Какое свойство топлива характеризует фракционный состав
Перейти к содержимому

Какое свойство топлива характеризует фракционный состав

  • автор:

3. Испаряемость и фракционный состав бензина

Испаряемость бензина оценивается показателями фракционного состава и летучести (давление насыщенных паров, потери от испарения и склонность к образованию паровых пробок).

Испаряемость бензина должна обеспечивать оптимальный состав топливовоздушной смеси на всех режимах работы двигателя независимо от способа ее приготовления. По способу приготовления смеси топлива с воздухом различают двигатели карбюраторные, в которых состав топливовоздушной смеси в основном задается конструкцией карбюратора, и инжекторные (с впрыском), в которых состав смеси регулируется электронной системой в зависимости от состояния двигателя и условий его работы.

С испаряемостью бензина связаны такие характеристики двигателя, как

пуск при низких температурах;

вероятность образования паровых пробок в системе питания в летний период;

скорость прогрева двигателя;

износ цилиндропоршневой группы;

Фракционный состав бензинов характеризуется температурами начала перегонки и выкипания: 10, 50, 90% объема бензина, конца кипения; объемом остатка в колбе и потери (%).

В последнее время чаще стали пользоваться объемами (%) испарившегося бензина при температуре 70, 100, 180 0 С.

Характеристику бензина по холодному запуску принято связывать с температурой перегонки 10% бензина или объемной долей (%) бензина, перегоняемого при 70 °С.

Большинство современных автомобилей отличаются хорошей характеристикой по холодному запуску, и значимость этого показателя спецификации как фактора, ограничивающего запуск, несколько снизилась при условии достаточной испаряемости для прогрева и обеспечения управляемости при движении. Как характеристика прогрева, так и характеристика управляемости при движении в общем чувствительны к испаряемости средних фракций, обозначаемой в спецификациях температурной перегонки 50% бензина или объемной долей бензина, перегоняемого при 100 °С.

Содержание тяжелых фракций бензина ограничивают, так как в определенных условиях эксплуатации они могут испаряться не полностью и попадать в цилиндры двигателя в жидком состоянии. При этом топливо в цилиндрах смывает масляную пленку, из-за чего увеличивается износ, разжижается масло, повышается расход топлива.

В спецификациях на автомобильные бензины предусмотрены ограничения на давление насыщенных паров, в зависимости от климатических условий. Эту физическую характеристику топлива рассматривают как фактор, влияющий на надежность работы топливной системы, а также на потери от испарения, загрязняющие атмосферу при хранении, транспортировании и применении бензина.

В лабораторных условиях давление насыщенных паров определяют при температуре 37,8 0 С и регламентированном соотношении паровой и жидкой фаз.

Испаряемость топлива влияет на выбросы автомобилей, причем это влияние особенно проявляется при эксплуатации автомобиля в условиях холодной и жаркой погоды. В холодную погоду низкая испаряемость увеличивает продолжительность запуска двигателя, и поскольку топливовоздушная смесь экстремально обогащена, то выбросы несгоревших углеводородов очень велики.

Во время прогрева двигателя недостаточная испаряемость бензина приводит к обеднению смеси в начале ускорения, и если автомобиль отрегулирован на режим, близкий к пределу обеднения, то могут возникнуть проблемы приемистости из-за чередования периодов, когда топливовоздушная смесь находится за пределами диапазона воспламенения. В такие периоды увеличиваются выбросы несгоревших углеводородов и оксида углерода.

Для автомобилей, имеющих воздушную заслонку с ручным управлением, проблемы приемистости могут быть смягчены путем усиленного дросселирования в течение продолжительного времени, но это приводит к еще большему обогащению смеси и, следовательно, к увеличению выбросов несгоревших углеводородов и оксида углерода.

В жаркую погоду основная проблема заключается в образовании паровых пробок в результате испарения бензина в топливном насосе и в трубопроводах подачи топлива, что ограничивает подачу топлива в двигатель. Это приводит к обеднению смеси и ухудшению приемистости либо, в экстремальных условиях, к остановке двигателя. На автомобилях с карбюраторными двигателями высокая испаряемость может также привести к кипению топлива в поплавковой камере, вследствие чего в цилиндры поступает очень богатая топливовоздушная смесь и, как результат, увеличиваются выбросы оксида углерода и несгоревших углеводородов.

Максимальную испаряемость можно контролировать одним из двух способов:

— максимальной температурой, при которой устанавливается отношение пар-жидкость, равное 20;

— индексом испаряемости или индексом паровых пробок (ИПП), который является функцией давления насыщенных паров и количества топлива в %, испарившегося при 70 °С.

ИПП = 10ДНП + 7V70,

где ДНП — давление насыщенных паров, кРа, V70 — количество топлива, испаряющегося при 70 0 С, %.

Последний способ регулирования максимальной испаряемости включен в ГОСТ Р 51105-97 и ГОСТ Р 51866 — 2002.

Согласно этим спецификациям все автомобильные бензины по испаряемости подразделяются на 5 и 10 классов соответственно. Применение бензина того или иного класса определяется климатическими условиями, а также особенностями автотранспорта.

Испаряемость топлива является параметром, позволяющим оценить ряд его важнейших эксплуатационных свойств. Ее характеристикой служит фракционный состав. Его определяют по ГОСТ 2177-99 (ISO 3405-88) в лабораторных условиях с помощью специального прибора (рис. 4).

В стеклянную колбу прибора наливают 100 мл исследуемого топлива и закрывают горловину колбы пробкой со вставленным в ней термометром. Нижний конец термометра должен находиться на уровне боковой трубки, соединенной с холодильником. Баня холодильника должна иметь температуру за все время испытания 0-4 0 С. Мерный цилиндр, которым отмеривали и заливали в колбу топливо, ставят у выходной трубки холодильника для сбора конденсата. При нагревании колбы находящееся в ней топливо постепенно прогревается и начинает испаряться. По мере повышения температуры из колбы последовательно выкипают и поступают в холодильник все более тяжелые фракции. По данным наблюдений за термометром и мерным цилиндром, в котором собираются выкипевшие и сконденсировавшиеся фракции, можно составить таблицу, а затем построить график зависимости количества испарившегося топлива от температуры. За температуру начала кипения принимают температуру, при которой из холодильника в мерный цилиндр упала первая капля топлива.

Рис. 4. Схема прибора для определения фракционного состава бензина:

1 – термометр; 2 – колба; 3 – верхний кожух; 4 – исследуемое топливо; 5 – штатив;

6 – нижний кожух; 7 – газовая горелка; 8 – водяная ванна холодильника;

9 – трубка холодильника; 10 – измерительный цилиндр на 100 мл

Перегонка считается законченной, когда прекратится рост температуры и наступит ее небольшое падение. Это состояние свидетельствует о прекращении потока паров топлива и переноса вместе с ним теплоты; наивысшая достигнутая температура считается температурой конца кипения топлива.

Определение проводят в строгом соответствии с действующим стандартом на стандартном приборе и стандартном режиме.

В стандарте на бензины нормированы характерные точки. К ним относятся температура начала кипения и температура, при которой выкипает 10, 50 и 90 % топлива (по объему). Кроме того, нормированы температура конца кипения, остаток топлива в колбе после окончания перегонки, а также суммарный остаток и потери при перегонке.

Перечисленные константы и показатели качества топлива из-за сложности процесса испарения в реальном двигателе могут быть использованы только для сравнительной оценки испаряемости различных топлив или для выявления действия на этот процесс каких-либо факторов.

Количественную оценку проводят по показателю динамической испаряемости. Этот показатель представляет собой отношение количества испарившегося топлива к количеству топлива, прошедшему через карбюратор и поданному в испарительную трубу. Выражают динамическую испаряемость обычно в процентах.

Изменяя скорость воздушного потока, его температуру, состав горючей смеси, можно проводить исследования испаряемости топлив в условиях, приближенных к реальным. На установке удобно выявлять зависимость полноты испарения от температуры воздуха яри заданных скоростях потока горючей смеси или от скорости потока при заданных температурах. Установив постоянную скорость потока и температуру, можно сравнивать различные параметры топлива.

Скрытая теплота испарения — одна из важных характеристик топлива. Процесс испарения топлива происходит в условиях сложного теплообмена между топливом, воздухом и стенкой впускного тракта. Если предположить, что вся теплота, необходимая для испарения топлива, передается ему от воздуха и самого топлива, можно определить строгую зависимость между скрытой теплотой испарения и понижением температуры горючей смеси. При применении спирта в качестве топлива такое понижение температуры настолько значительно, что широко используется для уменьшения тепловой напряженности форсированных двигателей спортивных автомобилей и мотоциклов. В табл. 1 приведены данные, показывающие влияние скрытой теплоты испарения различных топлив на понижение температуры стехиометрической горючей смеси (= 1).

|Для компенсации понижения температуры в зоне интенсивного .испарения топлива подогревают впускной трубопровод, что позволяет предотвратить образование инея; при большой влажности воздуха в не подогреваемом впускном тракте двигателя иней образуется в таких количествах, что может перекрыть все сечение трубопровода и вызвать остановку двигателя.

В стандарте на автомобильные бензины из всех рассмотренных физических свойств, влияющих на процесс смесеобразования, нормируются только фракционный состав и давление насыщенных паров.

Рассмотрим влияние фракционного состава топлива на важнейшие эксплуатационные показатели двигателей.

Температура начала перегонки (начала кипения tнк) ограничена в сторону уменьшения: так, она не должна быть меньше 35 °С для всех марок бензина летнего вида. Этим условием предусматривается гарантия от возникновения паровоздушных пробок при сохранении в то же время пусковых свойств топлива. Кроме того, дальнейшее понижение этой температуры, особенно летом, увеличило бы потери бензина от испарения при хранении и транспортировке, а также пожарную опасность при его применении.

Температура выкипания 10 % топлива (t10% ) так же, как и температура начала кипения, характеризует пусковые свойства топлива и должна быть не выше определенной стандартом температуры, например, для летнего вида автомобильных бензинов не выше 70 °С, а для зимнего — не выше 55 °С. Фракции топлива, выкипающие до температуры перегонки 10 % объема топлива, условно называют «пусковыми», так как они определяют температуру окружающего воздуха, при которой еще возможен пуск непрогретого двигателя.

Зная температуру перегонки 10 % объема топлива и температуру начала кипения, можно определить приближенно по эмпирической формуле предельную температуру воздуха tmln, ниже которой пуск двигателя практически уже невозможен:

Для стандартных автомобильных бензинов зимнего вида эта формула дает значение примерно -28 °С. В реальных условиях эксплуатации предельная температура воздуха, при которой возможен пуск холодного двигателя, может отличаться от расчетной, так как она зависит еще от многих факторов, таких, как вязкость масла, состав горючей смеси, частота вращения вала двигателя и др.

В настоящее время имеются средства, позволяющие обеспечить пуск двигателя при низких температурах. К ним относятся предпусковые подогреватели, пусковые жидкости, пусковые устройства в карбюраторах и системах впрыскивания топлива.

Температура перегонки 50% объема топлива (t50% ) является характеристикой скорости прогрева двигателя и его приемистости, т. е. способности быстро увеличивать частоту вращения коленчатого вала при резком открытии дроссельной заслонки. Чем ниже температура t50%, тем быстрее прогревается двигатель и тем лучше его приемистость. В соответствии с действующим стандартом температура t50%, для летнего вида бензинов должна быть не выше 115°С, а для зимнего — не выше 100 °С. При таких значениях температуры t50% все современные двигатели как с жидкостным, так и с газовым подогревом впускного трубопровода быстро прогреваются и имеют хорошую приемистость. Дальнейшее снижение температуры t50%, дает незначительное улучшение этих показателей.

Температура, при которой перегоняется 90 % топлива (t90%), и температура конца кипения (tкк) характеризуют полноту его испарения и необходимую интенсивность подогрева впускного трубопровода. Полнота испарения топлива во многом предопределяет топливную экономичность двигателя, его мощность, токсичность отработавших газов и, наконец, износ цилиндропоршневой группы, так как неиспарившееся топливо, попадая на зеркало цилиндров, смывает с него масляную пленку.

Для автомобильных бензинов летнего вида в соответствии с требованиями стандарта температура t90%«180 0 С, а температура tкк < 195 0 С; для бензинов зимнего вида эти температуры должны быть соответственно не более 160 и 185 °С. Уменьшение температуры конца кипения современных бензинов в сравнении со снятыми с производства бензинами дало возможность уменьшить износ цилиндропоршневой группы на 20—25 %. На рис. 5 приведены характеристики фракционного состава бензина АИ-80.

Рис. 5. Характеристика фракционного состава бензина АИ-80:

1 — летний; 2 — зимний

Для индивидуальных углеводородов, например, изооктана, бензола или спиртов (метанола, этанола) понятия фракционный состав не существует, так как эти жидкости выкипают при постоянной температуре, которая для каждой из них является константой.

Какое свойство топлива характеризует фракционный состав

Фракционный состав — один из важнейших показателей качества топлив, характеризующих его испаряемость. Фракционный состав топлива должен быть таким, чтобы обеспечить легкость пуска двигателя в любых климатических условиях, быстрый его про- грев, плавный переход с одного режима работы на другой, равномерное распределение топлива по цилиндрам, возможно меньшее разжижение масла в картере двигателя и образование углеродистых отложений, минимальный расход топлива и износ цилиндро- поршневой группы.

Определяя температуру выкипания отдельных фракций топлива, можно оценить его испаряемость и способность обеспечить нормальную работу двигателя на разных режимах. Основные фракции топлива — пусковая, рабочая и концевая. Фракционный состав бензинов определяют перегонкой на специальном приборе, при этом отмечают температуру начала перегонки, температуру выпаривания 10, 50 и 90 % бензина и конца кипения (97,5% для авиабензинов) или объем выпаривания при 70, 80 и 180 °С.

Применение в современных автомобилях систем непосредственного впрыска бензина с электронным управлением позволяет достаточно эффективно использовать бензины с повышенной температурой конца кипения. С учетом широкого распространения таких автомобилей ГОСТ Р 51105—97 установлена норма на температуру конца кипения автомобильных бензинов 215 °С.

Температура начала перегонки бензина ограничивает содержание легкокипящих фракций в топливе. По температуре начала перегонки и температуре выкипания первых 10 % топлива судят о пусковых свойствах топлива и его склонности к образованию паровых пробок.

Большая Энциклопедия Нефти и Газа

Фракционный состав топлив оказывает большое влияние на полноту их сгорания и во многом определяет такие эксплуатационные свойства как запуск двигателя, время прогрева, образование паровых пробок и обледенений в карбюраторе, приемистость двигателя, расход топлива, мощность двигателя, расход масла, образование углеродистых отложений, износ трущихся деталей.  [1]

Фракционный состав топлива оказывает влияние на его распылива-ние, полноту сгорания, дымность выхлопа, нагароотложение и разжижение кар-терного масла. Утяжеленное топливо хуже распыливается, в результате уменьшается скорость образования рабочей смеси, ухудшается ее однородность, а это приводит к повышенному дымлению и снижению экономичности двигателя.  [2]

Фракционный состав топлива оказывает влияние на его распыливание, полноту сгорания, дымность выхлопа, нагароотло-жение и разжижение картерного масла. Утяжеленное топливо хуже распыливает-ся; при этом уменьшается скорость образования рабочей смеси, ухудшается ее однородность, в результате чего повышается дымление и снижается экономичность двигателя.  [3]

Фракционный состав топлива должен обеспечивать его хорошую испаряемость, легкий запуск двигателя даже при низких температурах, быстрый прогрев двигателя и хорошую его приемистость к переменам режима. Поэтому важнейшим техническим показателем бензинов и керосинов являются данные стандартной разгонки, при которой отмечают: температуру начала кипения; температуры, при которых отгоняются 10, 50, 90 и 97 5 % ( об.) от загрузки; остаток ( в %) и иногда конец кипения.  [4]

Фракционный состав топлива может изменяться в результате потери им легких фракций за счет испарения. Самой большой испаряемостью из современных жидких топлив, предназначенных для использования в поршневых и воздуншореактивных двигателях, обладает бензин. Это его свойство должно учитываться при хранении, транспортировании и заправке машин, так как количественные потери могут привести к потере качества, и бензин окажется непригодным к применению.  [5]

Фракционный состав топлива оказывает сильное влияние на смесеобразование, давление, температуру и интенсивность завихрения заряда топлива в двигателе.  [6]

Фракционный состав топлива и флюсов.  [7]

Фракционный состав топлива особенно большое значение имеет для быстроходных двигателей с неразделенными камерами сгорания. Малооборотные двигатели менее чувствительны к фракционному составу дизельного топлива вследствие большего времени, отводимого на процессы смесеобразования.  [8]

Фракционный состав топлив является их важной эксплуатационной характеристикой, связанной с работой двигателя.  [10]

Фракционный состав топлива в лабораторных условиях определяют в стандартных перегонных аппаратах при атмосферном давлении. Технология перегонки заключается в следующем. В чистую сухую колбу с помощью калиброванной пробирки наливают 100 мл испытуемого нефтепродукта при температуре 20 3 С. Затем начинают разогревать колбу на газовой горелке. Температуру, при которой в мерную пробирку упадет первая капля конденсата, отмечают по термометру как температуру начала кипения.  [11]

Фракционный состав топлива характеризует главное свойство — испаряемость.  [12]

Фракционный состав топлива характеризует степень его испаряемости при определенных температурах, которая оказывает существенное влияние на запуск дизеля и его приемистость.  [13]

Фракционный состав топлива часто изображается графически в виде кривых разгонок, показывающих, какой процент топлива отгоняется при той или иной температуре.  [15]

Определение фракционного состава бензина разгонкой

Испаряемость — это способность жидкого топлива переходить в парообразное состояние при данных условиях.

Испаряемость обуславливает эффективность смесеобразования и подачи топлива при пуске и эксплуатации двигателя в условиях низких и высоких температур или низкого давления. Пуск двигателя, время его прогрева и приемистость, расход топлива и износ цилиндропоршневой группы в значительной степени зависят от испаряемости топлива. Процесс испарения не только предшествует воспламенению и горению, но в значительной мере определяет скорость этих процессов, а, следовательно, надежность и эффективность работы двигателя. Испаряемость топлива оценивают по совокупности двух главных показателей: теплоте испарения и фракционному составу.

Под фракционном составом топлива понимается содержание в нем различных фракций, выкипающих в определенных температурных пределах. Фракционный состав выражается в объемных % или массовых %. Фракция топлива — это часть топлива, характеризуемая определенными температурными пределами выкипания. Фракционный состав определяют по методикам ГОСТа 2177-82 разгонкой 100 см 3 бензина в регламентируемых стандартом условиях на специальном приборе.

Стандартными единичными показателями фракционного состава отечественных автомобильных бензинов согласно ГОСТ 2084-77 являются: температура начала перегонки tнп, перегонки 10, 50 и 90% (соответственно температуры t10, t50, t90)и конца кипения (перегонки) tкп, объем остатка в колбе; сумма потерь при разгонке и остатка в колбе, которая равна разности между объемом бензина, залитого в колбу, и объемом дистиллята в мерном цилиндре после окончания разгонки. Фракции бензина условно подразделяют на пусковую, содержащую самые легкоиспаряющиеся углеводороды, входящие в первые 10 % отгона; рабочую, включающую последующие 80 % состава бензина, и концевую, в которую входят последние 10 % бензина. В соответствии с таким делением эксплуатационные свойства бензина оценивают по пяти характерным точкам кривой фракционного состава: температуре начала перегонки, температуре перегонки 10 %, 50 %, 90 % количества бензина и температуре конца перегонки.

Температуры начала перегонки (tнп) и перегонки 10 % (t10) характеризуют пусковые качества бензина, т.е. способность обеспечивать запуск двигателя при низких температурах и склонность топлива к образованию паровоздушных пробок в топливной системе двигателя. Чем ниже температура окружающего воздуха при пуске двигателя, тем больше должен иметь бензин легких фракций и тем ниже должна быть их температура кипения. Это качество бензина характеризуется температурами начала его перегонки и перегонки 10 %.

Однако чрезмерно низкая температура перегонки 10 % приводит к образованию в прогретом двигателе «паровых пробок» в топливопроводах и каналах карбюратора. При этом горючая смесь значительно обедняется. Практически это приводит к тому, что двигатель теряет мощность, начинает «чихать» и из-за перебоев подачи топлива может остановиться. По температуре t10 можно определить минимальную температуру окружающей среды, при которой возможен пуск двигателя:

Температура перегонки 50 % бензина ( t50) характеризует его способность обеспечивать быстрый прогрев и приемистость (быстрый переход двигателя на большие обороты) двигателей. Чем ниже температура перегонки 50 % бензина, тем выше его испаряемость, лучше приемистость и устойчивость работы двигателя на этом бензине. Повышение t50 приводит к снижению ресурса двигателя, особенно при низких температурах окружающей среды.

Температуры перегонки 90 % (t90) и конца перегонки (tкп) характеризуют наличие в бензине тяжелых фракций, которые испаряются в последнюю очередь. С повышением этих температур увеличивается расход бензина, так как тяжелые фракции не успевают сгорать. Больше бензина проникает в картер, смывая масло со стенок цилиндра и разжижая масло в картере, что ведет к износу деталей и повышенному расходу масла.

Для определения фракционного состава бензина перегонкой применяется аппарат (ГОСТ 1393-63) для разгонки нефтепродуктов (рис. 1.2).

Рис. 1.2. Схема прибора для определения фракционного состава нефтепродуктов:

1 — штатив; 2 — колба; 3 — термометр; 4 — отводная трубка; 5 — металлическая трубка; 6 — кожух; 7 — держатель; 8 — горелка; 9 — холодильник; 10 — стеклянный мерный цилиндр

Анализируемый образец бензина сначала с целью обезвоживания подвергается осушке. Осушку бензина производят взбалтыванием его в течение 10-15 минут с зерненным хлористым кальцием и фильтрацией после отстоя через бумажный фильтр. Затем, отмерив 100 мл, сливают это количество в колбу, в которую вставляют термометр. Колба помещена в жестяной кожух, в нижней части которого укреплена асбестовая прокладка с отверстием для дна колбы. При перегонке бензина и других легких топлив диаметр отверстия должен быть 30 мм, а при перегонке керосина и дизельного топлива — 50 мм.

Отводной конец трубки пропускается через холодильник и опускается в мерный цилиндр. Внутренняя полость цилиндра заполняется смесью воды со снегом или кусочками льда либо подключается к проточной воде, температура которой на выходе из холодильника должна быть не выше 30 °С.

Горелку для нагрева колбы зажигают вдали от прибора, устанавливают высоту пламени 50-60 мм и помещают в специальный держатель так, чтобы верхушка пламени едва касалась колбы (рис. 1.2). При появлении на конце отводной трубки первой капли конденсата фиксируют температуру начала разгонки. После падения первой капли топлива перегонку ведут с равномерной скоростью — 4-5 мл в минуту, что соответствует 20-25 каплям за 10 с. Нарушение установленного режима перегонки ведет к искажению результата испытания. Так, при повышении скорости выше установленной четкость разделения топлива на фракции ухудшается и наряду с легкими фракциями перегоняются более тяжелые. В результате этого фракционный состав топлива будет казаться более легким. При малой скорости перегонки фракционный состав топлива будет казаться более тяжелым.

После отгона 90 % топлива нагрев колбы усиливают до появления синих язычков пламени из окошек нижней части кожуха. При этом ртутный столбик термометра вначале начнет подниматься, а затем остановится и, продержавшись некоторое время на этом уровне, начнет опускаться.

Оборудование: прибор для перегонки нефтепереработки; колба на 100 мл; холодильник; мерный цилиндр на 100 мл; мерный цилиндр на 10 мл воронка; штатив; колбонагреватель; термометр; образец топлива.

Порядок выполнения работы:

1. Чистым сухим цилиндром отметить 100 мл испытуемого топлива и залить его в колбу, держа ее в таком положении, чтобы отводная трубка была направлена вверх.

2. Установить в шейку колбы термометр, так чтобы ось термометра совпала с осью колбы. (Термометр устанавливается при помощи пробки так, чтобы верхний край шарика термометра был на уровне нижнего края отводной трубки, в месте ее припая.)

3. Установить колбу в колбонагреватель (на электрическую плитку) и соединить с холодильником.

4. Установить мерный цилиндр (не высушивая) под нижний конец трубки холодильника. Цилиндр устанавливается так, чтобы трубка холодильника входила в него не менее чем на 25 мм, но не ниже отметки 100 мл и не касалась его стенок. Цилиндр на время перегонки закрыть ватой для уменьшения потерь на испарение, При перегонке бензина цилиндр поставить в стеклянный сосуд с водой, температуру которой поддерживают в пределах 20±3 °С.

5. Включить колбонагреватель (электроплитку). Нагрев вести так, чтобы первая капля топлива упала с конца трубки холодильника не ранее 5 и не позже 10 минут от начало нагрева. В противном случае вести регулирование высоты пламени горелки.

6. Отметить температуру, при которой упадает первая капля топлива, как температуру начала перегонки (tн.п).

7. После падения первой капли топлива перегонку вести с равномерной скоростью 4-5 мл в минуту, что соответствуем 20-25 каплям за 10 с.

8. Запись показаний температуры производить после перегона каждых 10 мл топлива. Для облегчения замеров необходимо, чтобы перегоняемое топливо с нижнего конца трубки холодильника стекало по стенке приемного цилиндра. Для этого, после падения первой капли, мерный цилиндр сдвинуть так, чтобы конец трубки холодильника коснулся внутренней стенки цилиндра. Для проверки скорости перегонки по отсчету капель цилиндр на короткое время отставляют от конца трубки холодильника с тем, чтобы капли топлива падали по центру цилиндра. По мере повышения температуры усиливать подогрев колбы, чтобы скорость перегонки была постоянной.

9. После отгона 90 мл топлива (90%-ного дистиллята) нагрев колбы усилить (регулировать нагрев электроплитки) до появления синих язычков пламени из окошек нижней части кожуха так, чтобы до конца перегонки прошло от 3 до 5 минут.

10. Не уменьшая размера пламени, следить за термометром (остановкой ртутного шарика) и при снижении температуры на 5-10 °С от максимального значения горелку погасить и дать стечь конденсату в течение 5 мин.

11. Максимальную температуру, достигнутую при разгонке, отметить как температуру конца разгонки (tк.п).

12. После прекращения разгонки верхнюю часть кожуха снять и охладить прибор в течение 5 мин.

13. После остывания колбы из нее вынуть термометр и снять с прибора. Горячий остаток из колбы слить в мерный цилиндр емкостью 10 мл, охладить его до комнатной температуры и определить оставшееся количество (с точностью до 0,1 мл). Затем вычислить потери, которые составляют разность между 100 мл (100 %) бензина, залитого в колбу, и суммой объёмов (процентов) собранного конденсата и остатка и записать как потери при перегонке.

14. Результаты разгонки занести в отчет.

15. Построить график фракционного состава топлива. Для этого по горизонтальной оси откладывают значения температур перегонки, а по вертикальной — соответствующие им значения объемов испарившегося топлива. На пересечении перпендикуляров, восстановленных из отложенных на осях значений, получатся точки кривой графика разгонки бензина или графика его фракционного состава.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *