Как прозвонить дроссель мультиметром на плате
Перейти к содержимому

Как прозвонить дроссель мультиметром на плате

  • автор:

Как проверить дроссель мультиметром видео

замеры мультиметром Лампа дневного света и тестер Два дросселя

Перед тем, как проверить дроссель мультиметром, нужно помнить, что тестирование выполняется несколькими способами, включая применение контрольного или заведомо исправного осветительного элемента, а также специального прибора.

Конструктивные особенности

Любые лампы дневного света, содержащие во внутренней части люминесцентные частицы, очень хорошо подходят для освещения в жилых помещениях.
Мягкость свечения светового потока обуславливается специально подобранным газовым составом, поэтому осветительный прибор может генерировать источник света:

  • в желтоватых тонах;
  • в холодных белых тонах;
  • в теплых белых тонах.

Полностью безопасная эксплуатация люминесцентной лампы обеспечивается наличием в конструкции осветительного прибора специального элемента, называемого дросселем. По своим внешним характеристикам такое устройство имеет схожесть с катушкой индуктивности, дополненной сердечником на основе ферримагнитных сплавов.

дроссели силовые

Cиловые дроссели EPCOS AG

В процессе работы источника света, наличие дросселя эффективно стабилизирует генерируемое осветительным прибором свечение, что исключает негативное воздействие мерцания. Таким образом, неисправность дроссельного элемента становится основной причиной пульсации светового потока.

Перед приобретением элементов для установки в светильник с лампами дневного света, настоятельно рекомендуется уточнять в точке реализации наличие гарантии на продукцию, что позволит в случае определения заводского дефекта осуществить замену.

Проверка межвиткового замыкания

В случае межвиткового замыкания, проверка тестером результата не даст. В этом случае необходимо знать, как проверять дроссель при помощи мультиметра.

Межвитковое замыкание имеет место при непосредственном гальваническом контакте двух витков или при контакте витков с металлическим сердечником. Очевидно, что в этом случае сопротивление катушки уменьшается.

Возможен редкий случай, когда измерение сопротивления катушки не даст достоверной картины ее состояния. Такое может случиться при обрыве и межвитковом замыкании одновременно.

В этом случае межвитковое замыкание может оказаться параллельным обрыву, и несколько витков просто не будут участвовать в измерении. Исправный, казалось бы, дроссель будет работать некорректно.

Для проверки катушки на наличие межвиткового замыкания, аналоговый мультиметр в режиме миллиамперметра необходимо использовать в составе прибора, собранного на двух транзисторах.

Схема прибора приведена на рисунке.

Сам прибор представляет собой генератор низкой частоты. При сборке схемы используются любые транзисторы из линейки МП39-МП42 (коэффициент усиления 40-50).

Диоды можно использовать типа Д1 или Д2 с любым индексом. Резисторы применяются любого типа, рассчитанные на мощность не менее 0,12 Вт. Питание прибора осуществляется от источника постоянного тока, напряжением 7-9 В.

Особенности дросселя

Вне зависимости от конструкции, назначение дросселя люминесцентных источников света представлено:

  • защитой от перепадов в показателях напряжения;
  • разогревом катода;
  • созданием напряжения достаточного уровня для запуска светильника;
  • ограничением силовых показателей электрического тока непосредственно после запуска;
  • стабилизацией процессов работы осветительного прибора.

дроссель - чертеж

Конструкция дросселя

Экономически обоснованным является подключение одного дроссельного устройства сразу на пару осветительных приборов. Стандартное электромагнитное пускорегулирующее устройство, помимо дросселя, представлено стартером и парой конденсаторов.

Характеристики ЭмПРА

Дроссели электромагнитного типа характеризуются доступной стоимостью, простой конструкцией и высокими показателями надежности, а основные недостатки таких устройств представлены:

  • пульсирующим световым потоком, вызывающим усталость органов зрения;
  • порядка 10-15% потери электрической энергии;
  • шумностью работы в пусковой момент;
  • недостаточно устойчивым запуском в низкотемпературных условиях;
  • большими размерами и ощутимым весом;
  • продолжительным запуском источника света.

виды дросселей

ЭМПРА дроссель

Как правило, комплект бывает представлен лампами и дросселями, а самостоятельная замена баланса предполагает приобретение элемента с аналогичными параметрами.

Следует отметить, что любые подбираемые люминесцентные источники света и дроссели, в обязательном порядке должны быть равными по мощности, что сделает срок службы осветительного прибора максимально продолжительным.

Характеристики электронного балласта

Электронные балласты относятся к категории современных устройств, в которых практически полностью нивелированы недостатки электромагнитного дросселя. Схематично, такой элемент является единым блоком, производящим запуск осветительного прибора и поддерживающим процесс горения посредством образования определенной последовательности в изменении уровня напряжения.

Преимущества электронного балласта представлены:

  • любой скоростью запуска;
  • отсутствием необходимости устанавливать стартер;
  • исключено проявление мерцания;
  • максимальными показателями световой отдачи;
  • компактными размерами и небольшим весом устройства;
  • оптимальными условиями функционирования.

балласт для ламп

Так выглядит электронный балласт

Электронные балласты стоят на порядок выше электромагнитных устройств, что обуславливается сложностью схемы с наличием фильтров, корректирующих коэффициент мощности моментов, инвертора и балласта. Некоторые модели электронного устройства дополняются системой защиты от включения осветительного прибора без лампы.

Удобство эксплуатации электронных балластов в лампах дневного света энергосберегающего типа, обусловлено установкой источников света непосредственно в цокольную часть стандартных патронов.

Самые часты неисправности

Как правило, источники неисправности, которые связаны с эксплуатацией люминесцентных ламп, представлены сбоями в работе электрической схемы ПРА и стартера. Посредством оценивания характерных визуальных эффектов, можно достоверно определить причины неисправности:

неисправности дросселей

  • наличие «огненной змейки», вьющейся внутри колбы, является результатом превышения допустимых токовых значений и нестабильности электрического разряда;
  • темная колба на участке расположения выходных цокольных контактов, свидетельствует о несоответствии показателей тока на пуск и работу с вольт-амперными характеристиками;
  • перегорание спиралей в лампах дневного света, может стать результатом изоляционной изношенности обмотки пускорегулирующего устройства.

Достаточно часто встречаются проблемы, сопровождающиеся появлением запаха гари или сторонних звуков. В этом случае можно предположить появление межвиткового замыкания на индукционной катушке.

Если люминесцентный источник света не включается, то чаще всего такая проблема является результатом неисправности пускорегулирующего устройства или обмоточного обрыва, поэтому важно правильно выполнить проверку дросселя и стартера тестером.

Как проверить электронный дроссель Как проверить электронный дроссель Как проверить электронный дроссель Как проверить электронный дроссель Как проверить электронный дроссель Как проверить электронный дроссель Как проверить электронный дроссель Как проверить электронный дроссель Как проверить электронный дроссель Как проверить электронный дроссель Как проверить электронный дроссель

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Как проверить дроссель лампы дневного света мультиметром

Самым износостойким элементом в конструкции светильников с лампами дневного света является дроссель, поломка которого встречается достаточно редко. Неисправность такого элемента может быть представлена обрывом или обмоточным перегоранием, нарушениями межвитковой изоляции в электропроводах.

Обе неисправности могут быть выявлены при подключении тестера в виде мультиметра к дроссельным выводам на замеры сопротивления. Об обрыве и перегорании свидетельствует наличие бесконечного сопротивления.

лампы дневного света дроссель

Стартер и дроссель для люминесцентных ламп

Как правило, перегорание сопровождается появлением неприятного запаха, исходящего от пришедшей в негодность детали.

Наличие ничтожно малых показателей сопротивления при замерах, чаще всего является результатом нарушения изоляции на проводах, межвиткового замыкания на обмотке, или обмоточного замыкания на сердечнике.

Любые описанные выше процессы проверки являются справедливыми исключительно в случае применения электромагнитных пускорегулирующих устройств, так как электронные балласты исключают наличия в схеме стартера.

Назначение и устройство

В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.

Конструктивно дроссель представляет собой намотанный на сердечник изолированный провод. Сердечник может быть металлическим, набранным из изолированных пластин или ферритовым. Иногда дроссель может выполняться без сердечника. В этом случае используется керамический или пластмассовый каркас для провода.

Дроссельная заслонка присутствует в карбюраторе. Она регулирует подачу горючей смеси, представляя собой потенциометр. Чтобы проверить датчик дроссельной заслонки в автомобиле, определяют соответствие входного напряжения устройства положению заслонки.

В мультиметре выставляют режим прозвонки. Контакты разъема датчика соединяют со щупами мультиметра и создают видимость движения заслонки (пальцами). При этом проверяют, как реагирует датчик в крайних положениях заслонки. Должен идти чистый сигнал без хрипов.

Как проверить стартер люминесцентной лампы

Процесс проверки осветительных приборов люминесцентного типа предполагает не только контроль спиральной целостности внутри колбы, но также работоспособности дроссельной и стартерной системы.

После того, как будет вскрыт корпус светильника, источники света проверяются на отсутствие почернений в колбе и сохранение функциональной активности стартера, работающего в неблагоприятных условиях температурных колебаний. Осмотру подлежат:

  • конденсаторы, которые не должны быть вздутыми, деформированными или лопнувшими под воздействием избыточного напряжения в электрической сети;
  • колба источника света, которая не должна быть почерневшей.

Конденсаторная целостность проверяется посредством мультиметра в режиме омметра с максимально возможными пределами измерения сопротивления.

Если показатели на тестере составляют меньше 2,0 МОм, то, можно предположить наличие в конденсаторе недопустимой токовой утечки. Как показывает практика, оптимальным вариантом при проведении самостоятельных ремонтных работ, станет полноценная замена всех пришедших в негодность элементов (стартера и дросселя), новыми устройствами аналогичного типа.

Проверка индуктивности

Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.

Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на измерение индуктивности. Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.

При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора.

Прибор для проверки катушек индуктивности

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала — металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Нарушения магнитопровода

В в катушках индуктивности и трансформаторах применяются сердечники из различных ферромагнитных материалов. Это может быть трансформаторное железо и ферриты. Феррит – довольно колкий материал. При ударах в нем могут возникать сколы и трещины. Трещины изменяют магнитную проницаемость феррита и, соответственно, параметры катушек индуктивности. В сердечниках иногда делаются зазоры. Механические нагрузки могут повлиять на величину зазора и на параметры катушки. Проверить соответствие индуктивности обмотки номинальной можно с помощью прибора для измерения индуктивности.

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель — это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Отличия дроссель для ДРЛ

Для групповой стабилизации всех электронных систем в своем доме лучше всего конечно приобрести стабилизатор, который будет хранить ваши электроприборы, и оберегать их от чрезмерного негативного влияния силы тока, однако это довольно дорого. Проще начать с малого и подключить ряд люминесцентных ламп с встроенными в стартеры дросселями, которые способны пере поглощать электрический заряд.

Сделать такие действия не только просто, но и разумно, так как электромагнитный заряд, проходящий через проводку при чрезмерном его скачке способен навредить даже не работающим в этот момент приборам.

А так как виды дросселей абсолютно, различны и подходят ко всем мощностям, то дело остается за малым. Обычная катушка индуктивности обладает мощностью 100 мкгн и способна поглощать любой пневматический заряд через свой вентиль.

Что отличает дроссель от обыкновенного стабилизатора:

  1. Во-первых, дроссель – это твердотелый стабилизатор, самого что ни на есть элементарного значения.
  2. Стабилизатор обыкновенный выравнивает напряжение во всей проводной системе квартиры или другого помещения, а дроссель способен улавливать эти помехи и компенсировать их.
  3. Особенно хорошо дроссель регулирует помехи низкочастотного уровня, что служит очень полезной особенностью для долговечности световой системы в помещении.
  4. Высокие же частоты подачи помех электроэнергии дроссель попросту срезает и не дает ей пройти далее в световую систему, чтобы навредить.

Уже известно, что дроссель для люминесцентных ламп стал пользоваться огромной популярностью и интересом среди покупателей благодаря своей способности уменьшать напряжение в электродах стартера любой лампы, что благотворно влияет на её долгую производительность, а это очень экономно.

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Проверка электромагнитных реле

Электромагнитные реле состоят из электромагнита (катушки индуктивности) и контактов. Про катушки индуктивности мы уже поговорили. Добавлю только, что реле постоянного тока не чувствительны к короткозамкнутым виткам, а реле переменного тока чувствительны.

Для проверки контактов необходимо тестером проверить наличие проводимости между нормально замкнутыми выводами и отсутствие проводимости между нормально разомкнутыми. Далее на реле надо подать напряжение, соответствующее параметрам реле, и проверить наличие проводимости между нормально разомкнутыми выводами и отсутствие проводимости между нормально замкнутыми.

Я встречался с такой экзотической неисправностью реле, когда контакты просто приварились друг к другу. Нормально разомкнутые контакты перестали размыкаться при отсутствии напряжения на обмотке.

Читать также: Формы разделки шва под сварку

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите! Задать вопрос. Обсуждение статьи.

Дроссель, катушка индуктивности. Принцип работы. Математическая модель. Катушка индуктивности, дроссель в электронных схемах. Принцип работы. Применение.

Изготовление дросселя, катушки индуктивности своими руками, самому, са. Расчет и изготовление катушки индуктивности, дросселя. Типовые электронные схемы.

Проверка биполярного, полевого транзисторов, МОП, FET, MOSFET. Провери. Как проверить исправность биполярного и полевого транзисторов. Методика испытани.

Практика проектирования электронных схем. Самоучитель электроники. Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.

Плавная регулировка яркости свечения люминесцентных ламп дневного свет. Схема драйвера для плавной регулировки яркости свечения ламп дневного света. Дра.

Прямоходовый однотактный импульсный преобразователь напряжения, источн. Как сконструировать прямоходовый импульсный преобразователь. В каких ситуациях о.

Диагностика автомобилей с помощью USB Autoscope

  • Темы без ответов
  • Активные темы
  • Поиск

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

В широком понимании слова, дроссель является специальным ограничительным элементом.

Перед тем, как проверить дроссель мультиметром, нужно помнить, что тестирование выполняется несколькими способами, включая применение контрольного или заведомо исправного осветительного элемента, а также специального прибора.

LADA Kalina – чем проверить электронную дроссельную заслонку?

LADA Kalina – чем проверить электронную дроссельную заслонку?

Сообщение ВСергейВ » 18 фев 2020, 18:57

Re: Работа электронной дроссельной заслонки.

Сообщение максим68 » 18 фев 2020, 20:33

Re: Работа электронной дроссельной заслонки.

Сообщение Diamond » 18 фев 2020, 20:38

Re: LADA Kalina – чем проверить электронную дроссельную заслонку?

Сообщение ВСергейВ » 18 фев 2020, 22:05

Re: LADA Kalina – чем проверить электронную дроссельную заслонку?

Сообщение sergey98 » 19 фев 2020, 06:09

Re: LADA Kalina – чем проверить электронную дроссельную заслонку?

Сообщение ВСергейВ » 19 фев 2020, 06:55

Re: LADA Kalina – чем проверить электронную дроссельную заслонку?

Сообщение Diamond » 19 фев 2020, 20:49

Re: LADA Kalina – чем проверить электронную дроссельную заслонку?

Сообщение ВСергейВ » 19 фев 2020, 21:30

Re: LADA Kalina – чем проверить электронную дроссельную заслонку?

Сообщение Diamond » 19 фев 2020, 21:55

Короче: Сегодня проводил исследования в одном умном заведении. Раннее был заказ с моей стороны на доп. прибор. Мне провели демонстрацию того, что я хочу. В сравнении с тем, что я имею – одинаково. Цена доп. прибора – сумасшедшая. Рекомендации специалистов – «не . нам мозги, работай тем, что у тебя есть!» Всё познаётся в сравнении.

Я, вот, чё-то тормознул. А в «Сканматике» есть, в управлении ИМ, управление дроссельной заслонкой? Надо проверить (я забыл). Если есть, то вообще – круто!

Как проверить электронный дроссель

Лампы дневного света, несмотря на популяризацию светодиодного освещения, до сих пор остаются одним из распространенных видов осветительных приборов в домах, гаражах и производственных помещениях.

Когда такой светильник перестает гореть, первым делом грешат на саму лампочку или стартер. А если они не виноваты, как проверить другой не менее важный элемент – дроссель?

Во-первых, определимся, что же такое дроссель или как его еще называют балласт. По сути, это обыкновенная катушка индуктивности с ферромагнитным сердечником.

Вот так она выглядит в разрезе.

Как проверить электронный дроссель

В схемах балласт нужен для трех функций:

    контроля тока, чтобы он не превышал номинала
    образование за счет индуктивности кратковременного импульса повышенного напряжения
    сглаживания возможных пульсаций в сети 220В

Подключается он последовательно, а параллельно ему монтируется стартер.

Как проверить электронный дроссель

Стартер необходим для поджига лампы.

Как проверить электронный дроссель

Напряжение, которое подводится к спиральным электродам на концах лампы, изначально недостаточно для ее розжига. И тут на помощь приходит дроссель и стартер.

Читать также: Как пользоваться храповым механизмом

После появления напряжения в стартере, внутри образуется разряд, который нагревает биметаллический электрод.

Как проверить электронный дроссель

Из-за нагрева форма электрода меняется и происходит его замыкание.

Как проверить электронный дроссель

В результате чего, резко возрастает ток и электроды раскаляются. Ток ограничивается только сопротивлением самого дросселя.

У стартера контакты постепенно остывают и размыкаются. При размыкании, благодаря дросселю, в лампе возникает эффект самоиндукции, с образованием высоковольтного импульса и электрического разряда напряжением до 1000В.

Как проверить электронный дроссель

От этого разряда создается ультрафиолетовое свечение ртутных паров, которыми заполнена колба. Оно оказывает воздействие на люминофор, и только благодаря ему, мы и можем различать свет в привычном для нас спектре.

Как проверить электронный дроссель

Если для кого-то это объяснение слишком заумно, то вот одно из самых простых и понятных видео, объясняющих на доступном всем языке, как же работает лампа ЛДС.

Получается, что сам процесс включения люминесцентной лампы дневного света довольно длителен и занимает 5 этапов:

    подача 220В из розетки и замыкание контактов стартера
    разогрев спиралей электродов
    размыкание контактов стартера
    подача высоковольтного импульса от дросселя
    образование тлеющего разряда в колбе и поддержка его внешним напряжением 220В + шунтирование стартера и исключение его из схемы

Как проверить электронный дроссель

Как видно из процесса запуска, при неисправности ламп, виноватыми могут быть три элемента:

Как проверить электронный дроссель

Как проверить электронный дроссель

Как проверить электронный дроссель

При этом, чаще всего повреждаются лампочки и стартера – из-за перегоревших вольфрамовых нитей и конденсаторов.

Как проверить электронный дроссель

Узнать об этом проще всего – заменив стартер или лампочку. Тем более, что стоят они копейки. А вот как быстро узнать о неисправности дросселя?

Без специальных измерительных приборов о неисправности ПРА может свидетельствовать эффект огненной змейки. Вы визуально сможете наблюдать ее внутри лампы.

О чем это говорит? А говорит это в первую очередь о том, что есть превышение максимально допустимого тока. Из-за чего заряд потерял стабильность.

Также может наблюдаться неустойчивое свечение или мерцание лампы. При поломке балласта, светильник не загорится с первого раза.

В результате, стартер будет постоянно запускаться и отключаться, запускаться и отключаться. От таких частых пусков, возле спиралей на концах лампы появляются почернения.

Как проверить электронный дроссель

Еще один способ проверки без измерительных приборов и мультиметра – контрольная лампочка. Мощность ее должна быть примерно такой же, как и мощность самого дросселя.

Подключаете ее последовательно по следующей схеме с ПРА и смотрите как она светит.

Как проверить электронный дроссель

    если не горит совсем – в балласте обрыв, дроссель неисправен
    горит ярко – в балласте межвитковое короткое замыкание
    моргает или светит в половину накала – дроссель исправен

Как проверить электронный дроссель

Но чтобы точно убедиться в повреждении дросселя, все таки лучше воспользоваться мультиметром и провести замеры.

Как проверить электронный дроссель

Повреждение дросселя может быть пяти видов:

    замыкание разных обмоток
    замыкание витков в одной обмотке
    неисправность магнитопровода
    пробой на корпус

Какой-то из проводов, которым намотан дроссель может просто оборваться. Выявляется это легко.

Переводите мультиметр в режим измерения сопротивления и касаетесь щупами выводов дросселя. Если высвечиваются показания ”бесконечность” это и свидетельствует об обрыве.

Как проверить электронный дроссель

При замерах только не касайтесь голых кончиков щупов руками. Иначе замерите сопротивление своего тела, а не дросселя.

Как проверить электронный дроссель

Кстати, обрыв из всех видов поломок, выявить проще всего. Это можно сделать даже без мультиметра, с помощью обычной индикаторной отвертки.

Ничего выключать и разбирать не нужно, провода тоже не отсоединяются. Если индикатор светится во входной клемме ПРА:

Как проверить электронный дроссель

Читать также: Как затянуть гбц динамометрическим ключом

а на выходе свечения нет:

Как проверить электронный дроссель

то считайте что обрыв вы нашли.

Как проверить электронный дроссель

Некоторые дросселя могут иметь не одну, а две обмотки. В нормальном режиме они должны быть изолированы между собой.

Как проверить электронный дроссель

Но изоляция может высохнуть или нарушиться.

Чтобы узнать о замыкании, мультиметром проверьте выводы не одной, а разных обмоток. Если у вас высветятся непонятно малые цифры, то значит обмотки замкнуты.

Если дроссель у вас постоянно грелся, то его лакированная изоляция проводов, могла высохнуть. И один или несколько близлежащих витков, просто спекутся между собой.

Как проверить электронный дроссель

Найти такое повреждение очень трудно, даже при помощи мультиметра.

Нужно точно знать изначальные значения сопротивления обмотки, чтобы было с чем сравнивать. Если у вас замкнулись один или два витка, то разницу обычным тестером вы и не увидите.

Найти витковое замыкание можно при спекании достаточно большого количества проводников. Тогда разницу будет видно сразу.

Как проверить электронный дроссель

Нормальный (не китайский дроссель), имеет примерно следующие сопротивления:

    мощностью на 20Вт – сопротивление от 55 до 60 Ом

Как проверить электронный дроссель

    мощностью на 40Вт – сопротивление от 24 до 30 Ом

Как проверить электронный дроссель

    мощностью на 80Вт – сопротивление от 15 до 20 Ом

Как проверить электронный дроссель

Сердечник дросселя выполнен из ферромагнитных материалов. А они (ферриты), довольно капризны сами по себе.

Как проверить электронный дроссель

При эксплуатации, на поверхности запросто могут образоваться трещинки или сколы. Если такое произошло, значит у дросселя изменятся параметры катушек индуктивности.

Как проверить электронный дроссель

Еще в сердечниках из-за механических нагрузок могут измениться специальные зазоры.

Проверить индуктивность дросселя можно не всеми мультиметрами. Большинство к сожалению, такой функции лишены.

Как проверить электронный дроссель

Однако опять же, чтобы понять проблему, вам нужно знать первоначальные значения данной индуктивности.

О неисправности катушки может свидетельствовать ее нулевое сопротивление относительно корпуса. Здесь ничего сложного в проверке нет.

Как проверить электронный дроссель

Один щуп мультиметра подносите к металлическим частям корпуса, а другим касаетесь к выводам катушки дросселя.

Проверять можно и в режиме прозвонки цепи. Если звукового сигнала не будет, значит пробоя нет.

Как проверить электронный дроссель

А если балласт у вас электронный, как проверить его? ЭПРА как сокращенно их называют, уже не похож на индуктивную катушку.

Все современные модели выпускаются с электронными дросселями без стартеров.

Как проверить электронный дроссель

ЭПРА расшифровывается как – электронная пуско-регулирующая аппаратура. У нее множество электронных компонентов напаяны на плату и помещены в один корпус.

Как проверить электронный дроссель

Прозвонить мультиметром всего лишь два конца здесь уже не получится. Придется последовательно шаг за шагом проверять все элементы схемы.

Начинать лучше с предохранителя. Вызваниваете его целостность в режиме прозвонки.

Как проверить электронный дроссель

Далее осматриваете конденсаторы. У тех, которые в виде бочонков, можно определить повреждение даже визуально, по вздутию нижней части.

Как проверить электронный дроссель

Еще внимательно проглядите все места пайки. Какие-то ножки могут отвалиться и контакт пропадет.

Как проверить электронный дроссель

Диоды и транзисторы также проверяются мультиметром, после переключения его в соответствующий режим измерения.

Как проверить электронный дроссель

Данные сопротивлений берите из таблиц в интернете, согласно их расцветки.

Как проверить электронный дроссель

И сравнивайте с теми фактическими замерами, которые у вас получились.

В общем, чтобы проверить и отремонтировать электронный дроссель, понадобятся минимальные навыки радиолюбителя.

Вот очень хорошее и подробное видео по проверке каждого элемента на плате ЭПРА, с заменой поврежденных деталей на исправные. Тем более, что повреждений здесь оказалось не одно, а несколько.

Конструктивные особенности

Мягкость свечения светового потока обуславливается специально подобранным газовым составом, поэтому осветительный прибор может генерировать источник света:

  • в желтоватых тонах;
  • в холодных белых тонах;
  • в теплых белых тонах.

Полностью безопасная эксплуатация люминесцентной лампы обеспечивается наличием в конструкции осветительного прибора специального элемента, называемого дросселем. По своим внешним характеристикам такое устройство имеет схожесть с катушкой индуктивности, дополненной сердечником на основе ферримагнитных сплавов.

Cиловые дроссели EPCOS AG

В процессе работы источника света, наличие дросселя эффективно стабилизирует генерируемое осветительным прибором свечение, что исключает негативное воздействие мерцания. Таким образом, неисправность дроссельного элемента становится основной причиной пульсации светового потока.

Как проверить люминесцентную лампу мультиметром

Как проверить дроссель мультиметром

Люминесцентные лампы и светильники на их основе широко распространены. Благодаря особенностям конструкции они позволяют, по сравнению с лампами накаливания, получить одинаковое количество света при более экономичном потреблении электроэнергии. В условиях постоянного повышения стоимости электроэнергии, вопрос экономии достаточно актуален. Как проверить цифровым измерительным прибором мультиметром люминесцентную лампу при определении неисправности?

Лампы дневного света, несмотря на популяризацию светодиодного освещения, до сих пор остаются одним из распространенных видов осветительных приборов в домах, гаражах и производственных помещениях.

Особенности дросселя

Вне зависимости от конструкции, назначение дросселя люминесцентных источников света представлено:

  • защитой от перепадов в показателях напряжения;
  • разогревом катода;
  • созданием напряжения достаточного уровня для запуска светильника;
  • ограничением силовых показателей электрического тока непосредственно после запуска;
  • стабилизацией процессов работы осветительного прибора.

Экономически обоснованным является подключение одного дроссельного устройства сразу на пару осветительных приборов. Стандартное электромагнитное пускорегулирующее устройство, помимо дросселя, представлено стартером и парой конденсаторов.

Тестирование дросселя — как проверить дроссель мультиметром. Как мультиметром проверить лампу дрл

Несмотря на появление светодиодов, люминесцентные светильники остаются распространённым источником света. При его отсутствии появляется необходимость проверить лампу мультиметром. Корпусом ЛЛ служит стеклянная трубка диаметром 38, 26, 16 или 12 мм. Устройство светильника от этого не меняется. В концах колбы находятся впаянные вывода с нитями накала, аналогичными нитям ламп накаливания. Для компактности им придаётся биспиральная форма: спираль из вольфрамовой проволоки скручивается в спираль ещё раз.

Характеристики ЭмПРА

Дроссели электромагнитного типа характеризуются доступной стоимостью, простой конструкцией и высокими показателями надежности, а основные недостатки таких устройств представлены:

  • пульсирующим световым потоком, вызывающим усталость органов зрения;
  • порядка 10-15% потери электрической энергии;
  • шумностью работы в пусковой момент;
  • недостаточно устойчивым запуском в низкотемпературных условиях;
  • большими размерами и ощутимым весом;
  • продолжительным запуском источника света.

Как правило, комплект бывает представлен лампами и дросселями, а самостоятельная замена баланса предполагает приобретение элемента с аналогичными параметрами.

Лампа дневного света настольная

Как проверить дроссель мультиметром

С приходом электричества началась другая жизнь: появились электроплитки, холодильники, радиоприемники, телевизоры и другая техника, без которой трудно представить наше существование в окружающем мире. Для освещения придумано и придумываются различные средства. Одно из распространенных изобретений — люминесцентная лампа или лампа дневного света ЛДС , имеющая различные формы и параметры. Она расходует во много раз меньше энергии по сравнению с лампой накаливания, давая столько же света.

Лампы дневного света по-прежнему являются одними из самых популярных. Причина кроется в меньшем потреблении энергии по сравнению с аналогом, оснащенным нитью накала и более низкой ценой. Существует несколько способов того, как проверить люминесцентную лампу и выявить причину поломки, а также специальные методы для диагностики ее отдельных конструкционных элементов. Люминесцентная лампа отличается не самой сложной конструкцией и довольно простым принципом работы.

Люминесцентные лампы лампы дневного цвета , которые широко используются и на производствах, и в общественных учреждениях, и в быту не могут подключаться в электросеть так же просто, как и лампы накаливания. Для обеспечения их пуска и работы существуют специальные устройства, одним из которых является дроссель для люминесцентных ламп.

Тестер или мультиметр — прибор, предназначенный для определения исправности электрических устройств и радиодеталей: проводников тока, батареек, аккумуляторов, переключателей, лампочек. Другие названия устройства — мультиметр, реже авометр. Существуют разные варианты тестеров с отличающимся набором функций. В самом простом варианте мультиметр объединяет возможности амперметра, вольтметра и омметра. Такое устройство можно использовать как тестер для проверки ламп, электроцепей или радиодеталей.

Одним из компонентов схем различных электронных и электротехнических приборов является дроссель. Дросселем называют катушку индуктивности, которая при работе в электрических схемах ограничивает проводимость для переменного тока и беспрепятственно пропускает ток постоянный. Это свойство дросселя используется для сглаживания переменной составляющей токов.

Характеристики электронного балласта

Электронные балласты относятся к категории современных устройств, в которых практически полностью нивелированы недостатки электромагнитного дросселя. Схематично, такой элемент является единым блоком, производящим запуск осветительного прибора и поддерживающим процесс горения посредством образования определенной последовательности в изменении уровня напряжения.

Преимущества электронного балласта представлены:

  • любой скоростью запуска;
  • отсутствием необходимости устанавливать стартер;
  • исключено проявление мерцания;
  • максимальными показателями световой отдачи;
  • компактными размерами и небольшим весом устройства;
  • оптимальными условиями функционирования.

Так выглядит электронный балласт

Электронные балласты стоят на порядок выше электромагнитных устройств, что обуславливается сложностью схемы с наличием фильтров, корректирующих коэффициент мощности моментов, инвертора и балласта. Некоторые модели электронного устройства дополняются системой защиты от включения осветительного прибора без лампы.

Удобство эксплуатации электронных балластов в лампах дневного света энергосберегающего типа, обусловлено установкой источников света непосредственно в цокольную часть стандартных патронов.

Для чего нужен дроссель?

Дроссель для ДРЛ-ламп применяется для пуска, на рынке есть разные виды осветительных устройств, в которых он используется:

    Лампы люминесцентные и ультрафиолетового освещения.

Балласт для люминесцентных ламп

Конструктивно люминесцентный прибор освещения для пуска использует дроссель ПРА, в новых видах этого осветительного устройства применяется ЭПРА, это электронный вид пускорегулирующего аппарата. Задачей этого устройства является сдерживание возрастающего значения тока на одном уровне, который поддерживает необходимое напряжение на электродах внутри осветительного прибора.

Рассмотрим, как работает балласт для люминесцентных светильников. Когда его подключают, в цепи между параметрами напряжения и тока происходит сдвиг фаз, отставание характеризуется коэффициентом мощности, cos φ. Когда рассчитывается активная нагрузка, эту величину надо учитывать, так как при маленьком значении этого параметра нагрузка растет, по этой причине в схему пуска включается и конденсатор, который выполняет компенсационную функцию.

Самые часты неисправности

Как правило, источники неисправности, которые связаны с эксплуатацией люминесцентных ламп, представлены сбоями в работе электрической схемы ПРА и стартера. Посредством оценивания характерных визуальных эффектов, можно достоверно определить причины неисправности:

  • наличие «огненной змейки», вьющейся внутри колбы, является результатом превышения допустимых токовых значений и нестабильности электрического разряда;
  • темная колба на участке расположения выходных цокольных контактов, свидетельствует о несоответствии показателей тока на пуск и работу с вольт-амперными характеристиками;
  • перегорание спиралей в лампах дневного света, может стать результатом изоляционной изношенности обмотки пускорегулирующего устройства.

Достаточно часто встречаются проблемы, сопровождающиеся появлением запаха гари или сторонних звуков. В этом случае можно предположить появление межвиткового замыкания на индукционной катушке.

Назначение и подключение дросселя для ламп дневного света

Одним из компонентов схем различных электронных и электротехнических приборов является дроссель. Дросселем называют катушку индуктивности, которая при работе в электрических схемах ограничивает проводимость для переменного тока и беспрепятственно пропускает ток постоянный. Это свойство дросселя используется для сглаживания переменной составляющей токов. Проверка дросселя осуществляется мультиметром или специальным тестером. В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.

Как проверить дроссель лампы дневного света мультиметром видео — 2 million videos А также диагност.

Как проверить дроссель лампы дневного света мультиметром

Самым износостойким элементом в конструкции светильников с лампами дневного света является дроссель, поломка которого встречается достаточно редко. Неисправность такого элемента может быть представлена обрывом или обмоточным перегоранием, нарушениями межвитковой изоляции в электропроводах.

Обе неисправности могут быть выявлены при подключении тестера в виде мультиметра к дроссельным выводам на замеры сопротивления. Об обрыве и перегорании свидетельствует наличие бесконечного сопротивления.

Стартер и дроссель для люминесцентных ламп

Как правило, перегорание сопровождается появлением неприятного запаха, исходящего от пришедшей в негодность детали.

Любые описанные выше процессы проверки являются справедливыми исключительно в случае применения электромагнитных пускорегулирующих устройств, так как электронные балласты исключают наличия в схеме стартера.

Проверка ламп дневного света мультиметром

ВИДЕО ПО ТЕМЕ: Лампа ДРЛ( ДРВ). Вторая жизнь после перегорания спирали балласта.
В условиях повышения цен на энергоресурсы, увеличения тарифов на электроэнергию, для населения актуальным стал вопрос экономии электричества в домах и квартирах. Разработаны различные технологии, позволяющие использовать более экономичные электроприборы, чем те, которые производились еще несколько десятилетий назад. При организации освещения помещений уже достаточно давно применяются люминесцентные источники света, или лампы дневного света ЛДС. Они, обеспечивая такую же освещенность, как и обычные лампочки накаливания, потребляют в раз меньше электроэнергии, чем их предшественники. Несмотря на то, что появились еще более экономичные светодиодные источники, цена их настолько высока, что в настоящее время использование светильников с ЛДС остается наиболее рациональным решением. В процессе эксплуатации светильников всегда возможны поломки, отказы в работе некоторых элементов.

Таблица 4. Неисправность Причина Способ обнаружения неисправности Способ устранения неисправности Лампа не зажигается На патроне светильника со стороны питающей сети нет напряжения, низкое напряжение сети Проверить индикатором или вольтметром наличие и величину напряжения Проверить питающую сеть и обеспечить нормальное напряжение.

В последнее время принято называть газоразрядные лампы разрядными лампами. Разрядные лампы обладают высокой эффективностью преобразования электрической энергии в световую. В разрядных лампах могут использоваться разные газы: пары металлов ртути или натрия , инертные газы неон, ксенон и другие , а также их смеси. Среди ртутных ламп можно упомянуть дуговые ртутные люминесцентные лампы ДРЛ. Меньше распространены безртутные разрядные лампы, содержащие инертные газы: ксеноновые лампы ДКсТ , неоновые лампы и другие. Разрядные источники света газоразрядные лампы постепенно вытесняют привычные ранее лампы накаливания , однако недостатками остаются линейчатый спектр излучения, утомляемость от мерцания света, шум пускорегулирующей аппаратуры ПРА , вредность паров ртути в случае попадания в помещение при разрушении колбы , невозможность мгновенного перезажигания для ламп высокого давления. В условиях продолжающегося роста цен на энергоносители и удорожания осветительной арматуры, ламп и комплектующих всё более насущной становится потребность во внедрении технологий, позволяющих сократить непроизводственные затраты.

Потребность общества в осветительных устройствах большой мощности свечения и одновременно экономичных в потреблении электроэнергии, а также долговечных в эксплуатации удовлетворяют производители ламп ДРЛ и других газоразрядных ламп. Их применяют для освещения большой территории, объектов хранения материалов, зданий заводов. Лампа ДРЛ может иметь разброс мощности от 50 до 2 ватт, а подключается к однофазной электрической сети с напряжением вольт и частотой 50 герц. Дроссель для ДРЛ-ламп применяется для пуска, на рынке есть разные виды осветительных устройств, в которых он используется:.

Как проверить стартер люминесцентной лампы

Процесс проверки осветительных приборов люминесцентного типа предполагает не только контроль спиральной целостности внутри колбы, но также работоспособности дроссельной и стартерной системы.

  • конденсаторы, которые не должны быть вздутыми, деформированными или лопнувшими под воздействием избыточного напряжения в электрической сети;
  • колба источника света, которая не должна быть почерневшей.

Конденсаторная целостность проверяется посредством мультиметра в режиме омметра с максимально возможными пределами измерения сопротивления.

Если показатели на тестере составляют меньше 2,0 МОм, то, можно предположить наличие в конденсаторе недопустимой токовой утечки. Как показывает практика, оптимальным вариантом при проведении самостоятельных ремонтных работ, станет полноценная замена всех пришедших в негодность элементов (стартера и дросселя), новыми устройствами аналогичного типа.

Как проверить дроссель

В виду мирового экономического кризиса население нашей планеты активно пытается экономить денежные средства всеми возможными способами, а производители различных товаров давно подхватили эту волну и стали выпускать вещи долговечного характера. Одним из таких товаров стали люминесцентные лампы, которые осуществляют подачу света в качественном характере, но при этом затрачивают до десятка раз меньше электроэнергии.

Подобрать набор люминесцентных ламп в свою квартиру выбор не из самых тяжелых, для этого необходимо знать несколько важных аспектов: размер кроны под лампочку, необходимую мощность, количество света и его оттенок.

Также перед приобретением таких ламп, появилась возможность их проверить, для того чтобы дальнейшее их подключение было безопасным и вам не пришлось лезть в трансформатор.

Дроссель проверяют несколькими способами

Как проверяют:

  1. Лампы проверяют с помощью специального мультиметра, в который лампа вкручивается и подает в следствие свет при её исправности.
  2. Если позволяет возможность, светильник необходимо осмотреть на наличие целостности пружины внутри его конструкции, а также дефектных нарушений целостности его формы, почерневших участков, трещин и сколов.
  3. Если светильник при вкрутке в мультиметр не подает никаких признаков жизни, то, скорее всего, электронный стартер дал сбой, а значит дроссель в такой лампе дает сбой.

Также в таком аппарате как мультиметр можно посмотреть утекает ли из лампы лишний ток, который в дальнейшем выведут счета на оплату электроэнергии, а это тоже говорит о нарушениях работы ДРЛ, которые не исправить сварочным аппаратом.

Назначение и устройство

В некоторых приборах дроссели устанавливаются для того, что бы пропускать импульсные токи определенного диапазона частот. Диапазон этот зависит от конструктивного решения дросселя, то есть от применяемого в катушке провода, его сечения, количества витков, наличия сердечника и материала, из которого он изготовлен.

Конструктивно дроссель представляет собой намотанный на сердечник изолированный провод. Сердечник может быть металлическим, набранным из изолированных пластин или ферритовым. Иногда дроссель может выполняться без сердечника. В этом случае используется керамический или пластмассовый каркас для провода.

Дроссельная заслонка присутствует в карбюраторе. Она регулирует подачу горючей смеси, представляя собой потенциометр. Чтобы проверить датчик дроссельной заслонки в автомобиле, определяют соответствие входного напряжения устройства положению заслонки.

Активное и реактивное сопротивление

Не знаю с чем это связано, но большинство владельцев скутеров и мотоциклов оснащенных системой зажигания CDI при возникновении проблем с искрой на свече сразу же грешат на катушку зажигания. Не, я конечно могу сделать умную личность и для солидности потыкать перед вами в катушку тестером, как это делают колхозные гуру. Но я, этого делать сегодня не буду. Ну покажет нам тестер заветные циферки на дисплее и что? А если в обмотках катушки внутренние межвитковое замыкание, заводской брак или сгорела обмотка одной из катушек. Думаете с помощью тестера можно определить все эти неисправности? Уверяю вас, что нет.

Чем же резистор отличается от катушки индуктивности и конденсатора? То есть, если замерить с помощью мультиметра напряжение на его концах.

В светильниках

В светильниках, предусмотренных для использования ламп дневного света, помимо самих ламп, применяются такие компоненты, как стартер и дроссель.

Стартер, как следует из названия, запускает процесс свечения в лампе, и далее в процессе не участвует. Дроссель выполняет функции стабилизатора тока и напряжения в течение всего периода свечения лампы.

Если дроссель неисправен, лампа не горит, или горит не устойчиво, свечение ее неоднородно по всей длине, внутри могут появляться области с более ярким свечением, движущиеся от одного электрода лампы к другому. Иногда можно заметить эффект мерцания света.

Лампа при неисправном дросселе может не загореться с первого раза, и стартер будет многократно включаться, пока, наконец, процесс свечения не запустится. В результате, в местах установки спиралей, на колбе лампы появятся потемнения. Это связано с тем, что спирали работают более продолжительное время, чем установлено для нормального запуска.

Проверка дросселя

Следующим шагом будет проверка дросселя. Он во всей этой конструкции самый стойкий элемент, и выходит из строя гораздо реже остальных. Тем не менее важно знать, как проверить дроссель лампы дневного света мультиметром.

Неисправность его может заключаться в обрыве или перегорании обмотки, нарушении изоляции между витками провода. В обоих случаях неисправность можно выявить, подключив к выводам дросселя мультиметр, настроенный на измерение сопротивления.

Если сопротивление между выводами дросселя будет бесконечно, значит, имеет место обрыв или перегорание обмотки. Перегорание обычно предвещается неприятным запахом, исходящим от детали, особенно во время работы.

Если сопротивление ничтожно мало, то, скорее всего, нарушена изоляция провода, и произошло межвитковое замыкание в обмотке, или замыкание обмотки на сердечник.

Совершенно очевидно, что все приемы проверки, описанные выше, справедливы только при использовании в светильниках, так называемых электромагнитных пускорегулирующих аппаратов (ЭмПРА).

В настоящее время появляются электронные пускорегулирующие аппараты (ЭПРА), исключающие наличие в схеме стартеров. Устанавливаются такие аппараты и в компактные ртутные лампы дневного света.

Пока они достаточно дороги и ремонту своими силами не подлежат, поэтому использование ЭмПРА еще оправдано.

Проверка в лампах

Проверку дросселя необходимо произвести, если наблюдается одно из вышеописанных явлений при работе лампы дневного света, а также, если замечено появление характерного запаха подгорающей изоляции, появление звуков, нехарактерных для работы прибора, а также в том случае, если лампа не включается.

До того, как проверить дроссель лампы, проверяются сама лампа и стартер.

Неисправность дросселя может заключаться в обрыве или перегорании провода катушки или межвитковом замыкании, вызванном пробоем или подгоранием изоляции.

Обе неисправности могут произойти либо вследствие длительного времени использования прибора, либо в результате какого-либо механического воздействия. Возможно перегорание провода катушки в результате подачи на нее тока большего, чем максимальный, на который рассчитан дроссель.

В случае обрыва или перегорания провода, можно выявить неисправность обычным тестером или мультиметром. В силу того, что дроссель пропускает постоянный ток, замкнув цепь тестера через катушку, по свечению контрольной лампы или его отсутствию можно понять, есть обрыв или нет.

Если при измерении мультиметром, сопротивление бесконечно, имеет место обрыв провода катушки.

Проверка трансформаторов и дросселей на электрические неисправности:

Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится омметром или мультиметром. Прибор включают между выводами разных обмоток рисунок №1.

Рисунок №1 – Проверка на замыкание между обмотками

А также между одним из выводов и корпу­сом рисунок №2.

Рисунок №2 – Проверка на замыкание между обмоткой и сердечником

Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизированных. Самая сложная проверка на межвитковые замыкания.

Проверка межвиткового замыкания

В случае межвиткового замыкания, проверка тестером результата не даст. В этом случае необходимо знать, как проверять дроссель при помощи мультиметра.

Межвитковое замыкание имеет место при непосредственном гальваническом контакте двух витков или при контакте витков с металлическим сердечником. Очевидно, что в этом случае сопротивление катушки уменьшается.

Возможен редкий случай, когда измерение сопротивления катушки не даст достоверной картины ее состояния. Такое может случиться при обрыве и межвитковом замыкании одновременно.

В этом случае межвитковое замыкание может оказаться параллельным обрыву, и несколько витков просто не будут участвовать в измерении. Исправный, казалось бы, дроссель будет работать некорректно.

Для проверки катушки на наличие межвиткового замыкания, аналоговый мультиметр в режиме миллиамперметра необходимо использовать в составе прибора, собранного на двух транзисторах.

Схема прибора приведена на рисунке.

Сам прибор представляет собой генератор низкой частоты. При сборке схемы используются любые транзисторы из линейки МП39-МП42 (коэффициент усиления 40-50).

Диоды можно использовать типа Д1 или Д2 с любым индексом. Резисторы применяются любого типа, рассчитанные на мощность не менее 0,12 Вт. Питание прибора осуществляется от источника постоянного тока, напряжением 7-9 В.

Назначение и подключение дросселя для ламп дневного света

Лампы дневного света, несмотря на популяризацию светодиодного освещения, до сих пор остаются одним из распространенных видов осветительных приборов в домах, гаражах и производственных помещениях. Когда такой светильник перестает гореть, первым делом грешат на саму лампочку или стартер. А если они не виноваты, как проверить другой не менее важный элемент — дроссель? Во-первых, определимся, что же такое дроссель или как его еще называют балласт.

По сути, это обыкновенная катушка индуктивности с ферромагнитным сердечником. Напряжение, которое подводится к спиральным электродам на концах лампы, изначально недостаточно для ее розжига. И тут на помощь приходит дроссель и стартер.

После появления напряжения в стартере, внутри образуется разряд, который нагревает биметаллический электрод. В результате чего, резко возрастает ток и электроды раскаляются. Ток ограничивается только сопротивлением самого дросселя. У стартера контакты постепенно остывают и размыкаются.

При размыкании, благодаря дросселю, в лампе возникает эффект самоиндукции, с образованием высоковольтного импульса и электрического разряда напряжением до В. От этого разряда создается ультрафиолетовое свечение ртутных паров, которыми заполнена колба. Оно оказывает воздействие на люминофор, и только благодаря ему, мы и можем различать свет в привычном для нас спектре.

Если для кого-то это объяснение слишком заумно, то вот одно из самых простых и понятных видео, объясняющих на доступном всем языке, как же работает лампа ЛДС.

Получается, что сам процесс включения люминесцентной лампы дневного света довольно длителен и занимает 5 этапов:. При этом, чаще всего повреждаются лампочки и стартера — из-за перегоревших вольфрамовых нитей и конденсаторов.

Узнать об этом проще всего — заменив стартер или лампочку. Тем более, что стоят они копейки. А вот как быстро узнать о неисправности дросселя?

Без специальных измерительных приборов о неисправности ПРА может свидетельствовать эффект огненной змейки. Вы визуально сможете наблюдать ее внутри лампы. О чем это говорит? А говорит это в первую очередь о том, что есть превышение максимально допустимого тока. Из-за чего заряд потерял стабильность. Также может наблюдаться неустойчивое свечение или мерцание лампы.

При поломке балласта, светильник не загорится с первого раза. В результате, стартер будет постоянно запускаться и отключаться, запускаться и отключаться. От таких частых пусков, возле спиралей на концах лампы появляются почернения. Еще один способ проверки без измерительных приборов и мультиметра — контрольная лампочка. Мощность ее должна быть примерно такой же, как и мощность самого дросселя.

Но чтобы точно убедиться в повреждении дросселя, все таки лучше воспользоваться мультиметром и провести замеры. Переводите мультиметр в режим измерения сопротивления и касаетесь щупами выводов дросселя.

При замерах только не касайтесь голых кончиков щупов руками. Иначе замерите сопротивление своего тела, а не дросселя. Кстати, обрыв из всех видов поломок, выявить проще всего. Это можно сделать даже без мультиметра, с помощью обычной индикаторной отвертки. Ничего выключать и разбирать не нужно, провода тоже не отсоединяются.

Если индикатор светится во входной клемме ПРА:. Некоторые дросселя могут иметь не одну, а две обмотки. В нормальном режиме они должны быть изолированы между собой. Чтобы узнать о замыкании, мультиметром проверьте выводы не одной, а разных обмоток. Если у вас высветятся непонятно малые цифры, то значит обмотки замкнуты. Если дроссель у вас постоянно грелся, то его лакированная изоляция проводов, могла высохнуть.

И один или несколько близлежащих витков, просто спекутся между собой. Нужно точно знать изначальные значения сопротивления обмотки, чтобы было с чем сравнивать. Если у вас замкнулись один или два витка, то разницу обычным тестером вы и не увидите. Найти витковое замыкание можно при спекании достаточно большого количества проводников.

Тогда разницу будет видно сразу. Сердечник дросселя выполнен из ферромагнитных материалов. А они ферриты , довольно капризны сами по себе.

При эксплуатации, на поверхности запросто могут образоваться трещинки или сколы. Если такое произошло, значит у дросселя изменятся параметры катушек индуктивности. Проверить индуктивность дросселя можно не всеми мультиметрами. Большинство к сожалению, такой функции лишены. Однако опять же, чтобы понять проблему, вам нужно знать первоначальные значения данной индуктивности. О неисправности катушки может свидетельствовать ее нулевое сопротивление относительно корпуса.

Здесь ничего сложного в проверке нет. Один щуп мультиметра подносите к металлическим частям корпуса, а другим касаетесь к выводам катушки дросселя. А если балласт у вас электронный, как проверить его? ЭПРА как сокращенно их называют, уже не похож на индуктивную катушку. ЭПРА расшифровывается как — электронная пуско-регулирующая аппаратура. У нее множество электронных компонентов напаяны на плату и помещены в один корпус. Прозвонить мультиметром всего лишь два конца здесь уже не получится.

Придется последовательно шаг за шагом проверять все элементы схемы. Далее осматриваете конденсаторы. У тех, которые в виде бочонков, можно определить повреждение даже визуально, по вздутию нижней части. Диоды и транзисторы также проверяются мультиметром, после переключения его в соответствующий режим измерения.

В общем, чтобы проверить и отремонтировать электронный дроссель, понадобятся минимальные навыки радиолюбителя. Вот очень хорошее и подробное видео по проверке каждого элемента на плате ЭПРА, с заменой поврежденных деталей на исправные. Тем более, что повреждений здесь оказалось не одно, а несколько. В условиях повышения цен на энергоресурсы, увеличения тарифов на электроэнергию, для населения актуальным стал вопрос экономии электричества в домах и квартирах.

Разработаны различные технологии, позволяющие использовать более экономичные электроприборы, чем те, которые производились еще несколько десятилетий назад.

При организации освещения помещений уже достаточно давно применяются люминесцентные источники света, или лампы дневного света ЛДС. Они, обеспечивая такую же освещенность, как и обычные лампочки накаливания, потребляют в раз меньше электроэнергии, чем их предшественники. Несмотря на то, что появились еще более экономичные светодиодные источники, цена их настолько высока, что в настоящее время использование светильников с ЛДС остается наиболее рациональным решением.

В процессе эксплуатации светильников всегда возможны поломки, отказы в работе некоторых элементов. Для ремонта необходимо знать, как можно проверить лампы дневного света тестером. Для этого нужно представлять, как устроены и как работают такие источники света. Сам прибор представляет собой герметичную колбу из тонкого прочного стекла, на поверхность которой внутри нанесен люминофорный состав.

Внутри колбы также находится небольшое количество ртути, которая и образует свечение под действием разогретых вольфрамовых спиралей по концам колбы. В светильниках лампа подключается последовательно с дросселем, представляющим собой катушку индуктивности.

Параллельно лампе подключается стартер. Он представляет собой заключенные в пластмассовый или алюминиевый корпус компактную газоразрядную лампу с биметаллическим контактом и компенсационный конденсатор, который служит для выравнивания тока на лампе стартера.

Когда электрическая цепь светильника подключается к источнику тока, как правило, это электрическая сеть переменного тока с напряжением В и частотой 50 Гц, величины силы тока не хватает, чтобы разогреть спирали в колбе лампы. И вот в этот самый момент газоразрядная лампа под действием тока в цепи включается и разогревает биметаллический контакт, который физически замыкает цепь светильника.

Ток увеличивается в несколько раз, спирали в колбе разогреваются до температуры испарения ртути. Чем выше температура, тем выше проводимость паров в колбе. Далее ток проходит через пары ртути, вызывая их ультрафиолетовое свечение, а оно в свою очередь преобразуется в белый свет люминофорным составом, нанесенным на стенки колбы.

Величина тока на участке цепи светильника, на котором установлен стартер, падает вдвое и газоразрядная лампа гаснет. Биметаллический контакт остывает, выключается и с этого момента ток течет только внутри колбы и через дроссель. В исправном светильнике стартер больше не участвует в процессе до того момента, пока не нужно будет еще раз разогревать спирали лампы после ее отключения.

Дроссель обеспечивает регулировку тока в цепи, не допуская перегрева спиралей в колбе и их перегорания. В подавляющем большинстве случаев в конструкциях светильников используется несколько ламп. Их количество четно и они подключаются последовательно по две. Соответственно, стартеры а их тоже будет два или более — по количеству ламп , тоже подключаются последовательно.

Проверка светильников с ЛДС заключается в контроле целостности вольфрамовых спиралей, расположенных непосредственно в колбах ламп, а также в контроле работоспособности дросселей и стартеров. После вскрытия корпуса светильника, лампы надо проверить на наличие почернений у концов колб. Если почернения есть, то в схеме светильника, скорее всего, имеется какая-то неисправность, и, если ее не устранить, то лампы отработают очень недолго.

Последовательность действия

Порядок проверки следующий:

  1. включается тумблер Вк. При этом стрелка мультиметра должна отклониться до середины шкалы;
  2. в зависимости от индуктивности катушки, устанавливается положение движка переменного резистора R5. Левое положение соответствует меньшей, а правое – большей индуктивности. При проверке катушек с индуктивностью менее 15 мГн, необходимо дополнительно нажать кнопку Кн2;
  3. к клеммам Lx подключаются выводы дросселя и замыкается кнопкой контакт Кн1. При этом, если в обмотке нет витков, короткозамкнутых между собой, стрелка мультиметра должна отклониться в сторону больших значений или же незначительно отклониться в сторону меньших. Если в обмотке есть хоть одно замыкание между витками, стрелка возвращается на нуль.

Иногда причиной неисправности катушки может стать разрушившийся или поврежденный сердечник. Материал, из которого выполнен сердечник, его размер и положение относительно катушки, влияют на индуктивность.

Настройка измерителя индуктивности

Для того чтобы откалибровать приставку для измерения индуктивности понадобятся несколько индукционных катушек с известной индуктивность (например, 100 мкГн и 15 мкГн).

Катушки по очереди подключаются к приставке и, в зависимости от индуктивности, движком подстроечного резистора на экране мультиметра выставляется значение 100,0 для катушки на 100 мкГн и 15 для катушки на 15 мкГн с точностью 5%.

По такому же методу устройство настраивается и в других диапазонах. Важным фактором является то, что для точной калибровки приставки необходимы точные значение тестовых катушек индуктивности.

Альтернативным методом определения индуктивности является программа LIMP. Но этот способ требует некоторой подготовки и понимания работы программы.

Но как в первом, так и во втором случае точность подобных измерений индуктивности будет не очень высока. Для работы с высокоточным оборудованием данный измеритель индуктивности подходит плохо, а для домашних нужд или для радиолюбителей будет отличным помощником.

Проверка индуктивности

Наличие в арсенале мультиметра такой полезной функции, как измерение индуктивности катушек, будет полезным для проверки соответствия дросселя характеристикам, заявленным в справочной литературе. Функция присутствует только в некоторых моделях цифровых мультиметров.

Чтобы воспользоваться этой функцией, необходимо настроить мультиметр на измерение индуктивности. Контакты щупов присоединяются к выводам катушки. При первом измерении мультиметр устанавливается в наибольший диапазон измерений, и потом диапазон уменьшается для получения измерения достаточной точности.

При проведении всех измерений важно не допускать касания руками контактов, на которых измеряются те или иные параметры, иначе проводимость человеческого тела может изменить показания прибора.

Дроссель — свойства, обозначение, виды, использование

Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.

Что такое дроссель, внешний вид и устройство

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала — металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно что такое дроссель с точки зрения электрических параметров. Это элемент, сглаживающий ток

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель — это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

Практически в любой схеме есть этот элемент

Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Как подключается дроссель в светильнике дневного света

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Дроссель для сглаживания пульсаций

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания — сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

Как проверить дроссель мультиметром

Использование дросселей очень распространено. Но иногда с ними происходят поломки. Чтобы найти и устранить их причину, необходимо понимать, что собой представляет дроссель, как он работает и как его можно проверить.

Разновидности дросселей

Как работает дроссель

Эта деталь представляет собой одну из разновидностей катушек индуктивности. Её важной особенностью является высокое сопротивление при прохождении переменного тока.

При протекании тока по прямолинейному проводу вокруг него образуется магнитное поле. Его линии напряжённости представляют собой окружности, расположенные в перпендикулярной плоскости. Если намотать провод на сердечник, то магнитное поле станет выглядеть по-другому.

Магнитное поле проводника и дросселя

Важно отметить, что индуктивность имеется у любой детали, но её величина может существенно различаться. Использование катушки позволяет сделать индуктивность настолько значительной, что она будет оказывать существенное влияние на процессы, идущие в электрической цепи. Для определения индуктивности можно использовать формулу:

Формула индуктивности

Эта формула позволяет не только рассчитать величину индуктивности, но и показывает, от каких параметров зависит искомая величина.

Как известно, в электрической цепи имеется два типа сопротивления – активное и реактивное. Последнее может быть индуктивным и ёмкостным. Активное способствует тому, что электрическая энергия преобразуется в другой вид и уходит из электрической цепи. Чаще всего это выражается в нагреве. В некоторых случаях он может быть настолько сильным, что способен расплавить металлический провод.

Реактивное сопротивление имеет другую природу. В этом случае энергия циклически преобразовывается из одного вида в другой, но из электрической цепи не уходит. Реактивное сопротивление проявляет себя только при работе с переменным током. Его циклические изменения вызывают колебания магнитного поля, которые, в свою очередь, усиливают или ослабляют электрический ток.

Внешне электромагнитный дроссель представляет собой сердечник, на который намотано большое количество витков провода. Как известно, электромагнитное поле при резком скачке тока оказывает влияние на сам проводник. При этом поле направлено противоположно изменению силы тока, но меньше его по абсолютной величине. В результате возникает тормозящее воздействие, которое сглаживает колебания.

Примеры использования дросселей

Эта деталь широко применяется в самых различных сферах. Далее приведены наиболее распространённые примеры использования.

Токоограничители

При включении лампы дневного света на короткое время возникает мощный пусковой ток. Это может создавать риск поломки устройства. Применение дросселя сглаживает ток, позволяя лампе включиться в обычном рабочем режиме.

В процессе запуска мощных электродвигателей дроссель также сглаживает пусковой ток. После того как будут набраны рабочие обороты, он отключается и перестаёт влиять на дальнейшую работу мотора.

Фильтры сглаживания

Использование дросселей помогает сгладить переменный ток. Они обеспечивают стабильность работы устройств. Примером такого использования могут быть служить утолщения в виде небольших бочонков на кабеле для USB.

Схема использования дросселя для сглаживания пульсаций

Дроссели насыщения

Они состоят из двух обмоток, одна из которой является рабочей, а другая – управляющей. Такие дроссели позволяют проводить регулировку индуктивного сопротивления контура при необходимости. Они применяются в стабилизаторах напряжения и магнитных усилителях.

Резонансные контуры

Если соединить в одной цепи индуктивную катушку и конденсатор, то можно получить колебательный контур. Его резонансная частота зависит от параметров деталей. На ней реактивное сопротивление контура будет минимальным. Таким образом можно получать фильтры, которые пропускают одни частоты и демонстрируют высокое сопротивление для других.

Защита от помех

Высокое индуктивное сопротивление позволяет построить защиту от помех. В результате применения дросселя импульсы, вызываемые ими, будут в значительной степени погашаться. Для этой цели, например, применяются безвитковые дроссели. Эта деталь представляет собой провод, проходящий через ферритовый цилиндр или кольцо. Его особенностью является низкое сопротивление на малых частотах и высокое на больших. Последняя особенность позволяет блокировать воздействие высокочастотных помех.

Использование дросселя в конструкции люминесцентной лампы

Люминесцентная лампа – это энергосберегающий осветительный прибор. Принцип работы состоит в следующем: из стеклянной колбы светильника удаляется воздух и закачивается инертный газ. Внутрь помещается небольшая капелька ртути. Для работы достаточно 30 мг вещества. Оттенок света люминесцентной лампы определяется используемым газовым составом.

Внешний вид и электросхема лампы дневного света

На каждом торце светильника имеется по два входа. Внутри между ними с каждой стороны имеются спиральные нити накаливания. Стеклянная колба лампы изнутри покрыта слоем люминофора.

Устройство люминесцентной лампы

Изделия могут иметь различные формы и размеры, однако принцип действия при этом меняться не будет. Включается лампа с помощью пусковой схемы, важной частью которой является электромагнитный дроссель.

Дроссель применяемый в люминесцентной лампе

Свет в колбе возникает вследствие регулярно появляющихся разрядов. Дроссель при этом выполняет две функции:

  • Поддерживает правильное формирование разрядов.
  • Осуществляет коррекцию тока при возникновении такой необходимости.

При работе создаются импульсные разряды. Дроссель сдерживает пусковой ток и позволяет дождаться разогрева нитей накаливания. Затем проходит пиковое напряжение и осуществляется разряд. Использование дросселя предохраняет вольфрамовые нити накаливания от перегорания. Разряд создаёт ультрафиолетовое свечение. Оно преобразуется в обычное слоем люминофора, которым покрыта стеклянная колба изнутри.

Использование дросселя в люминесцентной лампе

Признаки неисправности

Люминесцентная лампа может качественно работать на протяжении многих лет. Но со временем все же могут появиться признаки, сигнализирующие о проблемах. О неисправности дросселя можно судить по возникновению следующих ситуаций:

  • Лампа начинает громко гудеть, иногда слышится дребезжание.
  • Процесс зажигания проходит нормально, но вскоре после этого лампа гаснет.
  • Происходит перегрев осветительного прибора.
  • Можно наблюдать сильное мерцание.
  • Визуально после включения в колбе видны движущиеся световые змейки.

При наличии хотя бы одного из этих признаков неисправности, нужно знать, как можно проверить дроссель мультиметром.

Виды повреждений дросселя

Проверяя дроссель на исправность, надо принимать во внимание следующее:

  • Обрыв провода приводит к тому, что ток через катушку проходить не будет.
  • В некоторых дросселях имеется только одна обмотка, но существуют разновидности и с большим их числом. Если происходит замыкание между обмотками, то дроссель не будет нормально функционировать.
  • Иногда замыкание происходит между соседними витками в одной обмотке.
  • Возможна неисправность магнитопровода.
  • В некоторых случаях происходит пробой на корпус.

Наиболее частой причиной повреждений является износ защитного слоя провода или его перегорание. При обнаружении неисправности можно сделать замену детали или произвести ее ремонт.

Как выполняется проверка дросселя

Для этой цели удобно использовать мультиметр. В некоторых моделях присутствует режим непосредственного изменения индуктивности. Поэтому перед тем как проверить дроссель лампы дневного света мультиметром, нужно установить его в режим работы с индуктивностью.

Далее необходимо выбрать подходящий диапазон измерений. Он определяется на основе величины ожидаемого значения индуктивности. Подойдёт тот диапазон, максимальное значение которого будет больше предполагаемого. Если таких несколько, нужно использовать меньший из них.

Затем красный и чёрный щупы следует подключить к концам провода, намотанного на катушку. В результате значение индуктивности будет отображено на дисплее. При наличии технической документации полученный результат можно сравнить с тем, который должен быть.

Для проверки также можно использовать модели, в которых не предусмотрено непосредственное измерение индуктивности. В этом случае потребуется измерять сопротивление. При проведении такой проверки необходимо предпринять следующие шаги:

  1. Установить мультиметр в режим измерения сопротивления.
  2. Правильно выставить измеряемый диапазон. Поскольку речь идёт о сопротивлении металлического провода, то лучше начать с меньшего диапазона.
  3. Красным и чёрным щупом проверить концы намотанного на катушку провода.
  4. Если сопротивление равно бесконечности, то это означает, что в проводе имеется обрыв.
  5. Если оно значительно меньше ожидаемого или нулевое, то возможно межвитковое замыкание.
  6. Если сопротивление не отличается от ожидаемого, дроссель можно считать исправным.

При осуществлении проверки нужно следить за тем, чтобы щупы не прикасались к человеческому телу. Если это требование нарушить, то проверяющий получит сопротивление своего тела, а не провода катушки.

Проверку наличия обрыва также можно выполнить с помощью мультиметра:

  1. Прибор переключают в режим проведения прозвонки.
  2. Чёрным и красным щупами прикасаются к концам провода, намотанного на катушку. Если контакт имеется, прозвучит звуковой сигнал. В противном случае можно будет сделать вывод о наличии обрыва.

Чтобы убедиться в исправности изделия, также необходимо сделать проверку на пробой на корпус.

Проверка на пробой на корпус

Процедура выполняется таким образом:

  1. Мультиметром прозваниваем дроссель. Для этого одним щупом прикасаемся к проводу дросселя, а другим – к его корпусу.
  2. Если звучит звуковой сигнал, это означает, что между катушкой и корпусом имеется контакт. Наличие пробоя говорит о неисправности дросселя. Если сигнала нет, то рассматриваемая проблема отсутствует.
  3. После прозвонки надо установить режим проверки сопротивления. Диапазон измерения рекомендуется выбрать минимальный.
  4. В зависимости от величины полученного сопротивления можно не только убедиться в наличии неисправности, но и приблизительно определить место пробоя. Если было показано полное сопротивление катушки, то пробой находится рядом с положением второго щупа. В том случае, когда оно практически равно нулю, то рядом с первым. При наличии промежуточного сопротивления аналогичным образом можно сделать вывод о расположении соответствующей точки.

Иногда нужно найти место, где находится неисправность. В этом случае надо временно поставить заведомо исправную лампу. Если она не будет работать, значит, дело в дросселе. Но перед тем как прозвонить, следует осмотреть его. Визуально можно заметить следующие дефекты:

  • На корпусе дросселя наблюдается почернение.
  • Имеются явные следы перегрева проводов.
  • На корпусе видно вздутие.

При наличии таких признаков имеет смысл провести более подробную диагностику или заменить проверяемый дроссель на исправный.

Иногда причиной проблемы могут стать плохие контакты между лампой и патроном. Они со временем теряют свою работоспособность из-за окисления или загрязнения. В такой ситуации их следует почистить. Для этого можно, например, использовать ластик, мелкую шкурку или аналогичные средства.

Если предстоит проверить несколько люминесцентных ламп, это можно сделать путём создания несложного испытательного стенда. На изображении показана его схема.

Схема тестирования

Цепь подключается к сети электропитания с напряжением 220 В. К дросселю последовательно подсоединяется лампа накаливания. После замыкания цепи возможны следующие ситуации:

  • Лампа горит вполнакала. В этом случае можно сделать вывод об исправности дросселя.
  • Она горит ярко. Такое возможно в том случае, если активное сопротивление дросселя снижено. Это говорит о наличии межвиткового замыкания.
  • Лампочка не загорается, что свидетельствует о наличии обрыва провода. Это может быть следствием перегорания провода. В таком случае ещё одним сигналом о повреждении может стать неприятный запах.

С помощью такой простой схемы можно сделать вывод о степени работоспособности дросселя за минимальное время.

Проверка электронного дросселя

В светильниках нового поколения используется электронный дроссель или ЭПРА, что расшифровывается как электронная пускорегулирующая аппаратура. Такой дроссель не похож на катушку индуктивности. Он состоит из множества электронных компонентов, напаянных на плату и помещенных в один корпус. Поэтому прозвонить мультиметром два конца у электронного устройства не получится. Придется последовательно проверять все элементы схемы.

Так выглядит электронный дроссель

Сначала рекомендуется протестировать предохранитель, затем следует внимательно осмотреть все места пайки. Контакт мог пропасть из-за того, что отвалились какие-то ножки. Далее проверяются конденсаторы, диоды и транзисторы. Это делается с помощью мультиметра, установленного в соответствующий режим измерения.

Существует множество электрических схем, в которых применяются дроссели. Однако во всех случаях типовые неисправности выглядят похожим образом. Воспользовавшись приведёнными способами, можно найти причину проблемы или убедиться в исправности дросселя.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *