Как на схеме обозначается реостат
Перейти к содержимому

Как на схеме обозначается реостат

  • автор:

Как обозначаются реостаты?

Нас, в этом конкретном вопросе интересуют символы на картинках второго ряда, напротив агличкого слова Veriable Resistors, что означает "Переменное сопротивление".

Первая пара символов (User Control) это непосредственно и есть переменный резистор или реостат. Вторая пара по сути то же, но только как устройства для некого "единоразового использования". Собрал схему, подстроил нужное надолго сопротивление и "забыл". Хотя такое устройство возможно использовать и как реостат (типа ручка громкости), только нужно будет приспособить к нему саму ручку.

Принцип действия реостата и его предназначение

Реостат или переменный резистор — это прибор с переменным сопротивлением. Увеличивая или уменьшая сопротивление реостата, можно влиять на напряжение и силу тока в цепи.

Реостат в защитном кожухе:

Чем реостат отличается от резистора

Резистор в отличие от реостата имеет постоянное сопротивление. Реостат со ступенчатой регулировкой может заменить собой несколько резисторов, и довольно большое количество резисторов, если имеет плавную регулировку.

Принцип действия

Принцип действия реостата основан на законе Ома, описывающем взаимосвязь между силой тока I, напряжением U и сопротивлением R.

Основными конструктивными частями реостата являются:

  • трубка (полый стержень) из диэлектрического материала (обычно из керамики);
  • металлическая проволока, намотанная на трубку виток к витку, концы проволоки выведены на контакты по обе стороны трубки;
  • металлическая штанга, расположенная над трубкой, на одной стороне штанги установлен контакт;
  • ползунок, закрепленный на штанге и двигающийся вдоль нее;
  • ползунок соприкасается с проводником скользящим контактом из графита или колесиком для уменьшения износа витков.

На рисунке стрелкой показано направление электрического тока. Если ползунок передвинуть в крайнее левое положение, то сопротивление прибора будет минимальным из всех возможных значений, так как ток пройдет через наименьшее количество витков.

Ползунок, находящийся посередине, говорит о том, что ток будет проходить через половину проводника. Если ползунок в крайнем правом положении, то длина задействованного проводника будет максимальной, и реостат будет иметь наибольшее сопротивление из возможных.

Разновидности реостатов

Какие бывают по назначению

Реостаты используют для:

  • уменьшения силы тока при запуске электродвигателя — пусковые;
  • в двигателях постоянного тока и при переменном напряжении в случае асинхронного электродвигателя с фазным ротором — пускорегулирующие;
  • создания необходимого сопротивление в электрической цепи — нагрузочные;
  • поглощения излишков энергии, например, при торможении электродвигателя — балластные.

По материалу проводника

Реостаты отличаются по материалу из которого изготовлен проводник:

  • проволочные металлические из сплавов с высоким удельным сопротивлением (нихром, константан, никелин), получившие наибольшее распространение;
  • из неметаллических проводящих материалов (графита и композитов на основе углерода) — пленочные или объемные;
  • ламповые с угольной или металлической нитью накаливания; лампы реостата параллельно подключены в цепь, и от количества ламп, включенных одновременно, зависит общее сопротивление прибора. Ламповые реостаты практически не применяются, так как их сопротивление зависит от степени разогрева нитей накаливания, что делает их недостаточно точными. Сейчас их используют в образовательных целях: в лабораториях и на уроках физики;
  • керамические — чаще всего используются при небольших мощностях;
  • жидкостные — представляют собой емкость с электролитом и погруженными в нее металлическими пластинами; величина сопротивления реостата регулируется при передвижении пластин: увеличивается с увеличением расстояния между пластинами и уменьшается при увеличении площади погруженной в электролит поверхности пластин. В жидкостных реостатах изменяется как длина, так и сечение проводника, благодаря этому они имеют максимально плавное регулирование. С помощью жидкостных реостатов управляют двигателями во взрывоопасной среде.

По конструктивному исполнению

По конструкции реостаты делятся на две группы: имеющие плавную или ступенчатую регулировку.

Реостаты с плавной регулировкой:

  • реохорды; эти простейшие реостаты представляют собой натянутый на раму отрезок проволоки и подключенный к ней подвижный контакт. На раму нанесена шкала, показывающая количество Ом сопротивления на единицу длины проволоки;
  • ползунковые реостаты; проволока из сплава с высоким удельным сопротивлением в один слой виток к витку наматывается на диэлектрический полый стержень. Витки изолированы друг от друга слоем окалины, который специально получается при производстве проволоки. Ползунок с присоединенным к нему контактом перемещается вдоль стержня и соскабливает слой окалины, поэтому электрический ток может протекать из проволоки на ползунок. Чем больше витков от одного контакта до другого, тем больше сопротивление. Такой реостат также имеет шаг изменения сопротивления, но он очень мал; количество шагов на весь проводник равно количеству витков проволоки. Такие реостаты часто применяются при обучении, так как наглядно демонстрируют принцип работы реостата;
  • торообразные реостаты с расположенным по окружности проводником и вращающимся вокруг своей оси движком, выполняющим ту же роль, что и ползунок; угол поворота обычно равен 270°; применяются в промышленности и электротранспорте; реостат в виде тора, как и ползунковый, меняет сопротивление практически без разрыва цепи;
  • два или несколько реостатов, связанных в один блок.

Реостаты со ступенчатой регулировкой:

  • рычажные: резисторы расположены на специальной раме, переключение между ними происходит с помощью рычага, в цепь подключается определенное количество резисторов. Кроме отсутствия плавной регулировки, недостатком является то, что каждое переключение сопровождается разрывом контура;
  • штепсельные — для регулировки сопротивления штепсель устанавливается в одно из гнезд; особенностью штепсельных реостатов является то, что при изменении параметров не происходит разрыв цепи. При нахождении штепселя в перемычке большая часть тока идет вне сопротивления. Количество возможных вариантов включения зависит от размера магазина. Вытаскиванием штепселя происходит перенаправление тока в резистор;
  • фишечные, в которых отдельные секции реостата замыкаются накоротко постановкой специальных фишек;
  • в ламповых реостатах — выключение ламп из цепи.

Как обозначается на схеме, особенности включения в цепь

Реостат подключают к электрической цепи только последовательно. В некоторых случаях возможно параллельное подключение двух реостатов. Один из контактов подключается к ползуну, с помощью которого и регулируется сопротивление.

Изображение реостата на схеме цепи:

На этой схеме R обозначает наличие сопротивления, стрелка схематически изображает подключение контакта к ползунку и возможность изменения сопротивления.

Также возможно изображение реостата как прямоугольника с диагональной стрелкой. Направление стрелки указывает, что сопротивление увеличивается при движении ползунка слева направо.

Другие способы схематического изображения реостатов:

Где применяются реостаты

Реостаты — это универсальные приборы и используются везде, где нужно регулировать силу тока или напряжение. Они широко применяются в промышленности, технике и автомобилестроении:

Реостаты

Когда мы собираем электрическую цепь и замыкаем ее, возникает электрический ток. Его характеризует величина, называемая силой тока. При последовательном соединении элементов она будет одинакова на всех участках цепи ($I = I_1 = I_2 = … = I_n$), а при параллельном — разветвляться ($I = I_1 + I_2 + … + I_n$). Но мы не можем изменить величину силы тока в цепи или на ее участке, не поменяв проводники или источник тока.

Тем не менее при проведении экспериментов было бы удобно иметь возможность изменять силу тока в цепи и следить за изменениями, которые при этом будут происходить. Также это удобно в различных электрических приборах и устройствах. Например, регулируя громкость звука аудиоустройств, мы меняем силу тока в их динамиках. Изменяя силу тока в электродвигателе швейной машинки, мы можем регулировать скорость его вращения.

В большинстве случаев для изменения силы тока в цепи используется специальный прибор — реостат. Именно об этом приборе мы и поговорим на данном уроке. Мы рассмотрим его устройство и действие, правила подключения в цепь.

Устройство простейшего реостата

Чтобы понять принцип работы любого реостата, рассмотрим самый простейший из них.

Для этого возьмем проволоку с достаточно большим удельным сопротивлением (например, нихромовую). Подключим ее последовательно в цепь, состоящую из источника тока, ключа и амперметра. Сделаем это, используя контакты A и B (рисунок 1).

Мы можем передвигать один из контактов — B. С помощью него мы можем изменять длину включенного в цепь участка проволоки AB. Другой участок проволоки при этом включен в цепь не будет.

При изменении длины участка AB будет изменяться сопротивление всей цепи. Каким образом?

Изменяя длину включенного в цепь участка проволоки, мы изменяем его сопротивление ($R = \frac<\rho l>$). Будет изменяться и общее сопротивление цепи, а следовательно, и сила тока в ней.

Ползунковый реостат

Те реостаты, которые применяются на практике, имеют более удобную и компактную форму. Они также содержат в своей основе проволоку с большим удельным сопротивлением.

Почему в реостатах используют проволоку с большим сопротивлением?
Взглянем еще раз на формулу для расчета сопротивления проводника: $R = \frac<\rho l>$. Если у нас будет проводник с малым удельным сопротивлением, то он должен быть очень длинным. Это не всегда удобно при изготовлении реостатов.

При проведении лабораторных работ вы чаще всего будете использовать ползунковый реостат (рисунок 2).

Как устроен ползунковый реостат?
В этом реостате стальная проволока 1 намотана на керамический цилиндр. То есть сам цилиндр проводить ток не будет, так как он сделан из диэлектрика. Сама проволока тоже покрыта диэлектриком — окалиной. Это сделано для того, чтобы витки были изолированы друг от друга.

Над такой обмоткой расположен металлический стержень 2. К нему крепится ползунок 3, который своими контактами 4 прижат к обмотке. Этот ползунок мы можем передвигать.

Когда мы его передвигаем, слой окалины на проволоке стирается, и ток проходит через ползунок и металлический стержень.

Реостат имеет две клеммы. Одна находится на конце металлического стержня (клемма 5), а вторая соединена с одним из концов обмотки и расположена на корпусе реостата (клемма 6). С помощью этих клемм реостат включают в цепь.

Использование реостата

При перемещении ползунка по стержню будет изменяться сопротивление всего реостата. То есть ползунок дает нам возможность увеличивать или уменьшать сопротивление цепи. Изменяя сопротивление, мы будем изменять и силу тока в цепи.

Передвигая ползунок и сокращая длину включенной в цепь обмотки, мы увеличим силу тока в цепи ($I = \frac$). Передвигая ползунок в другую сторону, мы увеличим длину подключенной обмотки и, наоборот, уменьшим силу тока.

Каждый реостат рассчитан на определенное сопротивление и на наибольшую допустимую силу тока. Эти значения указываются на самом приборе.

Превышать максимально допустимое значение силы тока не рекомендуется. Обмотка может очень сильно нагреться, иногда даже раскалиться. В такой ситуации реостат может перегореть — выйти из строя.

Как на схемах электрических цепей изображают реостат?
Реостаты имеют свой условный знак для обозначения на схемах электрической цепи (рисунок 3). Это обозначение ясно дает понять, в какую сторону нужно передвигать ползунок реостата, чтобы увеличить сопротивление в цепи (вправо).

Реже вы можете встретить другое обозначение реостата (рисунок 4).

Подключение реостата в электрическую цепь

Реостат включается в электрическую цепь последовательно. Пример такой цепи с подсоединенным реостатом изображен на схеме (рисунок 5).

Зажимы 1 и 2 подключаются к источнику тока. Им может быть как аккумулятор или гальванический элемент, так и розетка.

Если мы увеличим сопротивление реостата, то накал лампочки (на рисунке 4) уменьшится. Значит, сила тока тоже уменьшится. И, наоборот, при уменьшении сопротивления реостата лампочка будет гореть ярче.

Такой способ довольно часто используют в выключателях для регулировки интенсивности освещения.

Путь тока по реостату, включенному в цепь

На рисунке 6 показан путь тока по реостату, если клеммы 1 и 2 подключены в цепь. Электрический ток проходит по обмотке реостата, потом через скользящий контакт ползунка он проходит по металлическому стержню и снова попадает в электрическую цепь.

Упражнения

Упражнение №1

На рисунке 7 изображен реостат, с помощью которого можно менять сопротивление в цепи не плавно, а ступенями — скачками. Рассмотрите рисунок и по нему опишите, как действует такой реостат.

Такой реостат называется рычажным. В нижней его части расположен специальный рычаг, с помощью которого можно включать в цепь разное количество проводников (спиралей), соединенных последовательно друг с другом. От количества включенных в цепь спиралей будет зависеть их суммарное сопротивление и, следовательно, сила тока в цепи.

Упражнение №2

Если каждая спираль реостата (рисунок 7) имеет сопротивление, равное $3 \space Ом$, то какое сопротивление будет введено в цепь при положении переключателя, изображенном на рисунке? Куда надо поставить переключатель, чтобы с помощью этого реостата увеличить сопротивление цепи еще на $18 \space Ом$?

Спирали (проводники) соединены последовательно. Значит, суммарное сопротивление будет рассчитывать по формуле: $R = R_1 + R_2 + … + R_n$.

Посмотрим, сколько проводников включены в цепь при положении рычага на рисунке 7. В цепь включены 4 спирали (рисунок 8).

Так как сопротивление каждой спирали равно $3 \space Ом$, мы можем записать:
$R = 3 \space Ом + 3 \space Ом + 3 \space Ом + 3 \space Ом = 3 \space Ом \cdot 4 = 12 \space Ом$.
Значит, в цепь будет введено сопротивление, равное $12 \space Ом$.

Чтобы ответить на второй вопрос, определим количество спиралей, которые дадут сопротивление в $18 \space Ом$:
$n = \frac = \frac<18 \space Ом> <3 \space Ом>= 6$.

Посмотрим на рисунок 7 или 8. Чтобы включить в цепь еще 6 спиралей, нужно передвинуть рычаг в крайнее правое положение (рисунок 9).

Упражнение №3

В цепь включены: источник тока, ключ, электрическая лампа и ползунковый реостат. Нарисуйте схему этой цепи. Куда надо передвинуть ползунок реостата, чтобы лампа светилась ярче?

Схема такой цепи изображена на рисунке 10.

Чтобы лампа светилась ярче, нужно увеличить силу тока в цепи. А для этого нужно уменьшить сопротивление ($I = \frac$). Для этого необходимо передвинуть ползунок реостата влево. Так мы уменьшим длину включенной в цепь обмотки, что и приведет к уменьшению сопротивления ($R = \frac<\rho l>$).

Упражнение №4

Требуется изготовить реостат на $20 \space Ом$ из никелиновой проволоки площадью сечения $3 \space мм^2$. Какой длины проволока потребуется для этого?

Дано:
$R = 20 \space Ом$
$S = 3 \space мм^2$
$\rho = 0.4 \frac<Ом \cdot мм^2><м>$

Показать решение и ответ

Решение:

Запишем формулу для расчета сопротивления проводника: $R = \frac<\rho l>$.

Получается, что для изготовления реостата на $20 \space Ом$ потребуется $150 \space м$ никелиновой проволоки.

Как на схемах электрических цепей изображают реостат

В схемах электросетей все элементы имеют условные обозначения, в том числе и резистор. Это важный компонент, который используется в разных частях сети, в зависимости от выполняемой функции. Как на схемах электрических цепей изображают реостат, расскажем дальше.

Понятие и назначение

Реостат (резистор) – управляющий элемент электроцепей. С его помощью регулируется величина силы тока и напряжения. Он выпускается в разных вариантах и используется в электронике, радиотехнике, автомобилестроении и т.д.

Назначение резисторов прямо зависит от разновидности:

  1. Пусковые – применяются для включения электродвигателей.
  2. Пускорегулирующие – запускают двигатели и контролируют силу тока.
  3. Балластные или нагрузочные – поглощают энергию, которая используется для регулировки нагрузки в генераторах, т.е. формируют необходимое сопротивление в сети.
  4. Поглощающие – выводят лишнюю энергию из электромашин.
  5. Потенциометры – особая группа устройств, используемых для раздела напряжения.

Благодаря наличию прибора в цепи снижается вероятность скачков тока и перегрузки оборудования, что увеличивает период эксплуатации техники.

Устройство и принцип работы

Прежде чем понять, как на электрической схеме обозначается реостат, необходимо узнать его комплектацию и принцип работы.

Конструкция прибора состоит из:

  • Керамической трубки (цилиндра) – полая внутри для снижения температуры в процессе прохождения электроэнергии.
  • Медной проволоки – наматывается на трубку, а ее концы выводятся на контакты.
  • Металлической штанги – размещена выше трубки, на одной из сторон компонента есть контакт.
  • Движущийся ползунок или контакт – закрепляется на штанге.

Ползунковый реостат

Несмотря на выпуск многих разновидностей, принцип функционирования у всех приборов примерно одинаковый. Подключение возможно с помощью клемм, размещенных с обеих сторон трубки. Ток идет по всему периметру, в зависимости от местонахождения ползунка.

Если он расположен в центре устройства, то ток пройдет только до середины. Если ползунок размещен в конце, то ток проходит полностью, формируя высокое напряжение. В большинстве случаев задействуется только часть плоскости, т.е. бегунок не устанавливается на краю цилиндра. Изменение его месторасположения пропорционально колебанию силы тока.

Обозначение реостата на схеме электрической цепи

По стандартам РФ условные графические обозначения устройства на схемах должны соответствовать ГОСТ 2.728-74. В соответствии с ним резисторы обозначаются так:

Обозначение резистора на схеме согласно ГОСТу

Нелинейные, непостоянные и подстроенные резисторы обозначаются следующим образом:

Нелинейные, непостоянные и подстроенные резисторы на схеме

Зная обозначение, можно сделать рисунок или начертить схему электрической цепи, где используется реостат.

Как прибор включается в сеть

Включение устройства в цепь осуществляется двумя способами: последовательно и параллельно. При последовательном подключении сопротивление оборудования складывается. Общее сопротивление будет больше любого отдельно взятого.

Сопротивление резистора

Схема электрических цепей, где обозначают реостаты с параллельным подключением, выглядит так:

Схема электрических цепей, где обозначают реостаты с параллельным подключением

При таком соединении складываются величины, обратные сопротивлению, т.е. общая проводимость состоит из проводимостей каждого компонента.

Представленные чертежи предназначены для простейшего оборудования. Чем больше элементов они будут включать, тем сложнее устройство, созданное на их основе.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *