Как проверить кварц осциллографом
Перейти к содержимому

Как проверить кварц осциллографом

  • автор:

Кварцевый резонатор — структура, принцип работы, как проверить

Кварцевый резонаторСовременная цифровая техника требует высокой точности, поэтому совсем неудивительно, что практически любое цифровое устройство, какое бы не попалось сегодня на глаза обывателю, содержит внутри кварцевый резонатор.

Кварцевые резонаторы на различные частоты необходимы в качестве надежных и стабильных источников гармонических колебаний, чтобы цифровой микроконтроллер мог бы опереться на эталонную частоту, и оперировать с ней в дальнейшем, в процессе работы цифрового устройства. Таким образом, кварцевый резонатор — это надежная замена колебательному LC-контуру.

Кварцевый резонатор

Если рассмотреть простой колебательный контур, состоящий из конденсатора и катушки индуктивности, то быстро выяснится, что добротность такого контура в схеме не превысит 300, к тому же емкость конденсатора будет плавать в зависимости от температуры окружающей среды, то же самое произойдет и с индуктивностью.

Не даром есть у конденсаторов и катушек такие параметры как ТКЕ — температурный коэффициент емкости и ТКИ — температурный коэффициент индуктивности, показывающие, насколько изменяются главные параметры этих компонентов с изменением их температуры.

В отличие от колебательных контуров, резонаторы на базе кварца обладают недостижимой для колебательных контуров добротностью, которая измеряется значениями от 10000 до 10000000, причем о температурной стабильности кварцевых резонаторов речи не идет, ведь частота остается постоянной при любом значении температуры, как правило из диапазона от -40°C до +70°C.

Так, благодаря высоким показателям температурной стабильности и добротности, кварцевые резонаторы применяются всюду в радиотехнике и цифровой электронике.

Для задания микроконтроллеру или процессору тактовой частоты, ему всегда необходим генератор тактовой частоты, на который он мог бы надежно опереться, и генератор этот всегда нужен высокочастотный и при том высокоточный. Здесь то и приходит на помощь кварцевый резонатор. Конечно, в некоторых применениях можно обойтись пьезокерамическими резонаторами с добротностью 1000, и таких резонаторов достаточно для электронных игрушек и бытовых радиоприемников, но для более точных устройств необходим кварц.

В основе работы кварцевого резонатора — пьезоэлектрический эффект, возникающий на кварцевой пластинке. Кварц представляет собой полиморфную модификацию диоксида кремния SiO2, и встречается в природе в виде кристаллов и гальки. В свободном виде в земной коре кварца около 12%, кроме того в виде смесей в составе других минералов также содержится кварц, и в общем в земной коре более 60% кварца (массовая доля).

Для создания резонаторов подходит низкотемпературный кварц, обладающий ярко выраженными пьезоэлектрическими свойствами. Химически кварц весьма устойчив, и растворить его можно лишь в гидрофторидной кислоте. По твердости кварц превосходит опал, но до алмаза не дотягивает.

При изготовлении кварцевой пластинки, от кристалла кварца под строго заданным углом вырезают кусочек. В зависимости от угла среза полученная кварцевая пластинка будет отличаться по своим электромеханическим свойствам.

От типа среза зависит многое: частота, температурная стабильность, устойчивость резонанса и отсутствие либо наличие паразитных резонансных частот. На пластинку затем наносят с обеих сторон по слою металла, коим может быть никель, платина, серебро или золото, после чего жесткими проволочками крепят пластинку в основание корпуса кварцевого резонатора. Последний шаг — корпус герметично собирают.

Устройство кварцевого резонатора

Так получается колебательная система, обладающая собственной резонансной частотой, и кварцевый резонатор, полученный таким образом, обладает собственной резонансной частотой, определяемой электромеханическими параметрами.

Теперь если приложить к металлическим электродам пластики переменное напряжение данной резонансной частоты, то проявится явление резонанса, и амплитуда гармонических колебаний пластинки весьма значительно возрастет. При этом сопротивление резонатора сильно понизится, то есть процесс аналогичен происходящему в последовательном колебательном контуре. В силу высокой добротности такого «колебательного контура», энергетические потери при его возбуждении на резонансной частоте пренебрежимо малы.

На эквивалентной схеме: C2 – статическая электроемкость пластинок с держателями, L – индуктивность, С1 — емкость, R – сопротивление, отражающие электромеханические свойства установленной пластинки кварца. Если убрать монтажные элементы, останется последовательный LC-контур.

В процессе монтажа на печатную плату, кварцевый резонатор нельзя перегревать, ведь конструкция его довольно хрупка, и перегрев может привести к деформации электродов и держателя, что непременно отразится на работе резонатора в готовом устройстве. Если же разогреть кварц до 5730°C, он вовсе утратит свои пьезоэлектрические свойства, но, к счастью, нагреть элемент паяльником до такой температуры невозможно.

Обозначение кварцевого резонатора на схеме похоже на обозначение конденсатора с прямоугольником между пластинами (кварцевая пластинка), и с надписью «ZQ» или «Z».

Часто причиной повреждения кварцевого резонатора является падение или сильный удар устройства, в котором он установлен, и тогда необходимо заменить резонатор на новый с той же резонансной частотой. Такие повреждения свойственны малогабаритным приборам, которые легко уронить. Однако, по статистике, подобные повреждения кварцевых резонаторов встречаются крайне редко, и чаще неисправность прибора оказывается вызвана иной причиной.

Пробник для проверки кварцевых резонаторов

Чтобы проверить кварцевый резонатор на исправность, можно собрать небольшой пробник, который поможет не только убедиться в работоспособности резонатора, но и увидеть его резонансную частоту. Схема пробника представляет собой типичную схему кварцевого генератора на одном транзисторе.

Включив резонатор между базой и минусом (можно через защитный конденсатор на случай короткого замыкания в резонаторе), остается измерить частотомером резонансную частоту. Эта схема подойдет и для предварительной настройки колебательных контуров.

Когда схема включена, исправный резонатор станет способствовать генерации колебаний, и на эмиттере транзистора можно будет наблюдать переменное напряжение, частота которого будет соответствовать основной резонансной частоте тестируемого кварцевого резонатора.

Подключив к выходу пробника частотомер, пользователь сможет наблюдать эту резонансную частоту. Если частота стабильна, если небольшой нагрев резонатора поднесенным паяльником не приводит к сильному уплыванию частоты, то резонатор исправен. Если же генерации не будет, или частота будет плавать или окажется совсем другой, чем должна быть для тестируемого компонента, то резонатор неисправен, и его следует заменить.

Данный пробник удобен и для предварительной настройки колебательных контуров, в этом случае конденсатор C1 обязателен, хотя при проверке резонаторов его можно из схемы исключить. Контур просто подключается вместо резонатора, и схема начинает генерировать колебания аналогичным образом.

Пробник собранный по приведенной схеме замечательно работает на частотах от 15 до 20 МГц. Для иных диапазонов вы всегда можете поискать схемы в интернете, благо их там много, как на дискретных компонентах, так и на микросхеме.

Андрей Повный, редактор сайта Электрик Инфо

Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » Практическая электроника

Подписывайтесь на канал в Telegram про электронику для профессионалов и любителей: Практическая электроника на каждый день

Как проверить кварцевый резонатор.

Как проверить кварцевый резонатор.

Хотелось бы несколько слов сказать про гармоники, Гармоники — колебания на частоте кратной основной, если основная частота кварцевого резонатора 8MHz, то гармониками в этом случае называют колебания на частотах: 24MHz – 3-я гармоника, 40MHz – 5-я гармоника и так далее. У кого-то мог возникнуть вопрос, почему в примере только нечётные гармоники, потому что кварц на чётных гармониках работать не может.

Кварцевого резонатора на частоту выше 32MHz у меня не нашлось, но даже этот результат можно считать отличным.
Очевидно, что для начинающего радиолюбителя предпочтителен способ без использования дорогостоящего осциллографа, поэтому ниже изображена схема для проверки кварца с помощью светодиода. Максимальная частота кварца, который удалось проверить с помощью этой схемы составляет 14MHz, следующий номинал который у меня был это 32MHz, но с ним генератор уже не запустился, но от 14MHz до 32MHz большой промежуток, скорее всего до 20MHz будет работать.

Как проверить кварцевый резонатор осциллографом

Колебаниям уделяется одна из самых важных ролей в современном мире. Так, даже существует так называемая теория струн, которая утверждает, что всё вокруг нас – это просто волны. Но есть и другие варианты использования данных знаний, и одна из них – это кварцевый резонатор. Так уж бывает, что любая техника периодически выходит из строя, и они тут не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как надо?

О кварцевом резонаторе замолвим слово

Кварцевым резонатором называют аналог колебательного контура, базирующегося на индуктивности и ёмкости. Но между ними есть разница в пользу первого. Как известно, для характеристики колебательного контура используют понятие добротности. В резонаторе на основе кварцев она достигает очень высоких значений – в границах 10 5 –10 7 . К тому же он более эффективен для всей схемы при изменении температуры, что сказывается на большем сроке службы таких деталей, как конденсаторы. Обозначение кварцевых резонаторов на схеме осуществляется в виде вертикально расположенного прямоугольника, который с обеих сторон «зажат» пластинами. Внешне на чертежах они напоминают гибрид конденсатора и резистора.

Как работает кварцевый резонатор?

Из кристалла кварца вырезается пластинка, кольцо или брусок. На него наносится как минимум два электрода, которые являются проводящими полосками. Пластинка закрепляется и имеет свою собственную резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг или изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна или очень близка к собственным значениям, то требуется меньшее количество энергии при значительных отличиях для поддержания функционирования. Теперь можно переходить к освещению главной проблемы, из-за чего, собственно, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 способа, о которых и будет рассказано.

Способ № 1

Здесь транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р). Он фильтрует постоянную составляющую, а затем сам импульс передаёт на аналоговый частотомер, который построен на двух диодах Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все остальные элементы служат для стабильности работы схемы и чтобы ничего не перегорело. Зависимо от установленной частоты может меняться напряжение, которое есть на конденсаторе С4. Это довольно приблизительный способ и его преимущество – легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но существуют определённые ограничения: пробовать её на данной схеме следует только в тех случаях, если она находится в приблизительных рамках от трех до десяти МГц. Проверка кварцевых резонаторов, что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но далее будет рассмотрен чертеж, у которого диапазон – 1-10 МГц.

Способ № 2

Для увеличения точности можно к выходу генератора подключить частотомер или осциллограф. Тогда можно будет рассчитать искомый показатель, используя фигуры Лиссажу. Но имейте в виду, что в таких случаях кварц возбуждается, причем как на гармониках, так и на основной частоте, что, в свою очередь, может дать значительное отклонение. Посмотрите на приведённые схемы (эту и предыдущую). Как видите, существуют разные способы искать частоту, и тут придётся экспериментировать. Главное – соблюдайте технику безопасности.

Проверка сразу двух кварцевых резонаторов

Данная схема позволит определить, работоспособны ли два кварцевых резистора, которые функционируют в рамках от одного до десяти МГц. Также благодаря ей можно узнать сигналы толчков, которые идут между частотами. Поэтому вы сможете не только определить работоспособность, но и подобрать кварцевые резисторы, которые наиболее подходят друг другу по своим показателям. Схема реализована с двумя задающими генераторами. Первый из них работает с кварцевым резонатором ZQ1 и реализован на транзисторе КТ315Б. Чтобы проверить работоспособность, напряжение на выходе должно быть больше 1,2 В, и следует нажать на кнопку SB1. Указанный показатель соответствует сигналу высокого уровня и логической единице. Зависимо от кварцевого резонатора может быть увеличено необходимое значение для проверки (можно напряжение каждую проверку повышать на 0,1А-0,2В к рекомендованному в официальной инструкции по использованию механизма). При этом выход DD1.2 будет иметь 1, а DD1.3 – 0. Также, сообщая о работе кварцевого генератора, будет гореть светодиод HL1. Второй механизм работает аналогично, и о нём будет сообщать HL2. Если их запустить одновременно, то ещё будет гореть светодиод HL4.

Когда сравниваются частоты двух генераторов, то их выходные сигналы с DD1.2 и DD1.5 направляются на DD2.1 DD2.2. На выходах вторых инверторов схема получает сигнал с широтно-импульсной модуляцией, чтобы затем сравнить показатели. Увидеть визуально это можно с помощью мигания светодиода HL4. Для улучшения точности добавляют частотомер или осциллограф. Если реальные показатели отличаются на килогерцы, то для определения более высокочастотного кварца нажмите на кнопку SB2. Тогда первый резонатор уменьшит свои значения, и тон биений световых сигналов будет меньше. Тогда можно уверенно сказать, что ZQ1 более высокочастотный, нежели ZQ2.

При проверке всегда:

  1. Прочитайте инструкцию, которую имеет кварцевый резонатор;
  2. Придерживайтесь техники безопасности.

Возможные причины выхода из строя

Существует довольно много способов вывести свой кварцевый резонатор из строя. С некоторыми самыми популярными стоит ознакомиться, чтобы в будущем избежать каких-то проблем:

  1. Падения с высоты. Самая популярная причина. Помните: всегда необходимо содержать рабочее место в полном порядке и следить за своими действиями.
  2. Присутствие постоянного напряжения. В целом кварцевые резонаторы не боятся его. Но прецеденты были. Для проверки работоспособности включите последовательно конденсатор на 1000 мФ – этот шаг возвратит его в строй или позволит избежать негативных последствий.
  3. Слишком большая амплитуда сигнала. Решить данную проблему можно разными способами:
  • Увести частоту генерации немного в сторону, чтобы она отличалась от основного показателя механического резонанса кварца. Это более сложный вариант.
  • Понизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
  • Проверить, вышел ли кварцевый резонатор действительно из строя. Так, причиной падения активности может быть флюс или посторонние частицы (необходимо в таком случае его качественно очистить). Также может быть, что слишком активно эксплуатировалась изоляция, и она потеряла свои свойства. Для контрольной проверки по этому пункту можно на КТ315 спаять «трехточку» и проверить осцом (одновременно можно сравнить активность).

Заключение

В статье было рассмотрено, как проверить работоспособность таких элементов электрических схем, как частота кварцевого резонатора, а также их свойство. Были обговорены способы установления необходимой информации, а также возможные причины, почему они выходят из строя во время эксплуатации. Но для избегания негативных последствий всегда трудитесь с ясной головой – и тогда работа кварцевого резонатора будет меньше беспокоить.

Колебаниям уделяется одна из самых важных ролей в современном мире. Так, даже существует так называемая теория струн, которая утверждает, что всё вокруг нас – это просто волны. Но есть и другие варианты использования данных знаний, и одна из них – это кварцевый резонатор. Так уж бывает, что любая техника периодически выходит из строя, и они тут не исключение. Как убедиться, что после негативного инцидента она всё ещё работает как надо?

О кварцевом резонаторе замолвим слово

Кварцевым резонатором называют аналог колебательного контура, базирующегося на индуктивности и ёмкости. Но между ними есть разница в пользу первого. Как известно, для характеристики колебательного контура используют понятие добротности. В резонаторе на основе кварцев она достигает очень высоких значений – в границах 10 5 –10 7 . К тому же он более эффективен для всей схемы при изменении температуры, что сказывается на большем сроке службы таких деталей, как конденсаторы. Обозначение кварцевых резонаторов на схеме осуществляется в виде вертикально расположенного прямоугольника, который с обеих сторон «зажат» пластинами. Внешне на чертежах они напоминают гибрид конденсатора и резистора.

Как работает кварцевый резонатор?

Из кристалла кварца вырезается пластинка, кольцо или брусок. На него наносится как минимум два электрода, которые являются проводящими полосками. Пластинка закрепляется и имеет свою собственную резонансную частоту механических колебаний. Когда на электроды подаётся напряжения, то из-за пьезоэлектрического эффекта происходит сжатие, сдвиг или изгибание (зависимо от того, как вырезался кварц). Колеблющийся кристалл в таких случаях делает работу подобно катушке индуктивности. Если частота напряжения, что подаётся, равна или очень близка к собственным значениям, то требуется меньшее количество энергии при значительных отличиях для поддержания функционирования. Теперь можно переходить к освещению главной проблемы, из-за чего, собственно, и пишется эта статья про кварцевый резонатор. Как проверить его работоспособность? Было отобрано 3 способа, о которых и будет рассказано.

Способ № 1

Здесь транзистор КТ368 играет роль генератора. Его частота определяется кварцевым резонатором. Когда поступает питание, то генератор начинает работать. Он создаёт импульсы, которые равны частоте его основного резонанса. Их последовательность проходит через конденсатор, который обозначен как С3 (100р). Он фильтрует постоянную составляющую, а затем сам импульс передаёт на аналоговый частотомер, который построен на двух диодах Д9Б и таких пассивных элементах: конденсаторе С4 (1n), резисторе R3 (100к) и микроамперметре. Все остальные элементы служат для стабильности работы схемы и чтобы ничего не перегорело. Зависимо от установленной частоты может меняться напряжение, которое есть на конденсаторе С4. Это довольно приблизительный способ и его преимущество – легкость. И, соответственно, чем выше напряжение, тем большая частота резонатора. Но существуют определённые ограничения: пробовать её на данной схеме следует только в тех случаях, если она находится в приблизительных рамках от трех до десяти МГц. Проверка кварцевых резонаторов, что выходит за грань этих значений, обычно не подпадает под любительскую радиоэлектронику, но далее будет рассмотрен чертеж, у которого диапазон – 1-10 МГц.

Способ № 2

Для увеличения точности можно к выходу генератора подключить частотомер или осциллограф. Тогда можно будет рассчитать искомый показатель, используя фигуры Лиссажу. Но имейте в виду, что в таких случаях кварц возбуждается, причем как на гармониках, так и на основной частоте, что, в свою очередь, может дать значительное отклонение. Посмотрите на приведённые схемы (эту и предыдущую). Как видите, существуют разные способы искать частоту, и тут придётся экспериментировать. Главное – соблюдайте технику безопасности.

Проверка сразу двух кварцевых резонаторов

Данная схема позволит определить, работоспособны ли два кварцевых резистора, которые функционируют в рамках от одного до десяти МГц. Также благодаря ей можно узнать сигналы толчков, которые идут между частотами. Поэтому вы сможете не только определить работоспособность, но и подобрать кварцевые резисторы, которые наиболее подходят друг другу по своим показателям. Схема реализована с двумя задающими генераторами. Первый из них работает с кварцевым резонатором ZQ1 и реализован на транзисторе КТ315Б. Чтобы проверить работоспособность, напряжение на выходе должно быть больше 1,2 В, и следует нажать на кнопку SB1. Указанный показатель соответствует сигналу высокого уровня и логической единице. Зависимо от кварцевого резонатора может быть увеличено необходимое значение для проверки (можно напряжение каждую проверку повышать на 0,1А-0,2В к рекомендованному в официальной инструкции по использованию механизма). При этом выход DD1.2 будет иметь 1, а DD1.3 – 0. Также, сообщая о работе кварцевого генератора, будет гореть светодиод HL1. Второй механизм работает аналогично, и о нём будет сообщать HL2. Если их запустить одновременно, то ещё будет гореть светодиод HL4.

Когда сравниваются частоты двух генераторов, то их выходные сигналы с DD1.2 и DD1.5 направляются на DD2.1 DD2.2. На выходах вторых инверторов схема получает сигнал с широтно-импульсной модуляцией, чтобы затем сравнить показатели. Увидеть визуально это можно с помощью мигания светодиода HL4. Для улучшения точности добавляют частотомер или осциллограф. Если реальные показатели отличаются на килогерцы, то для определения более высокочастотного кварца нажмите на кнопку SB2. Тогда первый резонатор уменьшит свои значения, и тон биений световых сигналов будет меньше. Тогда можно уверенно сказать, что ZQ1 более высокочастотный, нежели ZQ2.

При проверке всегда:

  1. Прочитайте инструкцию, которую имеет кварцевый резонатор;
  2. Придерживайтесь техники безопасности.

Возможные причины выхода из строя

Существует довольно много способов вывести свой кварцевый резонатор из строя. С некоторыми самыми популярными стоит ознакомиться, чтобы в будущем избежать каких-то проблем:

  1. Падения с высоты. Самая популярная причина. Помните: всегда необходимо содержать рабочее место в полном порядке и следить за своими действиями.
  2. Присутствие постоянного напряжения. В целом кварцевые резонаторы не боятся его. Но прецеденты были. Для проверки работоспособности включите последовательно конденсатор на 1000 мФ – этот шаг возвратит его в строй или позволит избежать негативных последствий.
  3. Слишком большая амплитуда сигнала. Решить данную проблему можно разными способами:
  • Увести частоту генерации немного в сторону, чтобы она отличалась от основного показателя механического резонанса кварца. Это более сложный вариант.
  • Понизить количество Вольт, что питают сам генератор. Это более лёгкий вариант.
  • Проверить, вышел ли кварцевый резонатор действительно из строя. Так, причиной падения активности может быть флюс или посторонние частицы (необходимо в таком случае его качественно очистить). Также может быть, что слишком активно эксплуатировалась изоляция, и она потеряла свои свойства. Для контрольной проверки по этому пункту можно на КТ315 спаять «трехточку» и проверить осцом (одновременно можно сравнить активность).

Заключение

В статье было рассмотрено, как проверить работоспособность таких элементов электрических схем, как частота кварцевого резонатора, а также их свойство. Были обговорены способы установления необходимой информации, а также возможные причины, почему они выходят из строя во время эксплуатации. Но для избегания негативных последствий всегда трудитесь с ясной головой – и тогда работа кварцевого резонатора будет меньше беспокоить.

Простой и надежный способ проверки кварцевых резонаторов на исправность, простая схема генератора для проверки кварцев. 90% неисправностей кварцевых резонаторов приходится на пульты дистанционного управления вот на них мы пока и остановимся. Я хочу предложить свой метод проверенный не раз.

На первом этапе не нужны вообще никакие приборы! Нам понадобитсялюбой радиоприёмник или на худой конец музыкальный центр если нет приёмника, но тогда к центру нужно подключитъ наружную антенну к разъёму СВ-КВ что не нужно делать с радиоприёмником по причине того, что там есть магнитная антенна.

Включаем на средние волны (СВ), можно и на короткие но там похуже, подносим пульт к приёмнику или к антенне музыкального центра, и нажимаем кнопки. В приёмнике мы услышим характерный звук импульсов, -значит кварцевый резонатор и микросхема с обвязкой в пульте уже исправны. После этого придётся раскрыть пульт и проверить светодиод.

Если в приёмнике мы ничего не слышим? Не хочу останавливаться на питании, думаю каждый с этого начинает любой ремонт. Выпаиваем аккуратно кварц, не перегревая его.

Теперь мы подошли к второму этапу непосредственно проверки кварцевого резонатора можно при помощи мультиметра 890 серии который очень распространён. Вставляем его в гнездо «Сх» и измеряем его ёмкость, при исправном резонаторе прибор покажет сотни пФ при неисправном единицы максимум десятки. Вот пример (частота резонатора – ёмкость на приборе) 440кГц-345пФ 500кГц-490пФ 4мГц-45пФ.

Опираться на эти значения как понимаете можно относительно так как погрешность у этого метода 10-15%. Но мы ведь с самого начала ставили цель проверить рабочий-нерабочий и не более.

Рис.1. Схема генератора для проверки кварцев.

Есть ещё один способ, он самый точный но нужно взятъ в руки паяльник и спаять очень простую схемку (рис.1) на микросхеме К155ЛАЗ. В схеме два резистора 330-670 Ом конденсатор любой. Вот собираем эту схемку и если к конденсатору подключим вход частотомера то узнаем частоту кварца с точностью, с которой измеряет Ваш частотомер.

А если частотомера нет тоже не огорчайтесь, возьмите всё тот же приёмник, к свободной ножке конденсатора прикрутите 0,5-1м провода, прообраз антенны, и слушайте на приемнике сигнал генератора в зависимости от частоты кварца на основной или 3 или 5 гармонике, то есть если у Вас, к примеру кварц на 440кГц то сигнал генератора Вы услышите на 440кГц,1320кГц и 2200кГц и так далее, это принцип кварцевого калибратора которые раньше стояли почти во всех военных радиоприёмниках.

Тема: Китайский осциллограф или как посмотреть сигнал на кварце 4МГц

Китайский осциллограф или как посмотреть сигнал на кварце 4МГц

Речь о юсб-приставке Hantek 6022BE. Очень специфический прибор. Долго разбирался с его "особенностями" и буквально пару дней назад он меня разочаровал окончательно. Дело вот в чем. Он неадекватно показывал частоту 4MГц на кварце модуля стиральной машины Ардо (и не только там). Но обо всем по порядку. Особенности этой штуки (ласково, конечно же, на языке другое непечатное слово) ниже.

1) Максимальное входное напряжение в режиме ослабления 1:1 составляет 35(37)В. Но чтобы сигнал отображался адекватно (без обрезания и инвертирования), он должен быть не более 5В по амплитуде (т.е. всего 10В при синусоидальной форме). Ну, хрен с ним, не страшно, есть же щупы с ослаблением 1:10 и 1:100. Просто нужно помнить об этой особенности.

2) Частота дискретизации жестко привязана к времени горизонтальной развертки (чем больше значение время/деление, тем меньше эта частота). Такой маленький ньюанс.

3) Самое главное. При аналоговой полосе пропускания в 20МГц периодический! сигнал в 4MГц посмотреть так и не удалось, хотя даже три режима интерполяции доступны, ага. При этом более-менее правильную амплитуду сигнала можно было увидеть только на развертке 1мкс/дел — около 5В. Не знаю точно, какой амплитудой там качают кварц, но явно не 300мВ, как это отображалось на других развертках. В этом режиме частота дискретизации максимальная — 48МГц, но импульсов я так и не увидел, только фронт, и то нестабильно, потому что синхронизации просто не было ни в каком режиме. Частоту сигнала Хантек отображал. Иногда. Когда не рисовал звезды в поле значения (мол, хозяин, мне грустно от таких частот, чего ты хочешь?). То 12МГц, то 9. На долю секунды, потом опять звездочки. На более медленных развертках можно было узреть вот такую картину:

Нет, вопросов, конечно же, не будет. И так все ясно. Осталась твердая уверенность, что изделий Hantek больше в перечне моего инструмента не появится. И дело даже не в соотношении возможности/стоимость. А в наглом обмане покупателя. Люди пекрасно снимают сигнал с кварца щупом с ослаблением 1:10 (чтобы не сорвать генерацию) другими приборами, как это пытался сделать и я. Но — не получилось. Жаль.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *