В чем измеряется выходная мощность активного усилителя
Перейти к содержимому

В чем измеряется выходная мощность активного усилителя

  • автор:

Как читать и понимать технические характеристики усилителей?

Продолжаем изучать что же скрывается за цифрами в таблице технических характеристик компонентов вашей аудиосистемы. В прошлый раз мы говорили об акустических системах, сегодня подошла очередь усилителей. Во многом, параметры их работы имеют схожие названия, но суть при этом зачастую отличается.

Как и для акустических систем, здесь тоже справедливо наблюдение, что ТТХ никак не определяют характер звучания усилителя. Однако, в этом классе аудиотехники меняется подход – если акустика во многом определяет «голос» системы, то идеальный усилитель должен отсутствовать в тракте. Другими словами, его влияния в идеале (которого не достичь) слышно быть не должно, а задача усилителя – в максимальной мере раскрыть потенциал акустики. И способность стать для колонок оптимальным партнером вполне можно оценить по техническим параметрам модели, сокращая перечень кандидатов и экономя время на прослушивание заведомо не слишком совместимых пар усилителей и акустических систем.

Как читать и понимать технические характеристики усилителей?

Рабочий частотный диапазон или диапазон воспроизводимых частот

Немецкий стандарт DIN 45500, принятый в далеком 1974 году и определивший группу критериев соответствия аудиотехники классу Hi-Fi (High Fidelity), декларирует, что рабочий частотный диапазон усилителя должен простираться как минимум от 20 Гц до 20 кГц. При этом, как и в случае акустических систем, нужно помнить о том, что сами по себе границы этого диапазона ни о чем не говорят – они становятся информативными только будучи дополнены условиями измерения.

Как читать и понимать технические характеристики усилителей?

Рабочий частотный диапазон определяется как граничные частоты, в пределах которых неравномерность амплитудно-частотной характеристики остается в определенном «коридоре». Для абсолютно горизонтальной АЧХ ширина этого коридора будет 0 дБ, поскольку неравномерность характеристики в этом случае отсутствует. Но усилителей с такой АЧХ в жизни не встречается, потому при измерениях реальных аппаратов задаются некие допуски неравномерности и фиксируются нарушения этих допусков. Понятно, что чем шире коридор (грубее допуски), тем более протяженным будет рабочий частотный диапазон. И здесь главное – в погоне за красивыми цифрами не дезавуировать сам показатель. Другими словами, рабочий частотный диапазон усилителя, определенный, к примеру, по уровню -10 дБ будет скорее всего очень красиво выглядеть, но окажется совершенно бесполезным, ибо звук определенной частоты с уровнем -10 дБ относительно общего потока звуковой информации вы скорее всего просто не услышите.

Как читать и понимать технические характеристики усилителей?

Чаще всего частотный диапазон определяют по уровню -3 дБ, но порой применяют и более строгие условия. При этом, к примеру, усилитель может демонстрировать рабочий диапазон от 20 Гц до 20 кГц с неравномерностью +/- 0,1 дБ, а при расширении коридора до +/- 3 дБ частотный диапазон у него окажется от 10 Гц до 100 кГц. Для современного транзисторного усилителя это вполне достижимые показатели.

Как читать и понимать технические характеристики усилителей?

В связи с этим, отметим два момента. Во-первых, значение какого-либо параметра для системы в целом определяется самым «узким местом» – компонентом с наихудшим значением этого параметра. Для аудиосистемы по большинству параметров таким звеном будут колонки, для которых, к примеру, рабочий диапазон от 20 Гц до 20 кГц с неравномерностью +/- 0,1 дБ практически недостижим. Во-вторых, если включить в рассмотрение (в состав системы) и ваш слуховой аппарат, то, возможно, узким местом окажется именно он – с возрастом острота слуха снижается, особенно в высокочастотной области. В итоге, говоря о рабочем частотном диапазоне усилителя, нужно лишь следить, чтобы этот диапазон с запасом перекрывал возможности акустических систем, с которыми он работает, а в рабочем частотном диапазоне акустики демонстрировал минимальную неравномерность АЧХ.

Как читать и понимать технические характеристики усилителей?

Отношение сигнал/шум

Если лишить усилитель полезного сигнала, выключив все источники, то поставив регулятор громкости на максимум и внимательно прислушавшись можно услышать в колонках слабый шум (слабый – если, конечно, ваш усилитель исправен). Это паразитный шум вашего усилителя, вызванный как внешними электромагнитными наводками на электронные компоненты схемы, так и собственными шумами этих компонентов, которые могут возникать по самым разным причинам, к примеру, по мере повышения их температуры.

Как читать и понимать технические характеристики усилителей?

Отношение мощности полезного гармонического сигнала к уровню собственного шума усилителя и называется отношением сигнал/шум (S/N ratio) и измеряется в дБ. У современных транзисторных усилителей этот параметр порой переваливает за 100 дБ. Помня о том, что оценка уровней сигналов в дБ использует логарифмическую, а не линейную шкалу, получаем, что собственные шумы усилителя более чем в десять миллиардов раз тише, чем уровень полезного сигнала. Иначе говоря, этим шумом можно просто пренебречь, и разницу «шумности» двух усилителей с отношением сигнал/шум, к примеру, 85 дБ и 120 дБ на слух вы вряд ли сможете определить.

Как читать и понимать технические характеристики усилителей?

Коэффициент гармонических искажений

Задача усилителя в точности повторить форму входного сигнала на выходе, но с большей амплитудой. Но это в теории. А на практике для усиления применяют активные элементы, характеристики которых далеки от линейных, и которые, вне зависимости от нашего желания, искажают исходный сигнал. К синусоиде на входе добавляются гармоники с кратной частоте полезного сигнала частотой. И пусть их амплитуда в сравнении с полезным сигналом мала, но, тем не менее, они вызывают изменения исходной формы, то есть, вносят искажения.

Как читать и понимать технические характеристики усилителей?

Отношение суммарного уровня дополнительных гармоник к уровню полезного сигнала называют коэффициентом гармонических искажений (THD – Total Harmonic Distortion). В большинстве случаев измерения этого параметра проводят на частоте 1 кГц либо при половинной мощности усилителя, либо при максимальной. Для современных транзисторных усилителей этот параметр составляет доли процента, а уловить на слух разницу в звучании усилителя с КНИ 0,05% и 0,005% получится только у «золотого уха». Остается добавить, что на границах рабочего диапазона, то есть, в области самых низких и самых высоких частот, этот показатель растет.

Как читать и понимать технические характеристики усилителей?

Коэффициент интермодуляционных искажений

Но не так страшны гармонические искажения, как иные их виды. Гармоники сопровождают прослушивание музыки всегда, даже когда мы наслаждаемся живой музыкой – звучание основного тона музыкального инструмента обычно сопровождают гармоники более высокого порядка – обертоны. Причем, их присутствие не только не портит впечатление, а обогащает звучание. На субъективное восприятие влияет уровень этих гармоник и их порядок – чётные или нечётные. В результате исследований в области психоакустики выяснилось, что чётные гармоники даже заметного уровня на слух воспринимаются лучше, чем нечётные существенно меньшей интенсивности.

Как читать и понимать технические характеристики усилителей?

Но куда сильнее звучание портят интермодуляционные искажения (IMD – Inter Modulation Distortion), которые возникают при усилении мультитонового музыкального сигнала, когда на выходе усилителя появляются паразитные составляющие с частотами, являющимися суммой или разностью частот спектра входного сигнала, а также суммой или разностью частот гармоник полезного сигнала, попадающих на вход усилителя через обратную связь. Их «заметность» на слух определяется тем, что подобные искажения никак не коррелируют с основными тонами музыкального сигнала.

Как читать и понимать технические характеристики усилителей?

Разделение между каналами

Для многоканальных усилителей, к которым относятся и стереофонические компоненты, одним из важных параметров является разделение каналов (Channel separation), характеризующий степень проникновения сигнала из одного канала в другой. При этом, наведенный в соседний канал сигнал по сути является паразитным, потому этот показатель часто называют перекрестными помехами.

Как читать и понимать технические характеристики усилителей?

Отношение наведенного из соседнего канала сигнала к полезному измеряется в дБ – чем этот параметр хуже (меньше), тем сложнее усилителю сформировать объемную стереокартину. Если говорить о зависимости этого параметра от частоты сигнала, то в большинстве случаев с ростом частоты разделение каналов ухудшается. Другими словами, проблема наиболее сильно проявляется в области ВЧ.

Коэффициент демпфирования

Тем временем, мы приближаемся к наиболее значимым характеристикам усилителей аудиосигнала. Коэффициент демпфирования (иногда его называют демпинг-фактор) характеризует способность усилителя бороться с паразитными напряжениями, возникающими в результате инерционных перемещений звуковой катушки в магнитном поле в динамических головках колонок. Несмотря на усилия разработчиков динамиков, создать невесомый (а значит лишенный инерции), но достаточно прочный диффузор невозможно, потому, как следствие, диффузор будет совершать колебания, не связанные с воспроизведением полезного сигнала – по инерции.

Как читать и понимать технические характеристики усилителей?

Коэффициент демпфирования характеризует отношение номинального сопротивления нагрузки к выходному сопротивлению усилителя. Чем этот показатель больше, а выходное сопротивление усилителя ниже, тем эффективнее аппарат сможет компенсировать такие паразитные колебания. Выбирая усилитель, достаточным можно считать значение коэффициента демпфирования более 100 единиц. Если этот параметр превышает 300, то вероятность, что эта модель сможет укротить самые тугие колонки, возрастает. У усилителей топового уровня коэффициент демпфирования измеряется тысячами единиц.

Как читать и понимать технические характеристики усилителей?

Мощность

Наконец, мы подошли к главному – группе параметров, которые описывают эффективность выполнения основной задачи усилителя – собственно, усиления сигнала. Эта способность характеризуется мощностью, измеряемой в Ваттах. А вот способов измерения мощности может быть множество, каждый из которых даст свой результат, который может весьма значительно отличаться от других. И «польза» от этих параметров будет тоже весьма разной.

Как читать и понимать технические характеристики усилителей?

Номинальная мощность

Мощность усилителя, до достижения которой нелинейные искажения не превышают заданного порога, называется номинальной. При этом, в качестве такого порога обычно выбирают значение, при котором ухо не различает искажений – чаще всего это доли процента. Показатель измеряется при подаче на вход синусоидального сигнала частотой 1 кГц, когда усилитель работает с нагрузкой с определенным сопротивлением – чаще всего 4 или 8 Ом.

Среди особенностей этого показателя, которые необходимо учитывать при оценке, отметим тот факт, что реальный музыкальный сигнал весьма далек от тестового – к примеру, он несет целый частотный спектр, а, как известно, сопротивление акустической системы зависит от частоты сигнала, подаваемого на неё. На каких-то частотах сопротивление может оказаться существенно ниже номинального, и как поведет себя усилитель в этой ситуации этот параметр не подскажет. Второй момент – зависимость КНИ от выходной мощности чаще всего довольно сложна. К примеру, для усилителей, работающих в классе AB, нелинейные искажения на низкой мощности могут быть выше, чем при работе на номинальной. А с учётом того, что основное количество музыкальной информации статистически воспроизводится на низких уровнях мощности, реальные искажения при прослушивании музыки оказываются выше порога, установленного при измерении номинальной мощности.

Как читать и понимать технические характеристики усилителей?

Максимальная мощность

Выходная мощность усилителя без оглядки на уровень нелинейных искажений называется максимальной. Критерием здесь выступает не уровень КНИ, а способность усилителя работать на такой мощности продолжительное время – то есть, сохраняя работоспособность. Что может подсказать полезного любителю музыки этот параметр не очень понятно.

Как читать и понимать технические характеристики усилителей?

Для моделей иностранного производства, преобладающих в наших системах, используют иные технические показатели мощности, впрочем, разница там в основном лишь в названиях.

Как читать и понимать технические характеристики усилителей?

DIN Power

DIN Power очень близкий по сути параметр к номинальной мощности – это мощность, развиваемая усилителем при работе на нормированную нагрузку с нелинейными искажениями, не превышающими заданного уровня. Измерения этого показателя проводят в течение 10 минут синусоидальным сигналом частотой 1 кГц при пороге коэффициента нелинейных искажений 1%. Второй вариант этого параметра – IHF Power, для измерения которой искажения ограничивают на уровне 0,1%. И, наконец, третьей вариацией этого параметра стала DIN Music Power, для измерения которой используют не синусоидальный сигнал, а музыкальный, характеризуемый конкретной полосой частот. Например – 100 W (4 Ω, 20 – 20000 Hz, THD 0,1%).

Как читать и понимать технические характеристики усилителей?

RMS Power

Среднеквадратичное значение мощности при нелинейных искажениях, не превышающих определенного порога, называют Root Mean Squared (RMS) Power. Измеряется этот показатель на синусоидальном сигнале частотой 1 кГц с порогом КНИ составляющем 10%. Данный параметр имеет корни в электротехнике, и для аудио особой информационной ценности не имеет, поскольку наше ухо фиксирует амплитудные значения сигнала, а не среднеквадратичные, и какие-либо усреднения для слуха вряд ли можно применять.

Показатель Peak Music Power Output (PMPO) по смыслу повторяет максимальную мощность усилителя, за исключением того, что здесь речь идет о пиковом значении мощности – то есть, мощности, достигаемой на очень небольшом промежутке времени, как правило не превышающем 10 миллисекунд (для максимальной мощности речь шла о работе в течение длительного времени). Потому, когда на пластмассовом бочонке длиной метр мы видим наклейку PMPO 1000 Вт обольщаться не стоит – номинальная мощность усилителя такого бумбокса редко превышает 10 Ватт.

Как читать и понимать технические характеристики усилителей?

А что ещё?

Прочие параметры, которые можно встретить в таблицах ТТХ, сопровождающих усилители, обычно не нуждаются в пояснениях – потребляемая мощность, размеры корпуса и вес, цвет и используемые материалы отделки говорят сами за себя. И именно эти параметры наиболее «близки» для понимания и ценны для анализа. Единственный комментарий в их отношении – если выходные каскады усилителя работают в классе А или АВ, а его вес не впечатляет воображение – это повод усомниться в его способностях, ибо физику не обманешь, и такому усилителю, имеющему сравнительно низкий КПД, нужен мощный блок питания и эффективная система охлаждения, а это, прежде всего, отражается на весе устройства. Аналогично обстоит дело с потребляемой мощностью, по которой можно оценить способность блока питания усилителя обеспечить необходимые пиковые нагрузки.

Выходная мощность

,

где Uвых — действующее, а Um вых – амплитудное значение выходного напряжения.

Выходная мощность – это полезная мощность, развиваемая усилителем в нагрузочном сопротивлении.

Увеличение выходной мощности усилителя ограничено искажениями, которые возникают за счет нелинейности характеристик усилительных элементов при больших амплитудах сигналов. Поэтому чаще всего усилитель характеризуют максимальной мощностью, которую можно получить на выходе при условии, что искажения не превышают заданной (допустимой) величины.

Эта мощность называется номинальной выходной мощностью усилителя.

Коэффициент полезного действия

Этот показатель особенно важно учитывать для усилителей средней и большой мощности, так как он позволяет оценить их экономичность. Численно к.п.д. равен

где Ро – мощность, потребляемая усилителем от источника питания.

Номинальное входное напряжение (чувствительность)

Номинальным входным напряжением называется напряжение, которое нужно подвести к входу усилителя, чтобы получить на выходе заданную мощность. Входное напряжение зависит от типа источника усиливаемых колебаний. Чем меньше величина входного напряжения, обеспечивающего требуемую выходную мощность, тем выше чувствительность усилителя. Подача на вход усилителя напряжения, превышающего номинальное, приводит к значительным искажениям сигнала и называется перегрузкой со стороны входа.

Если усилитель предназначен для работы от нескольких источников, то его вход рассчитывается обычно на наименьшее напряжение, которое дает один из источников, а другие источники сигнала включаются через делители напряжения.

Диапазон усиливаемых частот

Диапазоном усиливаемых частот, или полосой пропускания, называется та область частот, в которой коэффициент усиления изменяется не больше, чем это допустимо по техническим условиям.

Допустимые изменения коэффициентов усиления в пределах полосы пропускания зависят от назначения и условий работы усилителя.

Уровень собственных помех усилителя

Причины возникновения помех на выходе усилителя можно разделить на три основные группы:

1) тепловые шумы, 2) шумы усилительных элементов, 3) помехи из-за пульсаций напряжения питания и наводок со стороны внешних электромагнитных полей.

Известно, что в проводниках и полупроводниках при нормальной комнатной температуре (порядка С) электроны движутся хаотически, причем в каждый данный момент количество электронов, движущихся в каком либо одном направлении, превышает количество электронов, движущихся в других направлениях. Преимущественное движение электронов в любом направлении является электрическим током и, следовательно, при этом на проводнике или полупроводнике создается напряжение, не подчиняющееся какому либо определенному закону.

Так как впервые с этим напряжением столкнулись при создании радиовещательных приемников, в которых оно после усиления попадало к громкоговорителю и создавало шум, то его назвали напряжением шумов.

Шумовые напряжения, в силу своей случайности, имеют самые различные частоты и фазы и поэтому практически охватывают всю полосу частот усилителя. Следовательно, с увеличением полосы пропускания усилителя уровень шума возрастает. Кроме того, шум тем больше, чем выше температура и больше величина сопротивления цепи, которая создает напряжение тепловых шумов.

При температуре 20 — 25°С шумовое напряжение можно найти по формуле

Uт.ш ,

где Uт.ш – напряжение тепловых шумов, мкВ; fв и fн — высшая и низшая частоты, пропускаемые цепью, кГц;

R – активная составляющая сопротивления цепи в полосе частот от fв до fн, кОм.

Все цепи усилителя создают напряжение тепловых шумов, однако особенно большое влияние оказывают собственные шумы первых усилительных каскадов, так как эти шумы в дальнейшем усиливаются всеми последующими каскадами. Если, например, высшая и низшая рабочие частоты усилителя равны 10000 и 100 Гц, а активное сопротивление входной цепи составляет 500 Ом, то напряжение тепловых шумов будет равно

Uт.ш ≈ 0,27 мкВ.

Приведенные вычисления показывают, что величина напряжения тепловых шумов очень мала. Поэтому помехи от тепловых шумов в усилителях сказываются лишь при больших коэффициентах усиления.

Напряжения шумов может возникнуть также из-за неравномерности движения носителей электрических зарядов через усилительный элемент. Это явление называют дробовым эффектом. Уровень шумов транзисторов обычно оценивают коэффициентом шума, выраженным в децибелах и показывающим, на сколько децибел, включенный в цепь транзистор повышает уровень шумов по сравнению с тепловыми шумами цепи.

Большое влияние на общий уровень помех усилителя оказывают пульсации напряжений источников питания, а также наводки со стороны внешних электрических и магнитных полей. Уменьшение этих помех может быть достигнуто применением дополнительных сглаживающих фильтров на выходе источников питания и тщательной экранировкой наиболее ответственных цепей усилителя (главным образом входных).

Величина общих помех на выходе усилителя должна быть значительно меньше напряжения усиленного сигнала; в противном случае из хаотически изменяющегося напряжения помех нельзя будет выделить полезный сигнал. Обычно считают, что полезный сигнал должен превышать уровень помех не менее чем

в 2 – 3 раза (на 6 – 10 дБ).

Отношение амплитуд наиболее сильного и наиболее слабого сигналов на входе усилителя называют динамическим диапазоном амплитуд D. Динамический диапазон обычно выражают в децибелах

Характеристики усилителей: классификация, диаграммы, основные параметры

Так сложилось, что заявленные цифры на упаковках и рекламах усилителей не всегда совпадают с реальными. Как правило они намного выше, чем усилитель может выдать в действительности. Все это маркетинговые ходы в погоне за яркой и броской вывеской. Указанные параметры получают не совсем добросовестно с большими ухищрениями, а иногда и просто лгут. Чтобы не попасться на уловки рекламодателей можно рассчитать мощность усилителя самостоятельно.

Встречается в мире автозвука и другая ситуация, когда мощность усилителя больше, чем указана в документах. Но это редкие случаи, когда усилитель ориентирован на использования в соревнованиях, в которых существуют ограничения или градации по мощности систем.

На самом деле рассчитать мощность усилителя достаточно просто. Сделать это можно отталкиваясь от номинала установленных предохранителей. Так как на коробке можно написать все что угодно, а вот предохранитель больше максимального номинала ставить никто не будет, так как он не защитит усилитель. Но и слишком малый номинал ставить нецелесообразно, так как это «задушит» усилок. Расчет имеет некоторую степень погрешности, но для простого пользователя он объективно оценивает номинальную мощность и на него можно ориентироваться в выборе усилителя, а так же для подбора сабвуфера и акустических динамиков к нему.

Для начала нужно определить класс вашего усилка, для того чтобы узнать его КПД. В автозвуке обычно используются АВ и D классы.

Класс АВ. Выдает качественный сигнал при КПД около 50%. Так же усилители AB-класса стоят в головных устройствах (ГУ) — магнитолах.

Класс D. Современный класс усилителей с цифровой обработкой сигнала. В основном применяется для сабвуферов (моноблоки). D класс имеет КПД 70-80%.

Смотрите информацию о классе в даташите (документации) усилка.

Замер выходной мощности усилителя НЧ

В этой статье я попытаюсь рассказать, как объективно произвести замер выходной мощности усилителя НЧ. Для измерения нам понадобится осциллограф и низкочастотный генератор сигналов. К моему сожалению, без этих приборов невозможно объективно произвести измерение. Звуковой генератор может быть заменен компьютером или ноутбуком, с установленным на него программным обеспечением.

В разделе «Генераторы» представлено несколько бесплатных программ, которые позволят сделать из вашего ноутбука или ПК генератор сигналов.

Итак, нам понадобиться осциллограф, генератор синусоидального сигнала, резистор (эквивалент) сопротивлением 4Ома, сам усилитель и по возможности (необязательно) мультиметр.

В качестве «ослика» я использую свой любимый, одноканальный прибор С1-94. Генератором у меня служит китайский функциональный генератор, способный генерировать различные формы сигналов с регулировкой частоты, амплитуды и смещения.

Нагрузкой будет служить резистор сопротивлением 4Ома и мощностью 100Вт. Для надежности я установил его на радиатор с применением теплопроводной пасты.

Теперь про мультиметр. Сгодится не каждый. Он должен правильно измерять переменное напряжение на частоте 1000Гц-2000Гц. Если его нет, то можно обойтись и без него. Я использую UNI-T UT39C.

Я буду производить замер мощности на усилителе радиолы Элегия-102-стерео.

Перед измерением выходной мощности необходимо произвести прогон усилителя на умеренной мощности в течении минут 10-20.

На вход подключения магнитофона я подал сигнал с генератора. У вас может быть это вход «Универсальный», «Тюнер» или другой линейный вход. Сигнал должен быть синусоидальной формы, иметь частоту 1000Гц. Амплитуду на генераторе необходимо сделать нулевой.

Далее нужно ручки регулировки громкости вывернуть на максимум, а регуляторы тембра и баланса на середину.

К выходу усилителя, в гнездо подключения акустической системы, подключаем нагрузку в виде резистора, сопротивлением 4Ома. Резистор необходимо опустить в воду или установить на радиатор.

Параллельно резистору нужно установить щупы осциллографа и мультиметра. На осциллографе выбираем необходимую развертку. В моем случае это 0.2мс на клетку и 5В на клетку.

Включаем питание усилителя. Включаем генератор и осциллограф.

Плавно увеличиваем амплитуду сигнала на генераторе и смотрим его форму на экране осциллографа.

Форма должна быть чистой, синусоидальной. По мере увеличения амплитуды (на генераторе) необходимо ловить момент, когда верхушка синусоиды начнет обрезаться. Такое явление называют клиппингом.

После появления клиппинга, необходимо чуть уменьшить амплитуду, до появления чистой синусоиды.

Сейчас усилитель НЧ работает на максимальной (чистой) мощности.

Теперь необходимо измерить напряжение на нагрузочном резисторе и как говориться: «Дело в шляпе!».

Измерять напряжение можно мультиметром, который не «врет» при измерении на частоте 1кГц, либо с помощью осциллографа. Я буду измерять и тем, и этим.

На дисплее мультиметра у меня напряжение переменного тока составило 7.5В.

По экрану осциллографа я вижу размах синусоиды (или двойную амплитуду) 4.2 клетки. Одна клетка 5В. Итого, двойная амплитуда равна 21В. Как нам известно, размах больше действующего значения напряжения в 2?2 раз. Поэтому, 21В делим на 2?2.

21В/2.83=7.4В. Сходится? Сходится!

Расчет выходной мощности

Мощность считается по формуле P=U*I, где P – мощность, U – напряжение на резисторе, I — ток, протекающий через резистор.

Измерять ток не обязательно так, как из закона Ома известно, что I=U/R,

тогда P=U2/R.

Измеренное нами напряжение на нагрузочном резисторе возводим в квадрат и делим на 4Ома.

P=7.5*7.5/4= 56.25/4 = 14Вт.

Согласно инструкции по эксплуатации на Элегию-102-стерео, выходная номинальная мощность на каждый канал составляет 6Вт, а максимальная мощность 16Вт (на каждый канал).

Спасибо за внимание!

Расчет мощности

Мощность считается следующим образом:

где U — напряжение в сети автомобиля с заведенным двигателем — 14.4 В,

I — номинал предохранителя или сумма номиналов, если их несколько А,

КПД — коэффициент полезного действия — АВ класс — 0.5 (50%); D класс — 0,75 (75%),

n — количество каналов усилителя.

Другими словами мы находим общую мощность с учетом КПД и делим ее на количество каналов, получая тем самым число Ватт на один канал.

Амплитудная характеристика усилителя

Амплитудная характеристика — это зависимость амплитуды выходного напряжения (тока) от амплитуды входного напряжения (тока) (рис. 2.2).

Точка 1 соответствует напряжению шумов, измеряемому при Uвx = 0, точка 2 — минимальному входному напряжению, при котором на выходе усилителя можно различать сигнал на фоне шумов.

Участок 2 − 3 — это рабочий участок, на котором сохраняется пропорциональность между входным и выходным напряжениями усилителя.

После точки 3 наблюдаются нелинейные искажения входного сигнала. Степень нелинейных искажений оценивается коэффициентом нелинейных искажений (или коэффициентом гармоник):

КГ = √( U22m + U23m + … + U2nm) / Ulm

где Ulm, U2m, U3m, Unm — амплитуды 1-й (основной), 2, 3 и n-й гармоник выходного напряжения соответственно. Величина D = Uвх max / Uвх minхарактеризует динамический диапазон усилителя. Рассмотрим пример возникновения нелинейных искажений (рис. 2.3).

При подаче на базу транзистора относительно эмиттера напряжения синусоидальной формы uбэ в силу нелинейности входной характеристики транзистора iб = f(uбэ) входной ток транзистора iб (а следовательно, и выходной — ток коллектора) отличен от синусоиды, т. е. в нем появляется ряд высших гармоник.

Из приведенного примера видно, что нелинейные искажения зависят от амплитуды входного сигнала и положения рабочей точки транзистора и не связаны с частотой входного сигнала, т. е. для уменьшения искажения формы выходного сигнала входной должен быть низкоуровневым.

Поэтому в многокаскадных усилителях нелинейные искажения в основном появляются в оконечных каскадах, на вход которых поступают сигналы с большой амплитудой.

Показатели усилителя

Основными показателями усилителя

являются выходное напряжение или выходная мощность, коэффициент усиления, допустимые искажения, частотная, фазовая и амплитудная характеристики, динамический диапазон частот, коэффициент полезного действия и уровень собственных шумов.

Выходным номинальным напряжением (мощностью) усилителя называется наибольшее значение напряжения (мощности) сигнала на выходе усилителя, при котором искажения не превышают величин, оговоренных в техническом задании. Величина выходного напряжения или мощности определяется уровнем сигнала, который необходимо выделить на нагрузке: например, если нагрузкой является электроннолучевая трубка, то задаются выходным напряжением; если на выходе стоит динамик, то задаются выходной мощностью.

Коэффициентом усиления называется отношение напряжения, тока или мощности сигнала на выходе усилителя соответственно к напряжению, току или мощности сигнала на входе усилителя.

Входное напряжение, ток и мощность связаны соотношениями

Эти же величины на выходе:

Тогда, согласно определению, коэффициент усиления по напряжению

где Ki — коэффициент усиления по току. Коэффициент усиления по мощности:

При значениях Кu или Ki больше единицы Кp может стать меньше единицы. Но при определенных соотношениях между сопротивлениями Rвых и Rвх можно получить усиление по мощности больше единицы, если даже коэффициент усиления по напряжению (или по току) меньше единицы.

На практике коэффициенты усиления часто выражают в логарифмических единицах — децибелах:

К(дб0 = 20 lgKu = 20 lgKi = 10 lgKp. (222)

Если К = 1 дб, то Uвых/Uвх=10 Кдб/20 = 100,05 = 1,12,

т. е. усилению в 1 дб соответствует увеличение выходного напряжения на 12% по отношению к напряжению на входе. Например, если Uвых/Uвх= 10, то К = 20 дб; если Uвых/Uвх=100, то К=40 дб.

Форма сигнала на выходе усилителя должна соответствовать форме сигнала на его входе. В противном случае усилитель будет вносить искажения в усиливаемый сигнал. Различают три вида искажений при усилении: нелинейные, частотные и фазовые.

Причиной нелинейных искажений являются нелинейные элементы схемы. Частотные искажения связаны с искажением формы выходного сигнала вследствие неравномерного усиления составляющих сложного сигнала в полосе рабочих частот.

Зависимость коэффициента усиления от частоты: К = φ (F) называется частотной характеристикой усилителя

. Идеальная частотная характеристика проходит параллельно оси частот, это означает, что сигналы всех частот усиливаются одинаково. В действительности же имеет место неравномерность усиления сигналов разной частоты.

Рис. 132. Частотная (а); фазовая (б) и амплитудная (в) характеристики усилителя: — реальные; —идеальные.

Количественно частотные искажения оценивают коэффициентом частотных искажений М, который представляет собой отношение коэффициента усиления на средней частоте рабочего диапазона Кср к коэффициенту усиления на крайней рабочей частоте Ккр:

Если усилитель состоит из n каскадов, то общий коэффициент частотных искажений равен произведению коэффициентов частотных искажений отдельных каскадов:

Частотные искажения обычно выражают в децибелах:

Мобщ (дб) = МI(дб) + МII(дб) + … + Мn (дб)

Фазовые искажения возникают из-за нарушения сдвига фаз между составляющими сложного сигнала вследствие наличия в схеме усилителя реактивных элементов. Если при усилении сдвиг фаз между составляющими сложного сигнала сохраняется неизменным либо изменяется, но пропорционально частоте, то в этих случаях фазовые искажения отсутствуют. Так, если на выход усилителя поступает сигнал

uвх = Um1 sin ωt+ Um2 sin 2ωt + Um3 sin 3ωt,

а на выходе появится напряжение

то все составляющие выходного сигнала оказываются сдвинутыми на одно и то же время Это свидетельствует о том, что форма сигнала осталась прежней и фазовые искажения действительно отсутствуют.

Зависимость сдвига фазы от частоты называется фазовой характеристикой усилителя (рис. 132, б). По отклонению реальной характеристики усилителя от прямой можно судить о степени ожидаемых фазовых искажений.

Для оценки искажений при усилении импульсных сигналов пользуются переходными характеристиками, представляющими собой зависимость мгновенного значения выходного напряжения от времени при подаче на вход прямоугольного скачка напряжения. Форма скачка на выходе отличается от прямоугольной вследствие линейных искажений, вызываемых наличием в схеме реактивных элементов. Они проявляются в виде наклона фронта импульса, выброса импульса, завала плоской его вершины.

Зависимость выходного напряжения усилителя

от входного при постоянной частоте сигнала называется амплитудной характеристикой усилителя (рис. 132, в). При малых входных сигналах она имеет изгиб, обусловленный наличием собственных шумов в усилителе (наводки, фон, тепловые шумы и т. д.). Изгиб в верхней части характеристики при больших входных сигналах вызван перегрузкой со стороны входа усилителя. Рабочим участком амплитудной характеристики является ее линейный участок.

Отношение максимального входного напряжения усилителя к минимальному входному напряжению сигнала называется динамическим диапазоном усилителя:

Усилитель будет работать с малыми искажениями при условии, если Dу будет больше динамического диапазона сигнала:

Коэффициент полезного действия является важным параметром, определяющим экономичность усилителя. Различают электрический и промышленный к. п. д. усилителя. Электрический к. п. д. представляет собой отношение мощности Р, развиваемой усилителем, к мощности P0, потребляемой усилителем от источника анодного питания:

Промышленный к. п. д. определяется отношением полезной мощности, развиваемой усилителем, к мощности Р0, потребляемой от источника питания:

Промышленный к. п. д. меньше электрического, так как он учитывает потери мощности источника питания в цепях накала, в цепях управляющей и экранирующей сеток.

Амплитудно-частотная характеристика (АЧХ) и фазо-частотная характеристика (ФЧХ) усилителя.

АЧХ — это зависимость модуля коэффициента усиления от частоты, а ФЧХ — это зависимость угла сдвига фаз между входным и выходным напряжениями от частоты. Типовая АЧХ приведена на рис. 2.4.

рис. 2.4

Частоты fн и fв называются нижней и верхней граничными частотами, а их разность (fн − fв) — полосой пропускания усилителя.

При усилении гармонического сигнала достаточно малой амплитуды искажения формы усиленного сигнала не возникает.

При усилении сложного входного сигнала, содержащего ряд гармоник, эти гармоники усиливаются усилителем неодинаково, так как реактивные сопротивления схемы по-разному зависят от частоты, и в результате это приводит к искажению формы усиленного сигнала.

Такие искажения называются частотными и характеризуются коэффициентом частотных искажений: М = K0 / Kf где Kf — модуль коэффициента усиления усилителя на заданной частоте.

Коэффициенты частотных искажений МН = K0 / KН и МВ = K0 / KВ называются соответственно коэффициентами искажений на нижней и верхней граничных частотах. АЧХ может быть построена и в логарифмическом масштабе. В этом случае она называется ЛАЧХ (рис. 2.5), коэффициент усиления усилителя выражают в децибелах, а по оси абсцисс откладывают частоты через декаду (интервал частот между 10f и f).

Обычно в качестве точек отсчета выбирают частоты, соответствующие
f = 10n. Кривые ЛАЧХ имеют в каждой частотной области определенный наклон. Его измеряют в децибелах на декаду. Типовая ФЧХ приведена на рис. 2.6. Она также может быть построена в логарифмическом масштабе. В области средних частот дополнительные фазовые искажения минимальны.

ФЧХ позволяет оценить фазовые искажения, возникающие в усилителях по тем же причинам, что и частотные.

Пример возникновения фазовых искажений приведен на рис. 2.7, где показано усиление входного сигнала, состоящего из двух гармоник (пунктир), которые при усилении претерпевают фазовые сдвиги.

Сайт установщиков

Главная Статьи Разное Стандарты мощности аудио DIN, RMS, PMPO

Стандарты мощности аудио DIN, RMS, PMPO

Многообразие применяемых стандартов измерения выходной мощности усилителей и мощности колонок может сбить с толку любого. Вот блочный усилитель солидной фирмы 35 Вт на канал, а вот дешевенький музыкальный центр с наклейкой 1000 Вт. Такое сравнение вызовет явное недоумение у потенциального покупателя. Самое время обратиться к стандартам.

Стандарты мощности (DIN,RMS,PMPO)

Номинальная мощность — мощность при среднем положении регулятора громкости усилителя, при которой остальные параметры устройства соответствуют заявленным в техническом описании.
В Европе используется два параметра мощности — номинальная и синусоидальная. Это нашло свое отражение в названиях акустических систем и обозначениях динамиков. Причем, если раньше в основном использовалась номинальная мощность, то теперь чаще — синусоидальная. Например, колонки 35АС впоследствии получили обозначение S-90 (номинальная мощность 35 Вт, синусоидальная мощность 90 Вт)
Синусоидальная мощность — мощность, при которой усилитель или колонка может работать в течение длительного времени с реальным музыкальным сигналом без физического повреждения. Обычно в 2 — 3 раза выше номинальной.
Западные стандарты более широки, как правило, используются DIN, RMS и PMPO.
DIN — примерно соответствует синусоидальной мощности — мощность, при которой усилитель или колонка может работать в течение длительного времени с сигналом «розового шума» без физического повреждения.
RMS (Rated Maxmum Sinusoidal) — Максимальная (предельная) синусоидальная мощность — мощность, при которой усилитель или колонка может работать в течение одного часа с реальным музыкальным сигналом без физического повреждения. Обычно на 20 — 25 процентов выше DIN.
PMPO (Peek Music Power Output)- Музыкальная мощность (запредельная :-)) — мощность, которую динамик колонки может выдержать в течение 1 -2 секунд на сигнале низкой частоты (около 200 Гц) без физического повреждения. Обычно в 10 — 20 раз выше DIN.
Как правило, серьезные западные производители указывают мощность своих изделий в DIN, а производители дешевых музыкальных центров и компьютерных колонок в PMPO.

Особенности стандартов,описывающих мощность в звукотехнике

Многим иногда приходилось задумываться, что же именно обозначает мощность, в том или ином виде приводимая в паспортах акустических систем и звукоусилительной аппаратуры. Материалов на эту тему в сети и печатных изданиях встречается на удивление мало, внятных ответов на вопросы тоже.

Международные стандарты

RMS (Root Mean Squared)- среднеквадратичное значение мощности, ограниченной заданными нелинейными искажениями.
Мощность замеряется синусоидальным сигналом на частоте 1 кГц при достижении 10% THD. Она вычисляется, как произведение среднеквадратичных значений напряжения и тока при эквивалентном количестве теплоты, создаваемой постоянным током. То есть, эта мощность численно равна квадратному корню из произведения квадратов усредненных величин напряжения и тока.
Для синусоидального сигнала среднеквадратичное значение меньше амплитудного в V2 раз (x 0,707). Вообще же, это виртуальная величина, термин «среднеквадратичный», строго говоря, может быть применен к напряжению или силе тока, но не к мощности. Известный аналог — действующее значение (все знают его для сети электропитания переменным током — это те самые 220 V ).
Попробую объяснить, почему это понятие для описания звуковых характеристик малоинформативно.
Среднеквадратичная мощность — это производящая работу. То есть, имеет смысл в электротехнике. И относится не обязательно к синусоиде. В случае музыкальных сигналов громкие звуки мы слышим лучше, чем слабые. И на органы слуха воздействуют больше амплитудные значения, а не среднеквадратичные. То есть громкость не эквивалентна мощности. Поэтому среднеквадратичные значения имеют смысл в электросчетчике, а вот амплитудные в музыке. Еще более популистский пример — АЧХ. Провалы АЧХ заметны меньше, чем пики. То есть громкие звуки более информативны, чем тихие, а усредненное значение будет мало о чем говорить.
Таким образом, стандарт RMS был одной из не самых удачных попыток описать параметры звуковой аппаратуры, которые не отражают громкость, как величину.
В усилителях и акустике этот параметр тоже, по сути, имеет весьма ограниченное применение — усилитель, который выдает 10% искажений не на максимальной мощности (когда возникает клиппинг, ограничение амплитуды усиливаемого сигнала с возникающими специфическими динамическими искажениями), еще поискать. До достижения максимальной мощности искажения транзисторных усилителей, например, не превышают зачастую сотых долей процента, а уж выше резко возрастают (нештатный режим). Многие акустические системы при длительной работе с таким уровнем искажений уже способны выйти из строя.
Для совсем уж дешевой техники указывается другая величина — PMPO, совсем уж бессмысленный и никем не нормированный параметр, а значит, друзья-китайцы измеряют его так, как бог на душу положит. Если точнее, в попугаях, причем каждый в своих. Значения PMPO часто превышают номинальные вплоть до коэффициента 20.

PMPO (Peak Music Power Output)- пиковая кратковременная музыкальная мощность, величина, которая означает максимально достижимое пиковое значение сигнала независимо от искажений вообще за минимальный промежуток времени (обычно за 10 mS, но, вообще, не нормировано). Как следует из описания, параметр еще более виртуальный и бессмысленный в практическом применении. Посоветую эти значения не воспринимать всерьез и на них не ориентироваться. Если вас угораздило покупать аппаратуру с параметрами мощности, указанными только, как PMPO, то единственный совет — послушать самостоятельно и определить, подходит это вам или нет.

DIN 45500— комплекс общепринятых стандартов IEEE, описывающих различные звукоусилительные характеристики аппаратуры более достоверным образом.

DIN POWER- значение выдаваемой на реальной нагрузке (для усилителя) или подводимой (к АС) мощности, ограниченной нелинейными искажениями. Измеряется подачей сигнала с частотой 1 кГц на вход устройства в течение 10 минут. Мощность замеряется при достижении 1 % THD (нелинейных искажений). Строго говоря, есть и другие виды измерений, например, DIN MUSIC POWER, описывающая мощность уже музыкального сигнала. Обычно указываемая величина DIN music выше, чем приводимая как DIN.

Отечественные стандарты

Номинальная мощность— величина искусственная, она оставляет свободу выбора изготовителю. Разработчик волен указать значение номинальной мощности, соответствующее наиболее выгодному значению нелинейных искажений. Обычно указанная мощность подгонялась под требования ГОСТ к классу сложности исполнения при наилучшем сочетании измеряемых характеристик. Указывается как у АС, так и у усилителей. Иногда это приводило к парадоксам — при искажениях типа «ступенька», возникающих в усилителях класса АВ на малых уровнях громкости, уровень искажений мог снижаться при увеличении выходной мощности сигнала до номинальной. Таким образом достигались рекордные номинальные характеристики в паспортах усилителей, с крайне низким уровнем искажений при высокой номинальной мощности усилителя. Тогда как наивысшая статистическая плотность музыкального сигнала лежит в диапазоне амплитуд 5-15% от максимальной мощности усилителя. Вероятно, поэтому российские усилители заметно проигрывали на слух западным, у которых оптимум искажений мог быть на средних уровнях громкости, тогда как в СССР шла гонка за минимумом гармонических и иногда интермодуляционных искажений любой ценой на одном, номинальном (почти максимальном) уровне мощности.

Паспортная шумовая мощность— электрическая мощность, ограниченная исключительно тепловыми и механическими повреждениями (например: сползание витков звуковой катушки от перегрева, выгорание проводников в местах перегиба или спайки, обрыв гибких проводов и т.п.) при подведении розового шума через корректирующую цепь в течение 100 часов.

Максимальная кратковременная мощность— электрическая мощность, которую громкоговорители АС выдерживают без повреждений (проверяется по отсутствию дребезжаний) в течение короткого промежутка времени. В качестве испытательного сигнала используется розовый шум. Сигнал подается на АС в течение 2 сек. Испытания проводятся 60 раз с интервалом в 1 минуту. Данный вид мощности дает возможность судить о кратковременных перегрузках, которые может выдержать громкоговоритель АС в ситуациях, возникающих в процессе эксплуатации.

Максимальная долговременная мощность— электрическая мощность, которую выдерживают громкоговорители АС без повреждений в течение 1 мин. Испытания повторяют 10 раз с интервалом 2 минуты. Испытательный сигнал тот же. Максимальная долговременная мощность определяется нарушением тепловой прочности громкоговорителей АС (сползанием витков звуковой катушки и др.).

Общая терминология

Розовый шум— группа сигналов со случайным характером и равномерной спектральной плотностью распределения по частотам, убывающей с увеличением частоты со спадом 3 дБ на октаву во всем диапазоне измерений, с зависимостью среднего уровня от частоты в виде 1/f. Розовый шум имеет постоянную (по времени) энергию на любом из участков частотной полосы.

Белый шум- группа сигналов со случайным характером и равномерной и постоянной спектральной плотностью распределения по частотам. Белый шум имеет одинаковую энергию на любом из участков частот.

Октава- музыкальная полоса частот, соотношение крайних частот которой равно 2.

Электрическая мощность Мощность, рассеиваемая на омическом эквивалентном сопротивлении, равном по величине номинальному электрическому сопротивлению АС, при напряжении, равном напряжению на зажимах АС. То есть, на сопротивлении, эмулирующем реальную нагрузку в тех же условиях.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *