ДИОДЫ
Диод является двух электродным полупроводниковым прибором. Это соответственно Анод (+) или положительный электрод и Катод (-) или отрицательный электрод. Принято говорить, что диод имеет (p) и (n) области, они соединены с выводами диода. Вместе они образуют p-n переход. Разберем подробнее, что же такое этот p-n переход. Полупроводниковый диод представляет собой очищенный кристалл кремния или германия, в котором в область (p) введена акцепторная примесь, а в область (n) введена донорная примесь. В качестве донорной примеси могут выступать ионы Мышьяка, а в качестве акцепторной примеси ионы Индия. Основное свойство диода, это возможность пропускать ток только в одну сторону. Рассмотрим приведенный ниже рисунок:
Пример односторонней проводимости диода
На этом рисунке видно, что если диод включить Анодом к плюсу питания и Катодом к минусу питания, то диод находится в открытом состоянии и проводит ток, так как его сопротивление незначительно. Если диод включен Анодом к минусу, а Катодом к плюсу, то сопротивление диода будет очень большим, и тока в цепи практически не будет, вернее он будет, но настолько маленьким, что им можно пренебречь.
Иллюстрация прямой обратный ток диода
Подробнее можно узнать, посмотрев следующий график, Вольт-Амперную характеристику диода:
Вольт-амперная характеристика диода
В прямом включении, как мы видим из этого графика диод имеет небольшое сопротивление, и соответственно хорошо пропускает ток, а в обратном включении до определенной величины напряжения диод закрыт, имеет большое сопротивление и практически не проводит ток. В этом легко убедиться, если есть под рукой диод и мультиметр, нужно поставить прибор в положение звуковой прозвонки, либо установив переключатель мультиметра напротив значка диода, в крайнем случае, можно попробовать прозвонить диод, установив переключатель на положение 2 КОм измерения сопротивления. Изображается на принципиальных схемах диод так, как на рисунке ниже, запомнить, где какой вывод легко: ток у нас, как известно, всегда течет от плюса к минусу, так вот треугольник в изображении диода как бы показывает своей вершиной направление тока, то есть от плюса к минусу.
Соединив красный щуп мультиметра с Анодом, мы можем убедиться в том, что диод пропускает ток в прямом направлении, на экране прибора будут цифры равные
800-900 или близкие к этому. Подключив щупы наоборот, черный щуп к аноду, красный к катоду мы увидим на экране единицу, что подтверждает, в обратном включении диод не пропускает ток. Рассмотренные выше диоды бывают плоскостные и точечные. Плоскостные диоды рассчитаны на среднюю и большую мощность и используют их в основном в выпрямителях. Точечные диоды рассчитаны на незначительную мощность и применяются в детекторах радиоприемников, могут работать на высоких частотах.
Плоскостной и точечный диод
Какие бывают типы диодов ?
Схематическое изображение диодов
Фото выпрямительного диода
А) На фото изображен рассмотренный нами выше диод.
Стабилитрон изображение на схеме
Б) На этом рисунке изображён стабилитрон, (иностранное название диод Зенера), он используется при обратном включении диода. Основная цель: поддержание напряжения стабильным.
Двуханодный стабилитрон – изображение на схеме
В) Двухсторонний (или двуханодный) стабилитрон. Плюс этого стабилитрона в том, что его можно включать вне зависимости от полярности.
Г) Туннельный диод, может использоваться в качестве усилительного элемента.
Д) Обращенный диод, применяется в высокочастотных схемах для детектирования.
Е) Варикап, применяется как конденсатор переменной ёмкости.
Ж) Фотодиод, при освещении прибора в цепи, подключенной к нему, возникает ток из-за возникновения пар электронов и дырок.
З) Светодиоды, всем известные, и наверное наиболее широко применяемые приборы, после обычных выпрямительных диодов. Применяются во многих электронных устройствах для индикации и не только.
Выпрямительные диоды выпускаются также в виде диодных мостов, разберем, что это такое – это соединенные для получения постоянного (выпрямленного) тока четыре диода в одном корпусе. Подключены они по Мостовой схеме, стандартной для выпрямителей:
Схема диодного моста
Имеют четыре промаркированных вывода: два для подключения переменного тока, и плюс с минусом. На фото изображен диодный мост КЦ405:
Фото диодный мост
А теперь давайте рассмотрим подробнее область применения светодиодов. Светодиоды (вернее светодиодная лампа) выпускаются промышленностью и для освещения помещений, как экономичный и долговечный источник света, с цоколем позволяющим вкрутить их в обычный патрон для ламп накаливания.
Светодиодная лампа фото
Светодиоды существуют в разных корпусах, в том числе и SMD.
smd светодиод фото
Выпускаются и так называемые RGB светодиоды, внутри них находятся три кристалла светодиодов с разным свечением Red-Green-Blue соответственно Красный – Зеленый – Голубой, эти светодиоды имеют четыре вывода и позволяют путем смешения цветов получить видимым любой цвет.
Подключение RGB ленты
Эти светодиоды в SMD исполнении часто выпускаются в виде лент с уже установленными резисторами и позволяют подключать их напрямую к источнику питания 12 вольт. Можно для создания световых эффектов использовать специальный контроллер:
Светодиоды при использовании не любят, когда на них подается напряжение питания выше того, на которое они рассчитаны и могут перегореть сразу или спустя какое-то время, поэтому напряжение источника питания должно быть рассчитано по формулам. Для советских светодиодов типа АЛ-307 напряжение питания должно подаваться примерно 2 вольта, на импортные 2-2,5 вольта, естественно с ограничением тока. Для питания светодиодных лент, если не используется специальный контроллер, необходимо стабилизированное питание. Материал подготовил – AKV.
В какую сторону диод пропускает ток
Где используются диоды
- Диодные мосты. В их составе может находиться от 4 до 12 диодов, которые последовательно соединены друг с другом. Они применяются для однофазных и трёхфазных схем, где выполняют функцию выпрямителей. В большинстве случаев такие диодные мосты устанавливаются на генераторах автомобилей. Благодаря им не только увеличивается надёжность устройства, но и уменьшаются его размеры.
- Диодные детекторы. Они представляют собой конструкцию, которая сочетает в себе не только несколько диодов, но и конденсаторы. Благодаря этому достигается способность выделять модуляцию с низкими частотами из соответствующих сигналов. Такие детекторы часто используются при изготовлении радиоприёмников и телевизоров.
- Диодная искрозащита. Для её создания применяются специальные диодные барьеры, которые ограничивают напряжение в имеющейся электрической цепи. Вместе с ними используются специальные токоограничительные резисторы, необходимые для контроля за величиной параметров проходящего электрического тока.
- Переключатели на основе диодов. Эти устройства дополняются конденсаторами и коммутируют высокочастотные сигналы. При этом контроль за работой осуществляется с помощью подачи управляющего сигнала, разделения высоких частот и применения постоянного тока.
Схематическое обозначение диода
Принцип работы
Разновидности, обозначения
- Выпрямительный диод – также известен как защитный, кремниевый. Используются для преобразования переменного тока в постоянный.
- Диод Зеннера (Стабилитрон). Используют стабилитрон для стабилизации напряжения.
- Туннельный диод (диод Лео Эсаки). Используются в генераторах, усилителях.
- Светодиод (диод Генри Раунда) – при пропускании через него прямого тока, дает оптическое излучение.
- Фотодиод. Под действием света в нем появляется значительный обратный ток, и он может генерировать небольшую электродвижущую силу.
- Диод Шоттки – диод с малым падением напряжения при прямом включении. Также известен как сигнальный, германиевый. Открывается быстро, сгорает после пробоя обратным током.
- Лавинный диод – его принцип работы основан на лавинном пробое, используется для защиты цепей от перенапряжений.
Единицы измерения и маркировка
- A — Germanium (германий);
- B — Silicium (кремний);
- A — сверхвысокочастотные диоды;
- B — варикапы;
- X — умножители напряжения;
- Y — выпрямительные диоды;
- Z — стабилитроны, например:
- AA-серия — германиевые сверхвысокочастотные диоды;
- BA-серия — кремниевые сверхвысокочастотные диоды;
- BY-серия — кремниевые выпрямительные диоды;
- BZ-серия — кремниевые стабилитроны.
1-эл. Код материала полупроводника |
2-эл. Тип подкласса |
3-эл. Серийный номер |
4-эл. Буква модификации |
---|---|---|---|
A — германий | A — детекторный, смесительный диод | 100 — 999 приборы общего применения | Модификации прибора |
В — кремний | B — варикап | Z10. A99 приборы промышленного и специального применения | |
C — арсенид галлия | C — маломощный, низкочастотный транзистор | ||
R — сульфид кадмия | D — мощный, низкочастотный транзистор | ||
E — туннельный диод | |||
F — маломощный, высокочастотный транзистор | |||
G — несколько приборов в одном корпусе | |||
H — магнитодиод | |||
K — генераторы Холла | |||
L — мощный, высокочастотный транзистор | |||
M — модуляторы и умножители Холла | |||
P — фотодиод, фототранзистор | |||
Q — излучающие приборы | |||
R — прибор, работающий в области пробоя | |||
S — маломощный переключающий транзистор | |||
T — мощный регулирующий или переключающий прибор | |||
U — мощный переключающий транзистор | |||
X — умножительный диод | |||
Y — мощный выпрямительный диод | |||
Z — стабилитрон |
Стабилитроны. Цветовая маркировка по системе JIS-C-7012 (Япония) | Диоды и стабилитроны. Цветовая маркировка по системе JEDEC (США) | Диоды. Цветовая маркировка по европейской системе PRO ELECTRON | |||||||||
---|---|---|---|---|---|---|---|---|---|---|---|
Цвет полосы (точки) |
1-й элемент |
2-й элемент |
1-й элемент |
2-й элемент |
3-й элемент |
4-й элемент |
5-й элемент |
1-й элемент |
2-й элемент |
3-й элемент |
4-й элемент |
Золотой | |||||||||||
Серебряный | |||||||||||
Черный | 0 | 0 | 0 | 0 | 0 | — | AA | X | 0 | ||
Коричневый | 1 | 1 | 1 | 1 | 1 | 1 | A | 1 | 1 | ||
Красный | 2 | 2 | 2 | 2 | 2 | 2 | B | BA | S | 2 | 2 |
Оранжевый | 3 | 3 | 3 | 3 | 3 | 3 | C | 3 | 3 | ||
Желтый | 4 | 4 | 4 | 4 | 4 | 4 | D | T | 4 | 4 | |
Зеленый | 5 | 5 | 5 | 5 | 5 | 5 | E | V | 5 | 5 | |
Голубой | 6 | 6 | 6 | 6 | 6 | 6 | F | W | 6 | 6 | |
Фиолетовый | 7 | 7 | 7 | 7 | 7 | 7 | G | 7 | 7 | ||
Серый | 8 | 8 | 8 | 8 | 8 | 8 | H | Y | 8 | 8 | |
Белый | 9 | 9 | 9 | 9 | 9 | 9 | I | Z | 9 | 9 | |
Пример обозначения |
![]() |
![]() |
![]() |
||||||||
10 В | 1N66 | BAT85 | |||||||||
Двойной второй элемент указывает на запятую между цифрами | ![]() |
![]() |
|||||||||
7,5 В | 1N237A | ||||||||||
![]() |
![]() |
||||||||||
3,9 В | 1N1420G | ||||||||||
![]() |
![]() |
![]() |
Вольт-амперная характеристика
Если напряжение подаётся в обратном направлении, диод сдерживает ток вплоть до некоторого большого напряжения VDC после чего пробивается и работает также, как в прямом направлении.
Что такое ДИОД — своими словами?
Диод — это Радио компонент, который пропускает ток в одном направлении и блокирует его протекание в другом направлении. Он имеет два контакта:
—КАТОД
На древнегреческом ДИ — это два. А ОД — окончания термина электрод. Что буквально означает двух электронный. То есть с двумя выводами.
Обозначение диода выглядит как стрелка, указывающая на направление Тока. И вертикальная Линия, обозначающая сторону катода,
Так же маркировка линии присутствует на самом диоде.
Простые примеры работы ДИОДА
Диод будет блокировать или пропускать ток. В зависимости от того, как вы подключите его в цепь. Ниже вы можете увидеть пример схемы .
В схеме выше диод подключен в прямом направлении. Соответственно ТОК свободно протекает через Диод. Последовательно включенный с Диодом Светодиод будет светиться.
Ну что произойдёт если мы попробуем диод включить в обратную сторону. Как изображено на схеме ниже?
В этой схеме ДИОД включен в обратном направлении. Это означает что в цепи Ток протекать не будет и соответственно светодиод погаснет.
Для чего используется диод?
Круг применения диодов очень широк и разнообразен. В каких только схемных решениях не применяется Диод.
Очень часто мы сталкиваемся с применением диодов в блоках питания. И действительно ни один блок питания не обходится без этой радио детали.
Преобразование переменного тока в постоянный:
Для преобразования переменного тока в постоянный используются диоды. Чаще всего путем размещения четырех диодов для создания схемы мостового выпрямителя. Это часто используется после трансформатора в источнике питания. Хотя встречаются и без трансформаторные схемы. А также схемы где для выпрямления используются всего лишь один Диод.
Дальше за выпрямительным диодом как правило расположена схема преобразования и стабилизации. Где также могут использоваться диоды.
Ну также если хорошо присмотреться. Найти ДИОД вы сможете практически везде. Редко в каких схемах не применяются диоды.
Как работает Диод?
Основой диода является полупроводник. Точнее два полупроводника различной проводимости. Этот пирог состоящий из двух слоёв полупроводника P типа и полупроводника N типа и есть сам Диод
Действие диода можно сравнить с клапаном который не препятствует протеканию жидкости в одну сторону. Однако при обратном течении закрывается и не даёт жидкости протекать.
Вы получаете PN-переход, беря отрицательно и положительно легированные кристаллы полупроводника и соединяя их вместе.
На пересечении этих двух материалов появляется обедненная область . Эта обедненная область действует как изолятор и отказывается пропускать ток в одном из направлений.
Когда вы прикладываете положительное напряжение Полупроводнику P типа отрицательная N типа, обедненный слой между двумя материалами исчезает, и ток может течь от Анода к Катоду.
Когда вы прикладываете напряжение в другом направлении, обедненная область расширяется и препятствует протеканию тока.
Что следует дополнительно знать о диодах
Вы должны приложить достаточное напряжение в «прямом» направлении — от положительного к отрицательному — чтобы диод начал проводить. Обычно это напряжение составляет от 0,7 В до 1 В.
Каждый тип ДИОДА имеет ограничения по протекающему через него току. И не может пропускать неограниченное количество тока.
Диоды не являются идеальными компонентами. Если вы приложите напряжение в обратном направлении. Все равно будет течь небольшой ток. Этот ток называется током утечки .
Если подать достаточно высокое напряжение в «Обратном» направлении, диод выйдет из строя и пропустит ток и в этом направлении(Пробой Диода).
Типы диодов
Существует много различных типов диодов . Наиболее распространенные из них:
Чего? Из ДВУХ слоёв P типа и одного слоя N типа, если читать как вы написали.
Хоть бы простенькие диаграммы, пояснения, хотя бы как работает p-n переход. Да и иллюстрации и пояснения уже до вас придуманы — возьмите Р Сворень — электроника шаг за шагом и перекладывайте на современный формат, если охота.
Диод — он как ниппель — туда дуй, обратно — х**
TL431 принцип Работы и очень простая Проверка
TL431
TL431 принцип работы и очень простая проверка. Я не зря опять затронул эту тему ,это одна из самых массово выпускаемых интегральных микросхем .
Ее выпуск стартовал в 1978 году. Большую популярность она получила при использовании различных импульсных блоках питания для телевизоров ,тюнеров , DVD и другой аудио-видео техники. И она часто работает в паре с тоже очень популярной радиодеталью- оптроном PC817.
Для тех читателей, кому легче информацию воспринимать на слух, советую посмотреть видео в самом низу страницы.
Tl431 является прецизионным управляемым источником опорного напряжения.
Свою популярность она завоевала благодаря своей очень низкой стоимости и высокой надежности и точности. Принцип работы ее довольно просто понять из структурные схемы.
Если напряжение на входе источника ниже опорного напряжения то и на выходе операционного усилителя низкое напряжение , соответственно транзистор закрыт и ток от катода к аноду не протекает (точнее он очень маленький не превышает 1 миллиампера).
Эквивалентная схема TL431
Эквивалентную схему этой микросхемы можно представить в виде обыкновенного стабилитрона .Где напряжение стабилизации можно рассчитать по формуле приведенной ниже :
Один из самых простых типов стабилизаторов — это параметрический.
Параметрический: в таком стабилизаторе используется участок ВАХ прибора, имеющий большую крутизну(Википедия). Его можно сделать и на микросхеме tl431.
Для этого понадобится всего лишь три резистора, два из которых будут управлять входом микросхемы и как бы программировать напряжение на выходе. Рассчитать напряжение на выходе можно будет по формуле Uвых=Vref( 1 + R1/R2 ). При этом Vref=2,5В
R1=R2( Uвых/Vref – 1 ).
Кроме резисторов R1 и R2 в схеме ещё присутствует резистор R3 его предназначение как и для простого стабилитрона он является ограничителем тока
Основные технические характеристики TL431:
напряжение анод-катод: 2,5…36 вольт;
ток анод-катод: 1…100 мА (если нужна стабильная работа, то не стоит допускать ток менее 5мА);
Компенсационный стабилизатор напряжения
Компенсационный: имеет обратную связь.
Компенсационный стабилизатор напряжения на tl431
В нём напряжение на выходе стабилизатора сравнивается с эталонным, из разницы между ними формируется управляющий сигнал для регулирующего элемента.
Чтобы увеличить токи стабилизации одного транзистора становится мало, нужен промежуточный усилительный каскад.
Компенсационный стабилизатор напряжения на tl431
Теперь кратко назначение компонентов: Резистор R2 он является ограничителем тока базы транзистора vt1 можно использовать от 300 до 400 ом. Резистор R3 компенсирует обратный ток коллектора транзистора vt2 можно использовать резистор 4.7 кОм. Конденсатор C1 повышает устойчивость работы стабилизатора на высоких частотах, можно использовать 0.01 мкФ.
Стабилизатор тока на TL431
На микросхеме tl431 нужно собрать термостабильный стабилизатор тока.
Стабилизатор тока на TL431
Резистор R2 совместно с транзистором vt1 является своеобразным шунтом на котором с помощью обратной связи поддерживается напряжение 2,5 вольта. Рассчитать ток стабилизации можно по формуле Iн=2,5/R2.
Индикатор повышения напряжения на TL431
Светодиод начинает светиться когда напряжения превышает заданный порог. Который можно рассчитать по формуле:
R2 = 2,5 х Rl/(Uз — 2,5)
Индикатор изменения напряжения на TL431
Индикатор изменения напряжения на TL431
Здесь светодиоды будут зажигаться в зависимости от того напряжение превысило или наоборот стало ниже заданного порога.
Индикатор изменения напряжения на TL431
Подключение датчиков
Датчики подключают как одно из плеч делителя на управляющий контакт стабилизатора
Подключение датчиков TL431
Один из простых методов проверки TL431
нужно замкнуть его Катод и управляющий электрод
Вариант на макетной плате
и он должен показывать как обыкновенный стабилитрон на 2,5 вольта. Для этого можно использовать китайский тестер он будет показывать как два встречных диода один как обыкновенный диод а другой как стабилитрон на два с половиной вольта
Кому лень читать
Видео на эту тему :
Микросхема — Таймер. Начните знакомство с NE555
Почему лучше начинать с микросхемы таймера NE555
Если вы хотите поближе познакомиться с таймером. Не обязательно этим. Понять что это вообще такое. Где и как его используют. То обязательно я вам рекомендую начать с очень популярного и известно во всём мире таймера NE555.
Микросхему NE555 можно спокойно отнести к универсальным таймерам. Который можно применять в различных схемных решениях. Даже довольно нестандартных. Так сказать на все случаи жизни.
Но чаще всего эту микросхему используют как генератор прямоугольных импульсов. Различной частоты и длительности.
И для каких схем не требуется большого количества дополнительных внешних деталей. И это одно из её достоинств. Одно из многих. Благодаря которому она завоевала такую популярность во всём мире.
И эта популярность. Как раз есть поводом чтобы начать именно с этого таймера. Потому что схемных решений на основе NE555 в мире существует огромное количество. Также на многих форумах обсуждается работа этой микросхемы. Плюс к этому существует много различной документации по ней. Переведённые на разные языки включая русский.
Знакомство с микросхемой NE555
Немного истории
Над разработкой этой микросхемы еще в далеком 1970 году занимался американский инженер- схемотехник Ганс Камензинд. А производство этого таймера начала американская фирма Signetics.
Обозначение и цоколёвка
За всё время которое выпускается это микросхема. Она претерпела некоторые внешние изменения. Но это отразилось только на её корпусе. Это такие корпуса как DIP-8, а так же для поверхностного монтажа (SOP-8, SOIC-8).
Но расположение выводов осталось прежним: 1 (земля, минус); 2 (запуск); 3 (выход); 4 (сброс); 5 (контроль); 6 (останов); 7 (разряд); 8 (плюс источника питания). Чтобы легко было найти первый вывод микросхемы. Возле него находится маленькое углубление.
На заре своего выпуска. Эта микросхема существовала и в металлическом корпусе LM555CH
Расположение и назначение выводов
NE555 и её аналоги преимущественно выпускаются в восьмивыводном корпусе типа PDIP8, TSSOP или SOIC. Расположение выводов независимо от корпуса – стандартное. Условное графическое обозначение таймера представляет собой прямоугольник с надписью G1 (для генератора одиночных импульсов) и GN (для мультивибраторов).
Общий (GND). Первый вывод относительно ключа. Подключается к минусу питания устройства.
Запуск (TRIG). Подача импульса низкого уровня на вход второго компаратора приводит к запуску и появлению на выходе сигнала высокого уровня, длительность которого зависит от номинала внешних элементов R и С. О возможных вариациях входного сигнала написано в разделе «Одновибратор».
Выход (OUT). Высокий уровень выходного сигнала равен (Uпит-1,5В), а низкий – около 0,25В. Переключение занимает около 0,1 мкс.
Сброс (RESET). Данный вход имеет наивысший приоритет и способен управлять работой таймера независимо от напряжения на остальных выводах. Для разрешения запуска необходимо, чтобы на нём присутствовал потенциал более 0,7 вольт. По этой причине его через резистор соединяют с питанием схемы. Появление импульса менее 0,7 вольт запрещает работу NE555.
Контроль (CTRL). Как видно из внутреннего устройства ИМС он напрямую соединен с делителем напряжения и в отсутствие внешнего воздействия выдаёт 2/3 Uпит. Подавая на CTRL управляющий сигнал, можно получить на выходе модулированный сигнал. В простых схемах он подключается к внешнему конденсатору.
Останов (THR). Является входом первого компаратора, появление на котором напряжения более 2/3Uпит останавливает работу триггера и переводит выход таймера в низкий уровень. При этом на выводе 2 должен отсутствовать запускающий сигнал, так как TRIG имеет приоритет перед THR (кроме КР1006ВИ1).
Разряд (DIS). Соединен напрямую с внутренним транзистором, который включен по схеме с общим коллектором. Обычно к переходу коллектор-эмиттер подключают времязадающий конденсатор, который разряжается, пока транзистор находится в открытом состоянии. Реже используется для наращивания нагрузочной способности таймера.
Питание (VCC). Подключается к плюсу источника питания 4,5–16В.
Аналоги микросхемы NE555
После очень большой популярности. Которую завоевала это микросхема. Её аналоги начали производить уже многие фирмы.
Аналоги полные — AN1555, MC1455, TA7555P, UPC1555, ICM7555, CA555E, UA555TC, M51841P, MC3455P, LM555N
В Советском Союзе аналог этой микросхемы имел название КР1006ВИ1. Но эта микросхема имеет ряд небольших отличий. Которые нужно учитывать при разработке. А также повторении схем. В микросхеме КР1006ВИ1 вход останова (6) имеет приоритет над входом запуска (2). Импортные аналоги других фирм работают идентично оригиналу.
Также в СССР ещё в семидесятых годах. Был разработал аналог этой микросхемы более низким потреблением питания. На полевых транзисторах под названием КР1441ВИ1.
Параметры микросхемы NE555
Ниже представлены предельные эксплуатационные параметры NE555 . Они характерны для большинства её модификаций. Также у некоторых производителей они могут незначительно отличаться между собой. В зависимости от компании-изготовителя
напряжение источника питания от +4.5 до +18В;
мощность рассеивания до 600 мВт;
выходной ток до 200 мА;
максимальная рабочая частота 500 кГц;
температура: рабочая от 0 до 70ОС; хранения от -65 до +150ОС.
Документация NE555
Режимы работы NE555
Прецизионный триггер Шмитта
Посмотрим на внутреннюю схему таймера расположенную чуть выше. Если соединить входы THRES и TRIG и использовать их для подачи входного сигнала, то NE555 будет работать в режиме инвертирующего прецизионного триггера Шмитта с RS-триггером на аппаратном уровне. Входное напряжение будет делиться двумя композиторами на три участка. И при переходе входного напряжения через эти участки. Будет происходить срабатывания RS триггера в одну или в другую сторону. Величина гистерезиса определяется встроенным делителем и равна трети напряжения питания.
Одновибратор
Схема работает следующим образом. На вход таймера (2) подают одиночный импульс низкого уровня. Который приводит к переключению микросхемы. И появлению на выходе (3) высокого уровня сигнала. Который длится заданный промежуток времени t=1,1*R*C
Затем таймер переключается обратно в стабильное состояние (низкий уровень на выходе OUTPUT).
Стоит отметить два факта:
Появление низкого уровня на входе RESET переключает таймер в стабильное состояние и переводит выход OUTPUT на низкий уровень.
Напряжение источника питания не влияет на длительность импульсов. Чем больше напряжение питания, тем выше скорость заряда времязадающего конденсатора и тем больше амплитуда выходного сигнала.
Дополнительный импульс, который можно подать на вход после основного, не повлияет на работу таймера, пока не истечет время t.
Также такую схему можно использовать для формирования прямоугольных импульсов правильной формы. А так же для устранения дребезга контакта при переключении. Нужно только подобрать правильно время задающий конденсатор.
Мультивибратор
В режиме мультивибратора. Микросхема ne555 генерирует импульсы прямоугольной формы. На (3) выводе output. Заданной частоты (периода) и также скважности.
Также его отличие от одновибратора состоит в том, что мультивибратор не требует внешнего запускающего импульса. Генерация происходит постоянно.
В формировании повторяющихся импульсов участвуют резисторы R1, R2 и конденсатор С. Время импульса (t1), время паузы(t2), период (T) и частоту (f) рассчитывают по нижеприведенным формулам:
Из данных формул несложно заметить, что время паузы не сможет превысить время импульса, то есть достичь скважности (S=T/t1) более 2 единиц не удастся. Для решения проблемы в схему добавляют диод, катод которого соединяют с выводом 6, а анод с выводом 7.
Схема работает следующим образом. В момент подачи питания конденсатор С1 разряжен, что переводит выход таймера в состояние высокого уровня. Затем С1 начинает заряжаться, набирая ёмкость до верхнего порогового значения 2/3 UПИТ. Достигнув порога ИМС переключается, и на выходе появляется низкий уровень сигнала. Начинается процесс разряда конденсатора (t1), который продолжается до нижнего порогового значения 1/3 UПИТ. По его достижении происходит обратное переключение, и на выходе таймера устанавливается высокий уровень сигнала. В результате схема переходит в автоколебательный режим.
Недостатки NE555 — или ложка дегтя в …
У таймера ne555 есть маленькая особенность. Делитель напряжения которые находятся внутри микросхемы. Он же и задаёт фиксированный верхний и нижний порог срабатывания для двух компараторов. И в связи с тем что делитель напряжения нельзя исключить, а пороговым напряжением нельзя управлять. Это немного сужает область применения этого таймера так как нельзя подключить внешнее управление.
Но более существенная проблема в том что Таймер ne555 выполнен на биполярных транзисторах. Этот недостаток проявляется в момент перехода таймера. А точнее выходного каскада из одного состояния в другое. Каждое переключение сопровождается паразитным сквозным током, который в пике может достигать 400 мА. Что приводит к повышенному энергопотребления микросхемой. А также к увеличению выделения тепла. Проблема частично решается установкой полярного конденсатора ёмкостью до 0,1 мкФ между общим проводом и выводом управления (5). Это повышается стабильность работы таймера. И способствует при запуске устройства.
Так же, для повышения помехоустойчивости. Желательно в цепь питания установить неполярный конденсатор 1 мкФ.
Полевой МОП-транзистор (MOSFET) — Что это?
Транзисторы со встроенным и индуцированным каналами
По своему принципу действия Полевые транзисторы полностью отличаются от Биполярных. О том как проверить полевые и биполярные транзисторы. Мы уже разбирали ранее. А сегодня пойдёт речь о принципе действия и работе полевых МОП-транзисторов (MOSFET)
Принцип действия полевых транзисторов совсем иной, чем биполярных. При протекании тока в полевом транзисторе участвуют только основные носители одного знака — только дырки или только электроны. Ток в них протекает только в одном слое или N проводимости или P. Отсюда и термин «униполярный».
В Биполярном транзисторе всё совсем по-другому. При протекание тока участвует полупроводники различных типов и N и P. Поэтому эти транзисторы называют биполярными (в них используются полупроводники обоих типов).
В полевом транзисторе величина протекающего тока регулируется зарядом (Электрическим полем) на затворе транзистора (а не током Базы, как в биполярном транзисторе). Отсюда происходит второе название — полевой транзистор.
МОП-транзистор (MOSFET)
По-настоящему широкое распространение полевые транзисторы получили лишь с появлением транзисторов с изолированным затвором. У таких транзисторов затвор представляет собой металлический слой, изолированный от полупроводникового канала тонкой диэлектрической пленкой. В названии таких транзисторов учтена их структура (металл — диэлектрик — полупроводник).
Наибольшее распространение получили кремниевые транзисторы, диэлектриком в которых является окисел (двуокись кремния), так называемые МОП-транзисторы (со структурой металл — окисел — полупроводник) (см. рис.1). Особенно широко МОП-транзисторы используются в интегральных схемах ввиду простоты технологии их изготовления и малой мощностью потребления. Имеется две разновидности МОП-транзисторов: со встроенным каналом и с индуцированным каналом. В свою очередь, каждый из них может быть как с каналом п-типа (n-канальный), так и с каналом р-типа (р-канальный).
МОП-транзистор со встроенным каналом
На рис.1 приведена структура МОП-транзистора со встроенными каналами n-типа и схема включения с общим истоком. Исток и сток такого транзистора образованы сильно легированными n+ областями в относительно высокоомной подложке — кристалле p-типа. Между стоком и истоком технологическими приемами создается тонкий канал n-типа с большим сопротивлением из-за малой толщины канала. Такой транзистор называют МОП-транзистором со встроенным каналом. Канал между стоком и истоком покрыт пленкой диэлектрика – двуокиси кремния. На пленку диэлектрика наносится металлическая пленка М, являющаяся затвором. Длина канала составляет единицы мкм. Условное обозначение такого транзистора и схема его включения ОИ показаны на рис.1. При сильном упрощении принцип действия такого транзистора можно объяснить так:
1. При отрицательном напряжении на затворе Uз (относительно истока) электроны «отталкиваются» электрическим полем от поверхности (т.е. из канала) в глубь подложки, а дырки подходят из подложки к поверхности. Проводимость канала уменьшается.
МОП-транзистор со встроенным каналом
Такой режим называют режимом обеднения (как в унитроне).
При некоторой величине отрицательного напряжения на затворе, называемом напряжением отсечки Uотс, n-канал исчезает совсем. Остаются только сток и исток n+—типа и окружающая их подложка р-типа, с которой сток и исток образуют два встречно включенных р-п перехода. Ток стока при этом не протекает. Таким образом, МОП-транзистор со встроенным каналом в режиме обеднения подобен унитрону, только ток затвора в нем во много раз меньше.
2. При положительном напряжении на затворе электроны «вытягиваются» полем из подложки (в подложке электроны — неосновные носители) к поверхности, т.е. в канал. Электроны в канал поступают и из полуметаллических n+-слоев истока и стока. Дырки же «отталкиваются» полем в глубь подложки. Проводимость канала при этом увеличивается. Такой режим называют режимом обогащения (в унитроне он невозможен). На рис.2 приведены статические выходные (стоковые) характеристики МОП-транзистора со встроенным каналом n-типа. Они аналогичны характеристикам унитрона с той лишь разницей, что МОП-транзистор со встроенным каналом может работать как в режиме обеднения, так и в режиме обогащения. На рис.2 показаны затворно-стоковые характеристики (характеристики прямой передачи), отличающиеся от аналогичных характеристик унитрона использованием положительных (UЗИ > 0) и отрицательных (UЗИ < 0) напряжений на затворе, соответствующих режимам обогащения и обеднения соответственно.
МОП-транзистор с индуцированным каналом
Этот транзистор отличается только тем, что при изготовлении не получают проводящего канала между истоком и стоком (рис.3).
МОП-транзистор с индуцированным каналом
Сильно легированные области стока и истока n+-типа образуют с подложкой p-типа два встречно включенных p-n перехода, поэтому ток между стоком и истоком (Iс) при U3н≤0 протекать не может. Режим обеднения в этом транзисторе невозможен. При положительном напряжении затвора UЗ, под действием электрического поля электроны «вытягиваются» из р-подложки и из областей истока и стока к поверхности под затвором, а дырки отталкиваются в глубь подложки. При некотором положительном напряжении затвора, называемом пороговым Uпор, на поверхности под затвором концентрация электронов превышает концентрацию дырок, т.е. возникает (индуцируется) канал n-типа. Такой транзистор называют МОП-транзистором c индуцированным каналом. Условное обозначение такого транзистора и схема его включения показаны на рис.3. При увеличении напряжения затвора сверх порогового Uз>Uпор проводимость канала увеличивается, т.е. наступает режим обогащения. На рис.4 приведены статические входные (стоковые) характеристики МОП-транзистора с индуцированным каналом. Основное отличие этих характеристик от предыдущих обусловлено тем, что МОП-транзистор с индуцированным каналом может работать только в режиме обогащения (Uз>0) и имеет параметр – пороговое напряжение Uпор. На рис.4 показаны затворно-стоковые характеристики этого транзистора. МОП-транзисторы с индуцированным каналом проще в изготовлении, т.к. отсутствуют технологические операции по «встраиванию» канала. Они более перспективны для применения в микросхемах.
Как проверить MOSFET (полевой МОП транзистор) с помощью мультиметра
Как проверить MOSFET (металлооксидный полевой транзистор) с помощью мультиметра — MOSFET или металлооксидный полевой транзистор — это тип транзистора, работа которого зависит от полевого эффекта (эффект поля), т. е. электрического поля на входе затвора МОП-транзистор состоит из 3 выводов, а именно Затвор(G), Сток (D) и Исток (S).
В общем, МОП-транзистор используется в электронных схемах в качестве переключателей, усилителей (усилителей и смесителей). Эти полевые транзисторы можно разделить на 2 типа, а именно MOSFET типа N (N-MOSFET) и MOSFET типа P (P-MOSFET).
Проверка MOSFET (МОП)с помощью мультиметра
Чтобы проверить, поврежден ли полевой МОП-транзистор, мы можем использовать цифровой мультиметр для его измерения или проверки. Можно с помощью довольно простого способа узнать исправный или поврежденный MOSFET.
Тестирование полевого МОП-транзистора N-типа (N-)
Проверка полевого MOSFET транзистора цифровым мультиметром
Для примера возьмем полевой МОП-транзистор с каналом n-типа. Условно-графическое обозначение такого транзистора и его цоколевку вы видите на следующем рисунке.
Перед началом проверки транзистора замкните все его выводы между собой, что бы снять возможный заряд с транзистора.
Проверка встроенного диода
Для начал следует подготовить мультимер и перевести его в режим проверки диодов. Для этого переключатель режимов/пределов установите в положение с изображением диода.
В этом режиме мультиметр при подключении диода в прямом направлении (плюс прибора на анод, минус прибора на катод) показывает падение напряжения на p-n переходе диода. При включении диода в обратном направлении мультиметр показывает «1».
Итак, подключаем щупы мультиметра, как было сказано выше, в прямом включении диода. Таким образом, красный шум (+) подключаем на исток, а черный (-) на сток.
Мультиметр должен показать падение напряжение на переходе порядка 0,5-0,7.
Меняем полярность подключения встроенного диода, при этом мультиметр, при исправности диода покажет «1».
Проверка работы полевого МОП транзистора
Проверяемый нами МОП-транзистор имеет канал n-типа, поэтому, что бы канал стал электропроводен необходимо на затвор транзистора относительно истока либо стока подать положительный потенциал. При этом электроны из подложки переместятся в канал, а дырки будут вытолкнуты из канала. В результате канал между истоком и стоком станет электропроводен и через транзистор потечет ток.
Для открытия транзистора будет достаточно напряжения на щупах мультиметра в режиме прозвонки диодов.
Поэтому черный (отрицательный) щуп мультиметра подключаем на исток (или сток), а красным касаемся затвора.
Если транзистор исправен, то канал исток-сток станет электропроводным, то есть транзистор откроется.
Теперь если прозвонить канал исток-сток, то мультиметр покажет какое-то значение падение напряжения на канале, в виду того, что через транзистор потечет ток.
Таким образом черный щуп транзистора ставим на исток, а красный на сток и мультиметр покажет падение напряжение на канале.
Если поменять полярность щупов, то показания мультиметра будут примерно одинаковыми.
Что бы закрыть транзистор достаточно относительно истока на затвор подать отрицательный потенциал.
Следовательно, подключаем положительный (красный) щуп мультиметра на исток, а черным касаемся затвор.
При этом исправный транзистор закроется. И если после этого прозвонить канал исток-сток, то мультиметр покажет лишь падение напряжения на встроенном диоде.
Если транзистор управляется напряжением с мультиметра (то есть открывается и закрывается), значит можно сделать вывод, что транзистор исправен.
Проверка полевого МОП – транзистора с каналом p-типа осуществляется подобным образом. За тем исключением, что во всех пунктах проверки полярность подключения щупов меняется на противоположную.
Супер УСИЛИТЕЛЬ на одном Транзисторе и Главный его Секрет Рабочая ТОЧКА
УСИЛИТЕЛЬ на одном Транзисторе
Собрать усилитель на одном транзисторе. Оказывается это не так уж и просто. Нужно знать некоторые тонкости.
И главная из них — это как выбрать рабочую точку транзистора? Давайте не будем лезть в дебри формул и графиков, а попробуем всё на практике. Несколько графиков и форму
Я всё-таки приведу. Но не буду на них акцентировать внимание. Это просто для порядка.
Во всём этом мы разберёмся при помощи экспериментов и по результатам схем и осциллограмм. И дочитав до конца эту статью с комментариями и пояснениями всем станет также понятно как это всё выглядит в реальности.
Но кому лень читать статью и изучать картинки, можно пролистать ниже там всё это посмотреть в виде или по Ссылке: https://youtu.be/TGHea-vxNN0
Начнём с очень простой схемы которую часто собирают начинающие радиолюбители: транзистор, источник питания, нагрузка усилителя и входной сигнал. Ну примерно как на схеме:
Начинаем эксперименты
Эксперимент 1
Источником сигнала у нас будет генератор синусоиды 500 Гц и амплитуда 100 mВ.
Подойдём питание и никакого сигнала на выходе мы не видим, на выходе присутствует постоянная составляющая 5 в. То есть наш транзистор полностью закрыт.
Хотя как видно из осциллограммы на входе сигнал присутствует.
Жёлтый сигнал на входе транзистора.
Синий сигнал на выходе ( коллекторе) транзистора.
Эксперимент 2
Все начинающие Радиолюбители сразу начинают увеличивать амплитуду входного сигнала. Давайте и мы так сделаем. И повышаем входной сигнал дом амплитуды 500 mВ.
И опять смотрим осциллограмму
Входной сигнал увеличен но на выходе никакого результата.
Эксперимент 3
Увеличиваем входной сигнал до одного 700 mВ.
И вот наконец начинается появляться результат. На выходе наша прямая тоже ожила. И на ней появились провалы. В этот момент если мы подключим на выход какой-то звукоизлучатель то мы уже сможем услышать хотя бы какой-то звук.
Эксперимент 4
Дальше начинаем рассуждать с точки зрения новичка.
Раз результат появился продолжаем дальше увеличивать амплитуду сигнала, выставляем сигнал 1 В.
На выходе звук усиливается. Но с ними и растет и искажение. Потому что мы видим из осциллограммы что сигнал на выходе очень далёк от синусоиды.
Также мы можем увидеть разделение сигнала по входу. Если опять посмотреть на схему то у нас там подключено по входу два щупа осциллографа. Один напрямую к генератору, второй на базу транзистора. И вот до того момента как мы не перешли точку примерно 650 mВ сигналы были одинаковы. А потом начались искажения на положительной полуволне.
И тут нужно хотя бы мельком глянуть на некоторые вольт-амперные характеристики транзистора.
Доработка СХЕМЫ
Так как база транзистора представляет собой pn-переход чем-то похожий как у обыкновенного диода. То на нём происходит падение напряжения как раз примерно от 0,6 до 0,7 вольт.
Ну это опять теория. А я обещал показать экспериментально. Нам нужно попытаться сместить точку базы Транзистора чуть выше 0,6 вольт. Сделать это можно при помощи отдельного источника питания. Но у нас уже есть источник питания и мы можем взять напряжение из него.
Для этого понадобится резистор, который мы подключим к плюсу источника питания и к базе нашего транзистора.
Поэтому наша схема немного изменилась и стала выглядеть вот как представлена ниже:
Схема изменилась всего лишь на одну деталь. Ну и для эксперимента я подключил ещё два вольтметра
Эксперимент 5
И теперь опять начинаем экспериментировать. Как видно из схемы у нас сейчас в базовой цепи стоит резистор 100 ком. Входной сигнал снизим до 100 mВ. Давайте посмотрим осциллограмму.
Вот уже лучше выходной сигнал на базе получил смещение но ещё недостаточно для нормальной работы транзистора. Смещение нужно увеличить то есть уменьшить сопротивление резистором цепи базы.
Эксперимент 6
Поставим резистор 70 ком и опять посмотрим на осциллограмму:
И Как видно из осциллограммы синусоида уже приобретает форму. Но она несимметрична. Положительная полуволна более сжата относительно отрицательной полуволны.
Эксперимент 7
Поставим сопротивление 54 ком.
И сигнал на осциллограмме приобретает практически идеальную форму на выходе.
Как видно из графика осциллограммы синусоида начинается не сразу, а с задержкой в 1 мс. Это сделано для того чтобы было проще понять что такое Рабочая Точка.
Когда у нас на входе ещё нет сигнала то на выходе транзистора на его коллекторе присутствует напряжение 2,5 в. И это является половиной от нашего напряжения питания 5 в.
Мы Экспериментальным путём добились идеального сигнала на выходе, когда подали такое смещение на базу транзистора что на коллекторе присутствовала постоянно составляющая равная половине напряжения питания.
Это также наглядно можно увидеть на графике Как происходит искажение выходного сигнала при смещении рабочей точки:
Также предлагаю посмотреть видео Может быть там будет более понятно:
Чего Боятся ПОЛЕВЫЕ Транзисторы (MOSFET) и как их Защитить при помощи СТАБИЛИТРОНА
Чего боятся ПОЛЕВЫЕ Транзисторы (MOSFET)
Опыт растёт пропорционально сожженным радиодеталям. Есть такая поговорка.
Ну есть ещё одна мудрая поговорка «Умный учится на своих ошибках, а мудрый учится на чужих».
Если всё это применить к радиоэлектронике, то чтобы не допускать ошибок нам нужно знать какие есть проблемные места.
Давайте попробуем разобрать одну из проблем которой подвержены практически все Полевые Транзисторы. И не важно на какую они Мощность и на какое Напряжение.
И проблема эта связана с максимальным напряжением, которое можно подавать на затвор транзистора. И превысил это допустимое напряжение, мы выведем транзистор из строя.
Для примера посмотрим на характеристики какого-нибудь популярного транзистора. Например IRFZ44
Особенности и характеристики
Малосигнальный N-канальный MOSFET
Непрерывный ток стока (ID) составляет 49 А при 25°C.
Импульсный ток стока (ID-пик) составляет 160 А.
Минимальное пороговое напряжение затвора (VGS-th) составляет 2 В.
Максимальное пороговое напряжение затвора (VGS-th) равно 4В.
Напряжение затвор-исток (VGS) составляет ± 20 В (макс.)
Максимальное напряжение сток-исток (VDS) составляет 55 В.
Время нарастания и время спада составляют около 60 нс и 45 нс соответственно.
Он обычно используется с Arduino из-за его низкого порогового тока.
Доступен в комплектации То-220
Но в контексте данной статьи. Нас будет интересовать только выделенный параметр — это напряжение Затвор Исток и оно у этого транзистора плюс-минус 20 В.
Если посмотрим на более высоковольтные транзисторы. То их напряжение Затвор Исток ненамного отличается. И как правило чуть больше 20 В.
И даже если ваш полезный сигнал не превышает это напряжение. Его могут превысить различного рода наводки и помехи, которые не зависят от вас.
Как защитить ПОЛЕВЫЕ Транзисторы (MOSFET)
Решение этой проблемы есть и оно очень простое. Разберём три варианта подключения защиты.
1 Вариант:
Использование простого стабилитрона на напряжение от 10 до 20 В зависимости от типа транзистора и от вашего входного сигнала.
Эта схема работает. Но у неё есть существенный недостаток. Если для вашего полевого транзистора важно и положительно и отрицательное напряжение на его затворе. Защита ограничит напряжение по плюсу не выше заданного вашим стабилитроном и почти полностью удалит отрицательный сигнал.
Что хорошо видно на осциллограмме представленной ниже.
2 Вариант:
К нашей схеме защиты добавим ещё Диод. Желательно использовать Диод шоттки.
Как видно из осциллограммы на затворе транзистора появляется сигнал отрицательной полярности.
Но такую схему рекомендуется использовать только тогда когда Вы уверены что это напряжение не превысит заданный допустимый порог.
3 Вариант:
Третий вариант схемы лишён недостатка у предыдущих двух схем он ограничивает сигнал и положительный и отрицательной полярности.
Вместо двух стабилитронов можно использовать один биполярный стабилитрон. Также в этой схеме очень хорошо работают супрессоры. А В некоторых случаях при больших токах импульсных помех они даже обязательны
Как видно из осциллограммы представлены ниже напряжение ограничено по плюсу и по минусу.
Можно также использовать стабилитроны на разные напряжения
Обо всём этом более подробно можно узнать посмотрев видео представленное ниже:
00:23 Чего боятся полевые транзисторы
02:09 Самая простая схема защиты
02:51 Испытания первой схемы защиты
04:50 Испытание второй схемы
06:00 Самая лучшая схема защиты
06:38 Полезны совет по применению такой схемы
Для любителей собрать что-нибудь своими руками
Обучающий электронике и пайке набор для сборки FM радиоприемника с часами и будильником. Вам предстоит по схеме разместить и припаять детали в нужном месте, после сборки все должно заработать. Стоит такой DIY комплект для самостоятельной сборки и пайки около 760 руб. Ссылка на источник.
Частотный диапазон: 72-108,6 МГц
Питание: 3v (2 батареи АА)
Размер: 120×75 мм/4,72×2,95″
Реле и транзистор. В чём разница при управлении нагрузкой
Как сделать сенсорное управление для любого устройства за 10 рублей
Модуль называется TTP223, дешевле всего на Али, но можно найти в других интернет-магазинах.
Контрольно-разрывной контакт днища конденсатора
Современные силовые конденсаторы примерно на 80–85% состоят из горючего материала — металлизированной полипропиленовой пленки с низкими потерями. Нарушение функции самовосстановления металлизированной пленки часто вызывает тепловой эффект, который может привести к пиролизу и даже возгоранию пленки из полипропилена.
Во время пиролиза полипропилен термически разлагается при отсутствии кислорода. Кроме водорода, в процессе выделяются различные органические газы. Особенно проблематичны случаи, когда пиролиз развивается медленно и незаметно в отдельно взятом элементе, в то время как большая часть конденсатора изначально продолжает выполнять свою работу. Если газообразование в конденсаторе достигает критического уровня, корпус может треснуть и выпустить газы во внешнюю среду. В частности, в настоящее время в железнодорожной отрасли имеется ряд примеров, когда такие газы улетучивались, образуя взрывоопасную смесь с кислородом в окружающем корпусе преобразователя и впоследствии приводя к взрыву всего устройства.
Поскольку практически каждый отказ конденсаторов с полипропиленовым диэлектриком сопровождается указанным выше термическим распадом полипропилена и образованием органических газов, наиболее распространенный метод обнаружения и нейтрализации неисправности конденсатора заключается в использовании давления, создаваемого пиролизными газами внутри герметичного корпуса конденсатора, для срабатывания предохранительного устройства (например, BAM — Break Action Mechanism от ELECTRONICON). При прерывании напряжения пиролиз немедленно прекращается. Это предотвращает разрыв корпуса, а взрывоопасные газы надежно удерживаются внутри конденсатора.
К сожалению, данный принцип очень сложно реализовать в конденсаторах промежуточного контура. Точка размыкания BAM чувствительна к импульсным токам, а сложная внутренняя проводка портит низкую самоиндуктивность конденсаторов. Кроме того, активация BAM всегда требовала беспрепятственного расширения конденсатора, что было невозможно, если выводы конденсатора подключались фиксированными шинами.
Так обстояли дела до настоящего времени.
Впервые в истории Mesis реализует принцип отключения по избыточному давлению для конденсаторов с низкой индуктивностью, объединяя лучший опыт компании ELECTRONICON в области BAM и реле давления.
Подобно коробчатым конденсаторам ELECTRONICON линеек E59 и MSD, повышение давления во время неисправности воздействует на переключатель: шпилька, расположенная на мембране в основании конденсатора, разъединяет электрическую цепь на подключенной плате прерывания (Break Action Card — BAC) безвозвратно. Внешняя цепь контроля и безопасности может использовать этот сигнал мгновенно для отключения и разряда звена постоянного тока или делать это даже индивидуально с неисправным блоком, если он подключен и контролируется отдельно. Простая конструкция и удобное подсоединение этого переключателя не только делают его очень надежным и долговечным даже в условиях высокой вибрации или экстремальных климатических условий; они делают это предохранительное устройство привлекательным и экономичным решением для применения с цилиндрическими конденсаторами.
Перемещенный с пути тока конденсатора предохранительный механизм больше не может воздействовать ни на индуктивность конденсатора, ни на его токовую нагрузку. Более того, жесткое низкоиндуктивное соединение клемм никоим образом не влияет на мембрану и ВАС на противоположном конце конденсатора.
ps вот бы на электролиты что-то такое, хотя бы датчик-наклейку.
Простой способ намотки плоской катушки
Мотал я значит «котушку» и решил запилить пост.
В посте Проект компактного копировальщика ключей EM/Ibutton я кратко описал характеристики плоской бескаркасной круглой катушки. Надо бы больше подробностей.
Для расчета катушек индуктивности советую приложение калькулятор Coli64, также есть в онлайне. У меня будет готовая инструкция, по которой можно мотать совершенно разные индуктивности.
Нам нужен кругляш диаметром 100мм вырезанный из обрезка ламината, оставшегося после ремонта. Наклеиваем на него прозрачный скотч. Одно отверстие посередине, два симметрично по краям.
Также нужно вырезать еще одну круглую штуку с меньшим диаметром, например из оргстекла. На нее с одной стороны также клеим скотч.
В обычной монете 50 копеек сверлим отверстие и можно шлифануть грани.
Пригодятся несколько подходящих болтов с гайками для крепления проволоки и зажима всей конструкции. Помимо этого, можно взять обычное масло, я использую Лукойл 5 40 для двигателя авто. Скорее всего пойдет любое, лучше всего силиконовое.
И лак PLASTIK-71. Пойдет и клей, например БФ или другой.
Смазываем маслом поверхность скотча на ламинатине, оргстекле и грани монеты. Надо совсем немного.
Кладу монету отверстие к отверстию и наношу лак по краям. Лака надо немного, но и экономить не стоит. На кругляш из оргстекла также наносим лак по краям. Закрепляем конструкцию. Сильно прижимать не стоит, оргстекло может потрескаться, как у меня.
Мотать будем качественным эмалированным проводов ПЭВ-1, диаметром 0.16 мм.
Закрепляем конец провода.
И мотаем 134 витка.
Занимает это примерно полторы минуты. Закрепляем третьим болтом и отправляем на батарею сушиться в вертикальном положении. Лишний лак соберется снизу и его будет легко убрать, пока не засох.
Я использую формы разных диаметров, например такие. Из обычной пластиковой карты.
Ждем сутки, ну или по крайней мере 12 часов. Монета с катушкой запросто отойдет от смазанного маслом скотча. Аккуратно снимаем катушку с монеты, обычно и здесь проблем не возникает. И вот результат.
Этот способ будет полезен для намотки совершенно разных катушек. Пользуйтесь.
Всем спасибо за комментарии и плюсы. Удивлен, что людям заходят посты. Уже 149 подписчиков. Пока основная тема это RFID и ключи от домофона, можете посмотреть в профиле, там же мой контакт. Общение в комментариях.
Электроника через гидравлику #5. Диоды
Рассмотрев основные элементы электрической цепи — конденсатор, сопротивление, катушка — перейдем теперь к тому, что вызывает основные затруднения. К полупроводникам. И начнем, естественно, с диода.
Диод — полупроводниковый элемент, в котором есть pn-переход. Физику я принципиально рассматривать не буду, это сделано в куче материалов. Нам важно знать несколько основных свойств pn-перехода в диоде:
1) Диод пропускает ток только в одну сторону. Это знают все. В гидравлике аналогом этому служит обратный клапан. Мы его будем представлять как заслонку, подпружиненную слабой пружиной постоянного усилия, снабженную упором снизу. При подаче обратного напряжения заслонка закрывается, образуется огромное сопротивление — какие-то крохи зарядов, конечно, подтекают, но очень, очень мало.
2) Чтобы pn-переход открылся, на него требуется подать некоторое минимальное напряжение. Обычно оно около 0.6-0.7 Вольт для обычных диодов, и около 0.3 В для специальных диодов Шоттки. Это паспортная характеристика, которая более-менее постоянна(зависит от температуры). До достижения этого напряжения(называемого пороговым) диод будет по сути закрыт. Какие-то микроскопические доли заряда подтекать будут, но это можно не считать.
Теперь еще сложнее.
3) Когда поданное напряжение на диод превышает порог, диод открывается, и его дальнейшее сопротивление устремляется к нулю. Что значит «дальнейшее»? Наша заслонка, будучи поднята требуемой минимальной разницей давлений, будет открывать просвет трубы течению жидкости практически без повышения сопротивления.
Это по сути значит, что у pn-перехода нет такой постоянной характеристики, как сопротивление, а есть — неизменное падение напряжения.
Или, это можно представлять себе так, что у диода переменное сопротивление: оно меняется в зависимости от поданного напряжения — полупроводниковый переход сопротивляется току всегда ровно настолько, чтобы на нем осело паспортное пороговое напряжение.
Если вы подключите к диоду источник напряжения 5 Вольт, а падение на диоде 0.7 В, то останутся 4.3 В, приложенные к цепи — диод сбросит свое сопротивление ровно настолько, что возьмет на себя ровно 0.7 В. В идеальной цепи это означает, что, так как оставшемуся напряжению осесть негде — сопротивления в цепи больше нет, то такой ситуации и быть не может, ведь ток должен стать бесконечным.
В реальной цепи, естественно, сопротивление в цепи есть — как минимум это сопротивление проводов и внутреннее сопротивление источника питания, на них и осядут оставшиется 4.3 Вольта. Только, скорее всего, диод к этому времени сгорит(см. пункт 4)
А если, например, к источнику 2 Вольта подключить 4 диода с падением напряжения 0.6 Вольта — ток не потечет вообще, так как напряженности поля не хватит, чтобы открыть все 4 диода сразу(несложно посчитать, что нужно 2.4 Вольт).
Никакой из рассмотренных доселе элементов таким свойством не обладал. Их сопротивление току не зависело от приложенного напряжения. А диода — зависит.
Поэтому и мультиметром сопротивление диода нельзя измерять, так как у него нет такого свойства по сути. Для диодов и транзисторов на них есть специальный режим измерения падения напряжения на полупроводниковом переходе.
4) В гидравлике это неочевидно, но надо всегда иметь в виду — диоды греются. Они оказывают хоть и меняющееся по значению, но — активное сопротивление току, , поэтому, согласно закону Джоуля-Ленца, в них выделяется тепловая энергия. Полупроводники очень чувствительны к нагреву, и надо следить, чтобы тепло, выделяющееся на элементе, не превышало паспортного значения, иначе диод сгорит. Для этого с помощью добавления резистора в цепь диода снижают ток в цепи, на крупные диоды ставят радиаторы, ставят вместо обычных диоды Шоттки(сниженное падение напряжение = сниженный нагрев) и т.п.
5) то, что диоды отличаются прямым напряжением — это мы уже знаем, это сколько оседает напряжения, когда диод открыть. Но они также отличаются и обратным напряжением — какую разницу давлений сможет выдержать диод-заслонка, прежде чем сломается и возникнет короткое замыкание на этом участке цепи. А также скоростью, с которой закрывается наша заслонка.
6) характеристики диодов зависят от температуры сильнее, чем резисторов или конденсаторов, особено это касается режима, когда диод заперт это тоже надо учитывать.
Сопротивление бесполезно
Ответ на пост «Жесткий диск. Сделано в СССР 30 лет назад»
Есть такой 32-летний "дедуля" 1988г выпуска:
Seagate ST-238R на 38mb.
Формфактор 5,25".
Скорость вращения шпинделя — 3600 об/мин.
Интерфейс MFM/ST412.
метод записи RLL.
Каждый "блинчик" толщиной, как два современных из обычного 3,5" hdd.
Вес "дедули" тоже внушает уважение.
Полупроводники — фундамент цивилизации. Часть 1 Диоды
Если попытаться создать рейтинг изобретений 20 века, которые оказали наибольшее влияние на нашу жизнь, полупроводники и полупроводниковые приборы окажутся, если не на первом месте, то в десятке – непременно.
В основе технологий полупроводниковой электроники, как очевидно из названия, лежат полупроводники. В недавней беседе с одним своим знакомым, я был несколько удивлён, когда узнал, что, хотя он и был осведомлён, в принципе, что делают и для чего нужны такие устройства, как диод и транзистор, он понятия не имел, как они устроены, и почему они так работают. Мысленно я поблагодарил его за то, что нашёл тему для своего следующего поста.
И так, давайте рассмотрим первый столп современной электроники – диод.
Для начала упомяну тот факт, который знают, если не всё, то многие – основное свойство диода – пропускать электрический ток только в одном направлении. Но чтобы понять, почему так происходит, сперва давайте более пристально посмотрим на химический элемент с номером 14 – кремний. Кремний весьма распространён в природе, он содержится, в частности, в обычном песке или в кварце. Если посмотреть на то, где «прописан» кремний в периодической таблице, то, вспомнив школьный курс химии, можно определить, что у таких элементов как углерод, кремний или германий есть достаточно редкое свойство – у всех них по 4 электрона на внешней орбитали (подробнее об орбиталях и внутреннем устройстве атома можно почитать в посте «Правила общежития электронов внутри атома»).
Это свойство позволяет им формировать идеальные ковалентные связи с соседними атомами, создавая, тем самым, правильную кристаллическую решётку. В случае с углеродом, в зависимости от конфигурации атомов, мы можем получить либо графит, либо алмаз. В случае же с кремнием, его кристаллическая форма выглядит как серебристое вещество с металлическим блеском:
Лирическое отступление: многие, наверное, слышали или встречали название Silicon Valley, которую безмозглые переводчики иногда переводят как «Силиконовая долина». Так вот, этимологически-правильный перевод: «Кремниевая долина». Силиконы – это общее название химических соединений кремния, ещё называемые полиорганосилоксаны. В частности, из них делают смазки, герметики, ну и самое замечательное – имплантаты для увеличения груди. Не уподобляйтесь пожалуйста безграмотным, не путайте силиконы и кремний!
Хотя кристаллы кремния и выглядят металлическими, металлом кремний не являются. Как я уже сказал, все четыре его электрона «заняты» в ковалентных связях с соседями, а основным требованием для тог, чтобы вещество проводило электрический ток, является наличие свободных электронов на внешней оболочке (как у металлов). Чистый кремний ведёт себя практически как изолятор.
Так что же сделать, чтобы кремний стал проводить ток? Для этого используется процесс, который называется «легирование» (doping). По факту, легирование – это внесение «загрязнений» (посторонних атомов) в кристаллическую решётку.
Ведь, что, по сути, надо сделать? Либо добавить свободных электронов, чтобы они смогли переносить отрицательный заряд, и тогда мы получим полупроводник N-типа (от Negative – отрицательный), либо уберём часть электронов так, чтобы получился полупроводник P-типа (от Positive – положительный).
Для легирования кремния с целью получить полупроводник N-типа используют небольшое добавление фосфора или мышьяка. Эти атомы имеют по 5 электронов на внешней оболочке, и, когда такие атомы внедряются в кристалл кремния, один электрон не формирует связи и остаётся свободным.
Для полупроводников P-типа используют, наоборот, атомы бора или галлия. У них по три внешних электрона, и, когда они внедряются в кристаллическую решётку, остаются «дырки», где у соседнего атома кремния остаётся электрон, который не может сформировать ковалентную связь. Отсутствие электрона создаёт эффект положительного заряда. Этот электрон может перескакивать от дырки к дырке, таким образом, тоже проводя электрический ток.
Хотя легирование и позволяет нашему кристаллу проводить электрический ток, но хорошим проводником его не делает, отсюда и название – полупроводник.
Ад перфекциониста – людям с ОКР теперь требуется соблюдать осторожность при обращении с полупроводниковыми приборами!
Сами по себе, ни полупроводники N-типа, ни полупроводники P-типа не замечены в чём-либо замечательном. «Волшебство» начинается, когда мы соединяем их вместе. На месте соединения свободные электроны полупроводника N-типа начинают занимать места «дырок» в полупроводнике P-типа, и приграничная область в полупроводнике P-типа становится от этого слегка отрицательно заряженной, а в N-полупроводнике эта область станет слегка положительно заряженной. На границе образуется так называемый «Инверсный слой» (англ. depletion region), в котором отсутствуют как свободные электроны, так и «дырки»:
Образовавшееся в этом слое электрическое поле создаст потенциальный барьер, который воспрепятствует какой-либо дальнейшей естественной миграции электронов в ту или другую сторону. Величина потенциала колеблется от 0,3 В при 25°C для германиевых P-N соединений, и примерно 0,7 В (при 25°C) для кремниевых.
Давайте посмотрим, что будет происходить, когда мы пропустим электрический ток по нашему P-N соединению.
Если подключить положительный полюс батареи к N-области, а отрицательный – к P области, то электроны и «дырки» будут притягиваться к местам подключения электродов, и толщина инверсного слоя увеличится, что прохождение тока через эту пару полупроводников будет невозможным. Подобное подключение называют подключением с Обратным (запорным) смещением (англ. Reverse bias).
Если же мы теперь перевернём батарею и подключим положительный полюс к P-области, а отрицательный – к N области, то электроны в N-области начнут отталкиваться от отрицательного заряда батареи устремятся в сторону положительного полюса, перескакивая из дырки в дырку, и, если поданное напряжение будет превышать потенциальный барьер (для кремниевого полупроводника он составляет ≈0,7 Вольт), то по цепи пойдёт электрический ток.Такой тип подключения называют подключением с «прямым смещение» (англ. forward bias).
По описанному принципу работает простейшее полупроводниковое устройство под названием диод. Этимология слова происходит от двух греческих корней ди- (от δί), что означает «два» или «двойной» и –од (от ὁδός), что означает «путь», «тропа».
В электрических схемах, диоды обозначаются следующим символом, сами же диоды промаркированы полоской со стороны катода:
Диод в электронике играет роль своего рода клапана, который позволяет проходить току только в одну сторону. Но не стоит обольщаться. Диод, как и любое другое устройство можно испортить. Если подключить по схеме обратного смещения слишком большое напряжение, то диод выйдет из строя и, таки, пропустит через себя ток. К счастью, подобное напряжение в случае нормальной работы электронной схемы возникнуть не должно. Для полупроводников с малой долей примесей величина напряжения пробоя больше, чем для полупроводников с высокой концентрацией легирующих элементов:
Свойства диодов проводить ток только в одном направлении нашли самое широкое применение. Наверное, наиболее востребованной и известной стала роль диодов в так называемых «выпрямителях» – устройствах, позволяющих преобразовать переменный ток в постоянный. Кроме этого, диоды применяются в радиоприёмных устройствах (см. диодные детекторы), диоды защищают электронные устройства от неправильной полярности включения, защищают от перегрузок. Диодные переключатели применяются для коммутации высокочастотных сигналов. Диоды используются в барьерах искрозащиты, и ещё в огромном количестве устройств, названия которых могут ничего вам и не сказать, однако, без них, почти ни один ваш электронный гаджет не смог бы работать.
Есть, однако, одна разновидность диодов, на которой стоит остановиться поподробнее, так как они настолько тесно интегрированы в нашу повседневную жизнь, что современная цивилизация без них попросту немыслима.
Речь идёт о светодиодах (англ. Light Emitting Diode – LED).
По сути, эти устройства являются теми же самыми диодами, то есть в них присутствует P-N переход, а свечение вызвано интересным «побочным» эффектом, который наблюдается при встрече свободного электрона и «дырки».
В одном из моих предыдущих постов (Как выглядит атом) я описал подробно механизм испускания фотонов электронами, так что останавливаться подробно не буду, скажу лишь, что электроны могут испускать фотоны света определённой частоты при переходе с более высокого уровня на более низкий. То же происходит и здесь – электрон, нормально имеющие большую энергию, чем позволяет место в «дырке», отдаёт излишек в виде фотона определённой частоты. Этот процесс происходит в любом диоде и называется «рекомбинация». Однако, видеть эти фотоны мы можем только, если диод состоит из определённых материалов. Например, разница в энергетических уровнях электронов и «дырок» в стандартном кремниевом диоде настолько мала, что частота испускаемого фотона не попадает в видимый человеческому глазу спектр излучения – по большей части, «светиться» подобный диод будет в инфракрасном диапазоне.
Собственно, это не всегда плохо. Например, инфракрасные светодиоды широко используются в пультах дистанционного управления к разнообразной бытовой технике.
Если мы хотим получить от диода видимый свет, нам нужна большая разница между энергией электрона и энергией «дырки». Эта разница определяет частоту испускания фотонов, и, соответственно, цвет, с которым будет светиться светодиод. Не все полупроводниковые материалы эффективны для данных целей. Наиболее распространёнными комбинациями полупроводников для данной цели являются арсенид галлия (GaAs), фосфит индия (InP), селенид цинка ZnSe или теллурид кадмия (CdTe).
Как жили до полупроводников?
Наверное, стоит ещё сказать пару слов о том, как мы жили до эры полупроводников, и какими раньше были диоды. А диоды раньше были тёплыми и ламповыми.
Работа электронных ламп основана на использовании термоэлектронной эмиссии, которая состоит в том, что накалённый до высокой температуры проводник выделяет в окружающее пространство свободные электроны. Это объясняется тем, что в проводнике имеются беспорядочно движущиеся «полусвободные» электроны, скорость которых при нагревании увеличивается. При высокой температуре они движутся так быстро, что некоторые из них вылетают за пределы проводника.
Катод служит для эмиссии электронов. Количество электронов, выделяемое катодом за каждую секунду, называют током эмиссии или просто эмиссией
При малых температурах эмиссии практически нет, а при увеличении температуры она растёт все быстрее и быстрее, достигая значительной величины при температурах порядка сотен градусов и выше. Чрезмерно повышать температуру нельзя, так как в конце концов нить перекалится и расплавится, что обычно не совсем правильно называют перегоранием.
Итак, чем больше температура катода, тем больше эмиссия. При увеличении поверхности катода эмиссия также становится больше. На величину эмиссии большое влияние оказывает материал катода.
Анод служит для того, чтобы притягивать электроны, выделяемые катодом, и создавать в лампе поток свободных электронов.
Чтобы анод мог притягивать электроны, он должен быть заряжен положительно. Притяжение электронов к аноду объясняется тем, что между анодом и катодом образуется электрическое поле. Электроны, вылетевшие из катода, под действием этого поля движутся к аноду.
Баллон служит для того, чтобы внутри лампы можно было создать вакуум, т.е. пространство, из которого удалён почти весь воздух. Для свободного движения электронов к аноду вакуум должен быть очень высоким. Наличие воздуха в лампе недопустимо и потому, что накалённый катод сгорит, т.е. вступит в химическое соединение с кислородом.
Из того, что мы уже знаем, мы можем предсказать, что ток не будет проходить через лампу, если изменится его направление, так как анод в этом случае не будет заряжен положительно, и не сможет притягивать электроны.
На этом первая часть поста заканчивается, а следующая часть будет посвящена не менее великому полупроводниковому устройству – его величеству транзистору.
Принцип работы диода: устройство, характеристика, как пропускает ток при прямом и обратном включении
Диод это самый простой полупроводниковый прибор всего с одним p-n переходом, имеющий два внешних вывода анод и катод. Он используется для выпрямления, детектирования, модуляции, ограничения и различных видов преобразования электрических сигналов. По функциональному назначению диоды классифицируются на выпрямительные, универсальные, СВЧ, стабилитроны, импульсные, варикапы, варисторы, переключающие, туннельные т.д.
Наверное любой начинающий радиолюбитель знает, что диод в одну сторону пропускает ток, а в другую нет. Но как, и почему он так делает, знают, а тем более понимают не многие, даже некоторые инженеры не знают этого.
Работа диода — общие принципы внутреннего устройства
Структурно диод можно представить кристаллом полупроводника, состоящим из двух областей. Одна с проводимостью p-типа, а другая — проводимостью n-типа.
Работа диода поясняющая структурная схема
Анод это плюсовой электрод, в нем основными носителями заряда являются дырки.
Катод это минусовой электрод, в нем основными носителями заряда являются электроны.
На внешних поверхностях двух областей имеются контактные металлические слои, к которым припаяны внешние выводы. Такой полупроводниковый прибор может быть только в одном из двух состояний: открыт и закрыт
Работа диода при прямом включении
Если к выводам полупроводникового прибора подсоединить постоянное напряжение: на анод подать плюс» а на вывод катода соответственно «минус», то диод откроется и через него начнет идти ток, величина которого зависит от приложенного напряжения и внутренних свойств диода.
При прямом включении электроны из n области устремятся навстречу дыркам в p-область, а дырки из p в область n. На границе электронно-дырочного перехода, они встретятся, и осуществится их взаимное поглощение или рекомбинация.
Вывод диода, подключенный к минусу, будет посылать в область n огромное количество электронов, пополняя их убывание. А вывод, соединенный с плюсом, помогает восстанавливать концентрация дырок в области p. То есть, проводимость электронно-дырочного перехода увеличится, а сопротивление току резко уменьшится, а значит, через диод потечет ток, называемый прямым током диода Iпр.
Изменим полярность нашего подключения и посмотрим на изменения в работе подключенного полупроводникового прибора.
В этом случае электроны и дырки будут, оттеснятся от p-n перехода, а на границе электронно-дырочного перехода резко возрастает потенциальный барьер или другими словами зона обедненная носителями заряда дырками и электронами, которая будет препятствовать прохождению тока.
Но, так как в каждой из области имеется небольшое количество неосновных носителей заряда, то небольшой обмен носителями заряда между областями все же происходит, но он очень мал. Такой ток получил название обратный ток Iобр.
Напряжение, открытия диода, когда через него течет прямой ток называют прямым Uпр, а напряжение обратной полярности, при котором он запирается и через него течет Iобр называют обратным Uобр. При Uпр внутреннее сопротивление не выше нескольких десятков Ом, зато при Uобр сопротивление резко увеличивается до сотен и даже тысяч килоом. Это легко увидеть, если измерить обратное сопротивление с помощью мультиметра.
Сопротивление электронно-дырочного перехода величина не постоянная и зависит от Uпр. Чем оно выше, тем меньше сопротивление p-n переход, тем выше Iпр идущий через полупроводник. В закрытом состоянии на нем падает почти все напряжение, поэтому, Iобр ничтожно мал, а сопротивление p-n перехода огромно.
Если мы подсоединим диод в цепь переменного тока, то он будет открыт при положительных полуволне синусоидального напряжения, пропуская прямой ток , и заперт при отрицательной полуволне, почти не пропуская Iобр. Это главное свойства диодов используют для преобразования переменного напряжения в постоянный, и такие приборы называют выпрямительными.
Зависимость тока, проходящего через электронно-дырочный переход, от величины и полярности напряжения изображают в виде кривой, называемой ВАХ
Она состоит из двух ветвей: прямая ветвь — соответствует прямому току через диод, и обратная ветвь, соответствующая обратному току.
Прямая ветвь графика круто поднимается вверх и характеризует быстрый рост прямого тока с ростом значения прямого напряжения. Обратная ветвь, наоборот следует почти параллельно горизонтальной оси и характеризует медленный рост Iобр. Чем ближе к вертикальной оси прямая ветвь и чем ближе к горизонтальной оси обратная ветвь, тем лучше выпрямительные свойства полупроводника. Наличие Iобр является недостатком. Из кривой ВАХ видно, что Iпр во много больше Iобр.
Как мы видим из графика с увеличением прямого напряжения через электронно-дырочный переход ток сначало возрастает медленно, а затем гораздо быстрее.
Но такое резкое увеличение тока нагревает молекулы полупроводника. И если количество тепла будет выше отводимого от кристалл, то могут случится необратимые изменения и разрушение кристаллической решетки.
Поэтому необходимо использовать ограничительное сопротивление включенное последовательно.
При сильном увеличении обратного напряжения, может произойти пробой электронно-дырочного прибора. Даже существуют специальные полупроводниковые приборы называемые стабилитронами в которых применяется это свойство.
Пробой p-n перехода это явление резкого возрастания обратного тока при достижении обратным напряжением определенного критического уровня. Тепловые пробои в свою очередь делятся на электрический и тепловой, а электрический пробой бывает туннельный и лавинный.
Электрический пробой происходит в результате воздействия сильного электрического поля в переходе. Такой пробой считается обратимым, так как он не приводит к повреждению кристалла, и при снижении уровня обратного напряжения характеристики диода сохраняются.
Туннельный пробой возникает в результате туннельного эффекта, который заключается в том, что при высокой напряженности электрического поля в узком p-n переходе, отдельные электроны просачиваются через переход. Такие p-n переходы возможны только при условии высокой концентрации примесей в молекуле полупроводника.
При туннельном пробое происходит резкий рост Iобр при малом обратном напряжении. На основе этого свойства были разработаны туннельные диоды. Они применяются в усилителях, генераторах синусоидальных колебаний и в различных переключающих устройствах на высоких частотах.
Лавинный пробой происходит также под действием сильного электрического поля, когда неосновные носители зарядов под действием тепла в переходе ускоряются на столько, что выбивают из атома один из валентных электронов и выкидывают его в зону проводимости, создав при этом пару электрон — дырка. Образовавшиеся свободные носители начинают разгоняться и сталкиваться с другими атомами, выбивая другие электроны. Процесс носит лавинообразный характер, что приводит к резкому увеличению Iобр при практически неизменном уровне напряжения.
Эффект лавинного пробоя применяется в мощных выпрямительных агрегатах, используемых в металлургической и химической промышленности, а также в железнодорожном транспорте.
Тепловой пробой происходит из-за перегрева p-n перехода при протекании большого уровня тока, и при плохом теплоотводе. Это приводит к резкому возрастанию температуры перехода и соседних с ним областе, увеличивается колебания атомов структуры кристалла, исчезает связь валентных электронов. Электроны начинают уходить в в зону проводимости, идет лавинообразное повышение температуры, что приводит к разрушению кристалла и выходу из строя радиокомпонента.
Описание работы выпрямительного устройства на полупроводниковых диодах
Светодиод это полупроводниковый источник света. Генерация света в нем осуществляется за счет энергии, выделяемой при рекомбинации носителей тока дырок или электронов, в зависимости от проводимости p-n перехода, на границе полупроводниковых материалов.
Тиристор это полупроводниковый прибор, изготовленный на основе монокристаллического полупроводника, обладающего тремя и более p-n-переходами.
Стабилитрон — разновидность полупроводникового диода, работающего при напряжении обратного смещении в режиме пробоя. До момента наступления пробоя через стабилитрон текут совсем незначительные токи утечки, а его сопротивление достаточно высокое. В момент пробоя ток через него резко увеличивается, а его дифференциальное сопротивление снижается до малых величин. За счет этого в режиме пробоя напряжение на стабилитроне поддерживается с неплохой точностью в большом диапазоне обратных токов.
Варикап — это очередная разновидность полупроводникового диод, который способен изменять свою внутреннюю емкость прямо пропорционально уровню приложенного обратного напряжения смещения p-n перехода от единиц до сотен пикофарад.
Это еще одна разновидность типичного полупроводникового диода, его отличительная особенность это малое падение напряжения при прямом включении. Название свое он получил в честь немецкого физика изобретателя Вальтера Шоттки. В этих диодах в роли потенциального барьера применяется переход металл-полупроводник, а не p-n переход. Допустимое обратное напряжение диодов Шоттки обычно около 1200 вольт, например CSD05120 и его аналоги, на практике они используются в низковольтных цепях при обратном напряжении до нескольких десятков вольт.
Все эти компоненты различаются по назначению, применяемым материалам, типам р-n переходов, конструктивному исполнению, мощности и прочим признакам и характеристикам. Широкое распространение получили выпрямительные, импульсные диоды, варикапы, диоды Шотки, тринисторы, светодиоды, и тиристоры. Рассмотрим их основные технические характеристики и общие свойства, хотя у каждого типа из этих полупроводниковых компонентов много и своих сугубо индивидуальных параметров
Диод является одной из разновидностей приборов, сконструированных на полупроводниковой основе. Обладает одним p-n переходом, а также анодным и катодным выводом. В большинстве случаев он предназначен для модуляции, выпрямления, преобразования и иных действий с поступающими электрическими сигналами.
- Электрический ток воздействует на катод, подогреватель начинает накаливаться, а электрод испускать электроны.
- Между двумя электродами происходит образование электрического поля.
- Если анод обладает положительным потенциалом, то он начинает притягивать электроны к себе, а возникшее поле является катализатором данного процесса. При этом, происходит образование эмиссионного тока.
- Между электродами происходит образование пространственного отрицательного заряда, способного помешать движению электронов. Это происходит, если потенциал анода оказывается слишком слабым. В таком случае, частям электронов не удается преодолеть воздействие отрицательного заряда, и они начинают двигаться в обратном направлении, снова возвращаясь к катоду.
- Все электроны, которые достигли анода и не вернулись к катоду, определяют параметры катодного тока. Поэтому данный показатель напрямую зависит от положительного анодного потенциала.
- Поток всех электронов, которые смогли попасть на анод, имеет название анодный ток, показатели которого в диоде всегда соответствуют параметрам катодного тока. Иногда оба показателя могут быть нулевыми, это происходит в ситуациях, когда анод обладает отрицательным зарядом. В таком случае, возникшее между электродами поле не ускоряет частицы, а, наоборот, тормозит их и возвращает на катод. Диод в таком случае остается в запертом состоянии, что приводит к размыканию цепи.
Устройство
Ниже приводится подробное описание устройства диода, изучение этих сведений необходимо для дальнейшего понимания принципов действия этих элементов:
- Корпус представляет собой вакуумный баллон, который может быть изготовлен из стекла, металла или прочных керамических разновидностей материала.
- Внутри баллона имеется 2 электрода. Первый является накаленным катодом, который предназначен для обеспечения процесса эмиссии электронов. Самый простейший по конструкции катод представляет собой нить с небольшим диаметром, которая накаливается в процессе функционирования, но на сегодняшний день более распространены электроды косвенного накала. Они представляют собой цилиндры, изготовленные из металла, и обладающие особым активным слоем, способным испускать электроны.
- Внутри катодакосвенного накала имеется специфический элемент — проволока, которая накаливается под воздействием электрического тока, она называется подогреватель.
- Второй электрод является анодом, он необходим для приема электронов, которые были выпущены катодом. Для этого он должен обладать положительным относительно второго электрода потенциалом. В большинстве случаев анод также имеет цилиндрическую форму.
- Оба электрода вакуумных приборов полностью идентичны эмиттеру и базе полупроводниковой разновидности элементов.
- Для изготовления диодного кристалла чаще всего используется кремний или германий. Одна из его частей является электропроводимой по p-типу и имеет недостаток электронов, который образован искусственным методом. Противоположная сторона кристалла также имеет проводимость, но n-типа и обладает избытком электронов. Между двумя областями имеется граница, которая и называется p-n переходом.
Такие особенности внутреннего устройства наделяют диоды их главным свойством — возможностью проведения электрического тока только в одном направлении.
Назначение
Ниже приводятся основные области применения диодов, на примере которых становится понятно их основное назначение:
- Диодные мосты представляют собой 4, 6 или 12 диодов, соединенных между собой, их количество зависит от типа схемы, которая может быть однофазной, трехфазной полумостовой или трехфазной полномостовой. Они выполняют функции выпрямителей, такой вариант чаще всего используется в автомобильных генераторах, поскольку внедрение подобных мостов, а также использование вместе с ними щеточно-коллекторных узлов, позволило в значительной степени сократить размеры данного устройства и увеличить степень его надежности. Если соединение выполнено последовательно и в одну сторону, то это повышает минимальные показатели напряжения, которое потребуется для отпирания всего диодного моста.
- Диодные детекторы получаются при комбинированном использовании данных приборов с конденсаторами. Это необходимо для того, чтобы было можно выделить модуляцию с низкими частотами из различных модулированных сигналов, в том числе амплитудно-модулированной разновидности радиосигнала. Такие детекторы являются частью конструкции многих бытовых потребителей, например, телевизоров или радиоприемников.
- Обеспечение защиты потребителей от неверной полярности при включении схемных входов от возникающих перегрузок или ключей от пробоя электродвижущей силой, возникающей при самоиндукции, которая происходит при отключении индуктивной нагрузки. Для обеспечения безопасности схем от возникающих перегрузок, применяется цепочка, состоящая из нескольких диодов, имеющих подключение к питающим шинам в обратном направлении. При этом, вход, которому обеспечивается защита, должен подключаться к середине этой цепочки. Во время обычного функционирования схемы, все диоды находятся в закрытом состоянии, но если ими было зафиксировано, что потенциал входа ушел за допустимые пределы напряжения, происходит активация одного из защитных элементов. Благодаря этому, данный допустимый потенциал получает ограничение в рамках допустимого питающего напряжения в сумме с прямым падением показателей напряжение на защитном приборе.
- Переключатели, созданные на основе диодов, используются для осуществления коммутации сигналов с высокими частотами. Управление такой системой осуществляется при помощи постоянного электрического тока, разделения высоких частот и подачи управляющего сигнала, которое происходит благодаря индуктивности и конденсаторам.
- Создание диодной искрозащиты. Используются шунт-диодные барьеры, которые обеспечивают безопасность путем ограничения напряжения в соответствующей электрической цепи. В совокупности с ними применяются токоограничительные резисторы, которые необходимы для ограничения показателей электрического тока, проходящего через сеть, и увеличения степени защиты.
Использование диодов в электронике на сегодняшний день весьма широко, поскольку фактически ни одна современная разновидность электронного оборудования не обходится без этих элементов.
Прямое включение диода
На p-n-переход диода может оказывать воздействие напряжение, подаваемое с внешних источников. Такие показатели, как величина и полярность, будут сказываться на его поведении и проводимом через него электрическом токе.
Ниже подробно рассмотрен вариант, при котором происходит подключение плюса к области p-типа, а отрицательного полюса к области n-типа. В этом случае произойдет прямое включение:
- Под воздействием напряжения от внешнего источника, в p-n-переходе сформируется электрическое поле, при этом его направление будет противоположным относительно внутреннего диффузионного поля.
- Напряжение поля значительно снизится, что вызовет резкое сужение запирающего слоя.
- Под воздействием этих процессов значительное количество электронов обретет возможность свободно переходить из p-области в n-область, а также в обратном направлении.
- Показатели тока дрейфа во время этого процесса остаются прежними, поскольку они напрямую зависят только от числа неосновных заряженных носителей, находящихся в области p-n-перехода.
- Электроны обладают повышенным уровнем диффузии, что приводит к инжекции неосновных носителей. Иными словами, в n-области произойдет повышение количества дырок, а в p-области будет зафиксирована повышенная концентрация электронов.
- Отсутствие равновесия и повышенное число неосновных носителей заставляет их уходить вглубь полупроводника и смешиваться с его структурой, что в итоге приводит к разрушению его свойств электронейтральности.
- Полупроводник при этом способен восстановить свое нейтральное состояние, это происходит благодаря получению зарядов от подключенного внешнего источника, что способствует появлению прямого тока во внешней электрической цепи.
Обратное включение диода
Теперь будет рассмотрен другой способ включения, во время которого изменяется полярность внешнего источника, от которого происходит передача напряжения:
- Главное отличие от прямого включения заключается в том, что создаваемое электрическое поле будет обладать направлением, полностью совпадающим с направлением внутреннего диффузионного поля. Соответственно, запирающий слой будет уже не сужаться, а, наоборот, расширяться.
- Поле, находящееся в p-n-переходе, будет оказывать ускоряющий эффект на целый ряд неосновных носителей заряда, по этой причине, показатели дрейфового тока останутся без изменений. Он будет определять параметры результирующего тока, который проходит через p-n-переход.
- По мере ростаобратного напряжения, электрический ток, протекающий через переход, будет стремиться достичь максимальных показателей. Он имеет специальное название — ток насыщения.
- В соответствии с экспоненциальным законом, с постепенным увеличением температуры будут увеличиваться и показатели тока насыщения.
Прямое и обратное напряжение
Напряжение, которое оказывает воздействие на диод, разделяют по двум критериям:
- Прямое напряжение — это то, при котором происходит открытие диода и начинается прохождение через него прямого тока, при этом показатели сопротивления прибора являются крайне низкими.
- Обратное напряжение — это то, которое обладает обратной полярностью и обеспечивает закрытие диода с прохождением через него обратного тока. Показатели сопротивления прибора при этом начинают резко и значительно расти.
Сопротивление p-n-перехода является постоянно меняющимся показателем, в первую очередь на него оказывает влияние прямое напряжение, подающееся непосредственно на диод. Если напряжение увеличивается, то показатели сопротивления перехода будут пропорционально уменьшаться.
Это приводит к росту параметров прямого тока, проходящего через диод. Когда данный прибор закрыт, то на него воздействует фактически все напряжение, по этой причине показатели проходящего через диод обратного тока являются незначительными, а сопротивление перехода при этом достигает пиковых параметров.
Работа диода и его вольт-амперная характеристика
Под вольт-амперной характеристикой данных приборов понимается кривая линия, которая показывает то, в какой зависимости находится электрический ток, протекающий через p-n-переход, от объемов и полярности напряжения, воздействующего на него.
Подобный график можно описать следующим образом:
- Ось, расположенная по вертикали: верхняя область соответствует значениям прямого тока, нижняя область параметрам обратного тока.
- Ось, расположенная по горизонтали: область, находящаяся справа, предназначена для значений прямого напряжения; область слева для параметров обратного напряжения.
- Прямая ветвь вольт-амперной характеристики отражает пропускной электрический ток через диод. Она направлена вверх и проходит в непосредственной близости от вертикальной оси, поскольку отображает увеличение прямого электрического тока, которое происходит при увеличении соответствующего напряжения.
- Вторая (обратная) ветвь соответствует и отображает состояние закрытого электрического тока, который также проходит через прибор. Положение у нее такое, что она проходит фактически параллельно относительно горизонтальной оси. Чем круче эта ветвь подходит к вертикали, тем выше выпрямительные возможности конкретного диода.
- По графику можно наблюдать, что после роста прямого напряжения, протекающего через p-n-переход, происходит медленное увеличение показателей электрического тока. Однако постепенно, кривая достигает области, в которой заметен скачок, после которого происходит ускоренное нарастание его показателей. Это объясняется открытием диода и проведением тока при прямом напряжении. Для приборов, изготовленных из германия, это происходит при напряжении равном от 0,1В до 0,2В (максимальное значение 1В), а для кремниевых элементов требуется более высокий показатель от 0,5В до 0,6В (максимальное значение 1,5В).
- Показанное увеличение показателей тока может привести к перегреву полупроводниковых молекул. Если отведение тепла, происходящее благодаря естественным процессам и работе радиаторов, будет меньше уровня его выделения, то структура молекул может быть разрушена, и этот процесс будет иметь уже необратимый характер. По этой причине, необходимо ограничивать параметры прямого тока, чтобы не допустить перегрева полупроводникового материала. Для этого, в схему добавляются специальные резисторы, имеющие последовательное подключение с диодами.
- Исследуя обратную ветвь можно заметить, что если начинает увеличиваться обратное напряжение, которое приложено к p-n-переходу, то фактически незаметен рост параметров тока. Однако в случаях, когда напряжение достигает параметров, превосходящих допустимые нормы, может произойти внезапный скачок показателей обратного тока, что перегреет полупроводник и будет способствовать последующему пробою p-n-перехода.
Основные неисправности диодов
Иногда приборы подобного типа выходят из строя, это может происходить из-за естественной амортизации и старения данных элементов или по иным причинам.
Всего выделяют 3 основных типа распространенных неисправностей:
- Пробой перехода приводит к тому, что диод вместо полупроводникового прибора становится по своей сути самым обычным проводником. В таком состоянии он лишается своих основных свойств и начинает пропускать электрический ток в абсолютно любом направлении. Подобная поломка легко выявляется при помощи стандартного мультиметра, который начинает подавать звуковой сигнал и показывать низкий уровень сопротивления в диоде.
- При обрыве происходит обратный процесс — прибор вообще перестает пропускать электрический ток в каком-либо направлении, то есть он становится по своей сути изолятором. Для точности определения обрыва, необходимо использовать тестеры с качественными и исправными щупами, в противном случае, они могут иногда ложно диагностировать данную неисправность. У сплавных полупроводниковых разновидностей такая поломка встречается крайне редко.
- Утечка, во время которой нарушается герметичность корпуса прибора, вследствие чего он не может исправно функционировать.
Пробой p-n-перехода
Подобные пробои происходят в ситуациях, когда показатели обратного электрического тока начинают внезапно и резко расти, происходит это из-за того, что напряжение соответствующего типа достигает недопустимых высоких значений.
Обычно различается несколько видов:
- Тепловые пробои, которые вызваны резким повышением температуры и последующим перегревом.
- Электрические пробои, возникающие под воздействием тока на переход.
График вольт-амперной характеристики позволяет наглядно изучать эти процессы и разницу между ними.
Электрический пробой
Последствия, вызываемые электрическими пробоями, не носят необратимого характера, поскольку при них не происходит разрушение самого кристалла. Поэтому при постепенном понижении напряжения можно восстановить всей свойства и рабочие параметры диода.
При этом, пробои такого типа делятся на две разновидности:
- Туннельные пробои происходят при прохождении высокого напряжения через узкие переходы, что дает возможность отдельно взятым электронам проскочить через него. Обычно они возникают, если в полупроводниковых молекулах имеется большое количество разных примесей. Во время такого пробоя, обратный ток начинает резко и стремительно расти, а соответствующее напряжение находится на низком уровне.
- Лавинные разновидности пробоев возможны благодаря воздействию сильных полей, способных разогнать носителей заряда до предельного уровня из-за чего они вышибают из атомов ряд валентных электронов, которые после этого вылетают в проводимую область. Это явление носит лавинообразный характер, благодаря чему данный вид пробоев и получил такое название.
Тепловой пробой
Возникновение такого пробоя может произойти по двум основным причинам: недостаточный теплоотвод и перегрев p-n-перехода, который происходит из-за протекания через него электрического тока со слишком высокими показателями.
Повышение температурного режима в переходе и соседних областях вызывает следующие последствия:
Диод — простейший полупроводниковый прибор, который можно встретить сегодня на печатной плате любого электронного устройства. В зависимости от внутренней структуры и технических характеристик, диоды классифицируются на нескольких видов: универсальные, выпрямительные, импульсные, стабилитроны, туннельные диоды и варикапы.
Диоды применяются для выпрямления, ограничения напряжения, детектирования, модуляции, в качестве защитных элементов и т. д. — в зависимости от назначения устройства, в котором применяются.
Выпрямительные диоды предназначены для выпрямления переменного тока низкой частоты в пульсирующий ток одного направления.
Основа диода — p-n-переход, сформированный полупроводниковыми материалами с двумя разными типами проводимости. К кристаллу диода присоединены два вывода, называемые катод (минусовой электрод) и анод (плюсовой электрод). На стороне анода находится область полупроводника p-типа, а на стороне катода — область n-типа.
Данное устройство диода обеспечивает ему уникальное свойство — он проводит ток лишь в одном (прямом) направлении, от анода — к катоду. В обратном направлении обычный исправный диод ток не проводит.
В области анода (p-типа), основными носителями заряда являются положительно заряженные дырки, а в области катода (n-типа) — отрицательно заряженные электроны. Выводы диода представляют собой контактные металлические поверхности к которым и припаяны выводы.
Когда диод проводит ток в прямом направлении, это значит что он находится в открытом состоянии. Если ток через p-n-переход не идет, значит диод закрыт. Таким образом, диод может находиться в одном из двух устойчивых состояний: или открыт или закрыт.
Включив диод в цепь источника постоянного напряжения, анодом к плюсовой клемме, а катодом — к минусовой, получим смещение p-n-перехода в прямом направлении. И если напряжение источника окажется достаточным (для кремниевого диода хватит 0,7 вольт), то диод откроется и начнет проводить ток. Величина этого тока будет зависеть от величины приложенного напряжения и от внутреннего сопротивления диода.
Почему диод перешел в проводящее состояние? Потому что при правильном включении диода, электроны из n-области, под действием ЭДС источника, устремились к его положительному электроду, навстречу дыркам из p-области, которые теперь движутся в сторону отрицательного электрода источника, навстречу электронам.
На границе областей (на самом p-n-переходе) в это время происходит рекомбинация электронов и дырок, их взаимное поглощение. А источник вынужден непрерывно поставлять новые электроны и дырки в область p-n-перехода, увеличивая их концентрацию.
А что случится если диод включить наоборот, катодом к плюсовой клемме источника, а анодом — к минусовой? Дырки и электроны разбегутся в разные стороны — к выводам — от перехода, и в окрестности перехода возникнет зона обедненная носителями заряда — потенциальный барьер. Ток обусловленный основными носителями заряда (электронами и дырками) попросту не возникнет.
Но кристалл диода не идеален, в нем кроме основных носителей заряда присутствуют еще и неосновные носители заряда, которые и создадут очень незначительный обратный ток диода, измеряемый микроамперами. Но диод в данном состоянии закрыт, так как p-n-переход его смещен в обратном направлении.
К основным параметрам выпрямительного диода относятся прямой и обратный токи, выпрямленный ток, прямое и обратное напряжение, дифференциальное сопротивление, максимальная рабочая частота.
Напряжение, при котором диод переходит из закрытого состояния в открытое, называется прямым напряжением диода (смотрите — Основные параметры диодов), которое по сути является падением напряжения на p-n-переходе.
Сопротивление диода току в прямом направлении не постоянно, оно зависит от величины тока через диод и имеет размер порядка единиц Ом. Напряжение обратной полярности, при котором диод закрывается, называется обратным напряжением диода. Обратное сопротивление диода в этом состоянии измеряется тысячами Ом.
Очевидно, диод может переходить из открытого состояния в закрытое и обратно при смене полярности приложенного к нему напряжения. На данном свойстве диода основана работа выпрямителя.
Так, в цепи синусоидального переменного тока диод будет проводить ток лишь во время положительной полуволны, а во время отрицательной — будет заперт.
Выпрямитель — это устройство, которое преобразует переменный ток в постоянный. Основными функциональными элементами являются диоды, которые пропускают ток только в одном направлении. Подходящим расположением диодов переменный ток в однофазной или трехфазной цепи преобразуется в пульсирующий, но однонаправленный ток. Для сглаживания результирующего тока можно использовать конденсаторы.
Нормальная работа диода в режиме выпрямления возможна в том случае, когда обратное напряжение не превышает пробивного значения, а выпрямленный ток не больше номинально допустимого при нормальной температуре диода. С повышением температуры диода прямой и обратный ток увеличиваются, а с понижением — уменьшаются. Пробивное напряжение с повышением температуры снижается.
Границы режимов, при которых диод работает с заданной надежностью, определяются предельными параметрами. К предельным параметрам относятся максимальные значения выпрямленного тока, допустимой мощности рассеяния на диоде, его рабочей температуры, пикового обратного напряжения.
Самые распространенные типы диодов:
- Выпрямительные диоды: эти диоды используются в схемах выпрямления переменного тока в постоянный. Они медленные, предназначены для работы с низкочастотными цепями, оптимизированы для низких потерь проводимости и могут выдерживать только умеренные динамические нагрузки. Типичное значение ton для силового диода составляет 5-20 мкс, а toff 20-100 мкс (соотношение Ton/Tof определяем быстродействие диода) . Номинальное напряжение варьируется от нескольких сотен вольт до 10 кВ, а номинальный ток варьируется в диапазоне от 1 А до 10 кА.
- Диоды с быстрым восстановлением: обычно это диоды-компаньоны для быстрых переключателей, таких как IGBT. Эти диоды оптимизированы для высоких динамических нагрузок, а также для применения в электронных переключателях. Типичное время ton находится в диапазоне несколько наносекунд, а типичное время toff находится в диапазоне от нескольких десятков наносекунд до нескольких микросекунд, в зависимости от номинала диода. Доступны номинальные значения напряжения и тока до 6 кВ и 3 кА соответственно.
- Быстродействующие диоды: они оптимизированы для высокочастотных приложений, таких как высокочастотные выпрямители в импульсных источниках питания. У них очень малое время восстановления (от 1 нс до 5 мкс). Номинальная мощность варьируется от нескольких сотен милливатт до нескольких киловатт.
- Диоды Шоттки: эти диоды имеют очень низкое падение напряжения в открытом состоянии и очень быстрое переключение. Падение напряжения в открытом состоянии может составлять всего 0,1-0,7 В. Для многих приложений, таких как высокочастотные выпрямители в источниках питания низкого напряжения, требуются быстродействующие диоды с низким падением напряжения в открытом состоянии. Диод Шоттки формируется путем нелинейного контакта между полупроводником N-типа (катод) и металлом (анод), создавая барьер Шоттки. Ток возникает из-за основных носителей, в результате чего незначительные неосновные носители сохраняются в дрейфовой области. Это значительно сокращает время выключения устройства. Диоды Шоттки на основе кремния имеют очень низкую (
- Стабилитроны: это диоды специального назначения, которые позволяют току течь в прямом, а также в обратном направлении. В обратном направлении они предназначены для работы в области пробоя. Стабилитроны рассчитаны на низкое напряжение пробоя, обычно от нескольких вольт до максимума 1 кВ. Прямой ток будет находиться в диапазоне от нескольких микроампер до 200 А.
- Светоизлучающие диоды: светоизлучающие диоды (СИД) излучают свет при активации. Они используются в основном в качестве индикаторов и элементов отображения информации. В последнее время их стали использовать для освещения.
Телеграмм канал для тех, кто каждый день хочет узнавать новое и интересное: Школа для электрика
Если Вам понравилась эта статья, поделитесь ссылкой на неё в социальных сетях. Это сильно поможет развитию нашего сайта!