкладок получаем выражение для напряжения при синусоидальном токе, делим одно на другое, получаем выражение для индуктивного сопротивления.
Вообще говоря, ёмкость и индуктивность очень похожи по своим свойствам, но с точностью до наоборот. Поэтому если вы затрудняетесь вспомнить что-то касающееся одного из них, попробуйте вспомнить для одного из них и сделать всё наоборот. Почти наверняка не ошибетесь.
Для цепей переменного тока справедливы все законы, что мы с вами рассмотрели раньше. Поскольку эти законы фундаментальные и следуют из самой природы вещества.
Однако считать по ним становится уже весьма трудно, приходится делить и умножать синусы, да ещё и с разными фазами. Для того чтобы уйти от всей этой тригонометрии, пользуются так называемыми векторными диаграммами.
Векторные диаграммы. Разберёмся что это и для начала введём понятие вектора для некоторой синусоиды. Для определённости пусть это будет ток с амплитудой Im и фазой φ, для общности берем произвольную фазу. Теперь строим плоскость координат и проводим из её центра вектор, длина которого равна Im, а угол с осью абсцисс равен φ.
То, что у нас получилось, как раз и есть вектор, соответствующий переменному току, амплитудой Im и фазой φ. Если теперь у нас появится ток с другой амплитудой и фазой, то его мы сможем тоже изобразить на этой же плоскости. Теперь понятно зачем мы переходили в угловые величины, когда говорили об отставании, опережении тока, это углы между векторами на плоскости координат.
Следующий шаг, перейдя в декартовы координаты, мы смогли избавиться от тригонометрических функций, операции над векторами уже стали чисто алгебраическими, привычным. Сделаем ещё один небольшой шаг и заметим, что если принять, что ось абсцисс действительная, а ось ординат – мнимая, то мы сможем пользоваться хорошо разработанным математическим аппаратом для комплексных чисел.
Именно в виде векторов на комплексной плоскости чаще всего анализируют переменные токи и напряжения. Они позволяют не только наглядно изобразить их, но и применить для расчёта цепей множество вычислительных приёмов, упрощающих и ускоряющих расчёт. Сейчас мы не будем их касаться, это предмет рассмотрения скорее строго академического курса, посмотрим вещь более простую и практическую: активную, реактивную и полной мощности.
Не давая строгого определения, рассмотрим, что они означают практически. Активная мощность – это та мощность, которая совершает полезную работу. Иначе говоря, что-то греет, крутит, двигает и так далее. Но посмотрим ещё раз на процесс, происходящий в конденсаторе. Заряды к нему то приходят, то уходят, ток создается, идёт в разные стороны. Но обратите внимание, все эти перемещения происходят в пределах одного узла цепи, то есть потенциал не меняется. Значит, хотя ток и есть, но работа не совершается.
Для разрешения этого противоречия вводят понятие реактивной мощности – эта мощность не совершает работы, а нужна только для создания электромагнитного поля. Обратимся ещё раз немного к математике. Вспомним как смещены друг относительно друга ток и напряжение конденсатора – на 90°.
А теперь то же самое для резистора – на нём ток и напряжение совпадают по фазе. Ток, текущий через конденсатор, как мы уже видели, работы не совершает. Его называют реактивным током. Он создаёт реактивную мощность. На векторной диаграмме он направлен по мнимой оси.
Ток, текущий через резистор, работу как раз-таки завершает, его поэтому называют активным. На векторной диаграмме он направлен уже по действительной оси. Поскольку реальные элементы цепи – это всегда комбинация активных и реактивных векторов, то и реальные токи – это всегда комбинация активных и реактивных.
Их векторная сумма называется полным током, векторная сумма активной и реактивной мощностей – полной мощностью. В полной мере эти понятия используется не столько в электротехнике, сколько в электроэнергетике, поэтому сейчас мы на них подробно останавливаться не будем. Посмотрим лучше, как описанные ранее эффекты выглядят на моделях.
Начнем с модели первой. Здесь одно и тоже переменное напряжение, мы прикладываем к ёмкости и индуктивности. Источник здесь собран из блоков Simulink, чтобы можно было на ходу менять частоту. Начнём её менять и увидим изменения тока. На индуктивности он падает, потому что сопротивление индуктивности прямо пропорционально частоте, а на емкости растёт, потому что емкостное сопротивление обратно пропорционально частоте приложенного напряжения.
Теперь вторая модель. Здесь у нас, как мы видим, резистор, токоограничивающий, по сути, батарея конденсаторов. Если мы включаем резистор без конденсаторов, то мы увидим, что ток и напряжение совпадает по фазе. Как только начинаем конденсаторы подключать, увидим, как ток постепенно смещается относительно напряжения, изменяется его фаза.
На этом мы завершаем наш рассказ об элементах цепи переменного тока. В следующей публикации мы ненадолго отвлечемся от классической теории электротехники и поговорим о полупроводниковых элементах: диодах и транзисторах.