Инфракрасный диод для пульта. Как просто проверить работоспособность инфракрасных диодов
Инфракрасные пульты дистанционного управления прочно заняли место в бытовой электронике. Какую только аппаратуру не комплектуют этим весьма удобным устройством, это и телевизоры, музыкальные центры, микроволновые печи, автомобильные CD/MP-проигрыватели, люстры и много много других привычных нам вещей.
Столь широкое распространение пультов дистанционного управления не могло не сказаться на их частых поломках. Поскольку новый, необходимый для конкретного прибора пульт иногда трудно приобрести, то их сдают в ремонт.
Как быстро проверить пульт дистанционного управления?
Самым простым и действенным методом можно считать проверку пультов (ПДУ) с помощью цифровых камер. Сейчас практически в каждом сотовом телефоне есть цифровая камера.
Во многих ноутбуках есть встроенная web-камера. Для нетбуков цифровая web-камера вообще обязательный атрибут. Также для проверки пультов ДУ подходят цифровые фото и видеокамеры. В общем, любое устройство в котором есть пусть самая простая цифровая камера сгодятся для проверки пульта.
Для проверки ПДУ необходимо лишь направить излучающий инфракрасный светодиод в объектив камеры. На цифровом дисплее при нажатии кнопок на пульте будут видны периодические вспышки фиолетового цвета свечения. Это свидетельствует об исправности пульта дистанционного управления.
На фото показаны вспышки инфракрасного светодиода, заснятые камерой мобильного телефона Sony Ericsson K810i.
Если же под рукой нет устройств с цифровой камерой, то можно воспользоваться следующим способом.
Необходимо вместо инфракрасного светодиода временно впаять обычный светоизлучающий диод. Светодиод может быть любого цвета свечения: красный , зелёный , жёлтый , белый, в общем, не важно, главное чтобы светодиод был на 3 вольта.
При нажатии на кнопки пульта временно впаянный обычный светодиод будет излучать вспышки света. Следует отметить, что яркость излучения будет небольшой.
На фото – обычный белый светодиод, впаянный вместо инфракрасного.
Пульт ДУ можно проверить с помощью инфракрасного фотодиода и осциллографа.
В данном случае инфракрасный фотодиод подключают ко входу осциллографа. При работе пульта на экране осциллографа будут видны импульсы коротких посылок. Важно, чтобы фотодиод был подключен к открытому входу осциллографа.
Вот так просто и легко можно проверить работоспособность любого инфракрасного пульта дистанционного управления. Для этого совсем не обязательно собирать какие-либо схемы пробников и захламлять итого перегруженную мастерскую, ведь все необходимые инструменты уже есть под рукой, уж мобильник то с камерой точно
дистанционного управления (ПДУ)
В пультах 90% занимают дефекты двух типов:
1) некоторые кнопки не работают (обычно те, которые часто нажимали). В этом случае необходимо вырезать кусочек фольги и приклеить его на резиновую основу со стороны контактов. Для этого используют силиконовый клей;
2) часто дефект происходит в результате падения пульта. Выходит из строя кварц. Любой пульт можно проверить на портативном приемнике, в котором есть KB и СВ волны. Необходимо поднести пульт передней частью поближе к приемнику и нажать на любую кнопку. Будут слышны наводки, испускаемые излучателем (см. ниже).
Восстановление проводящей поверхности кнопок
Необходимо взять полиэтилен от шрифтов (и тому подобный), чем жестче — тем лучше. Вырезать прямоугольник по формату печатной платы. Нанести на него центры отверстий, соответствующие центрам кнопок. Далее просверлить или пробить отверстия диаметром, равным диаметру контактной площадки.
Необходимо сделать все отверстия, которые имеются на самой печатной плате. Изготавливаем токопроводя- щий слой. Берем фольгу для выпечки (новую не помятую), наклеиваем на нее скотч. Вырезаем прямоугольник по формату платы, делаем отверстия технологические, как на плате (необходимо вырезать отверстие под свето- диодом). Собираем — на кнопки кладем фольгу (скотчем на кнопки), сверху плату. Затем закрываем пульт.
Секрет восстановления токопроводящего
графитового слоя на пультах ДУ
Для этого приготавливается графитовая эмульсия: в любом растворителе для нитрокрасок растворяются «беруши». После этого в раствор постепенно добавляется графит — чем мельче, тем лучше. Для этого можно использовать обычный карандаш.
Этим раствором нужно покрыть разорванный участок графитового проводника.
Вариант проверки пультов ДУ
От неисправных видеодвоек и ТВ всегда есть в запасе блоки приемников И К сигнала. Они запаяны в экран, как правило, имеют 3 вывода.
Светодиод подключают прямо на выводы блока: «+» — к «+» питания, «-» — к выходу. Источник питания стабилизированный — 3…9 В.
По частоте мигания светодиода можно оценивать и кварц в пульте (они довольно часто «глючат»).
Как увеличить эффективность ПДУ
С ухудшением (со временем службы) электрических характеристик элементов питания (потери емкости аккумуляторов и снижение тока и напряжения батареек) для эффективной работы требуется пропорционально все большее приближение ПДУ к приемнику ИК сигналов. Это первый признак необходимости замены элементов питания.
Дальность действия обычного ПДУ с одним излучающим ИК диодом, которая обычно не превышает на открытой местности 5-6 м (не сфокусированный поток), а в условиях препятствий интерьера 10-12 м можно повысить в 2 раза, установив последовательно со штатным, аналогичный И К диод. При этом включать дополнительный И К диод надо в прямом направлении и устанавливать рядом с первым. Для этого потребуется аккуратно разобрать корпус ПДУ, и в зависимости от конструктивных особенностей установки базового ИК диода (за защитным экраном-стеклом или в открытом состоянии с выдающейся рабочей поверхностью диода вне корпуса ПДУ), просверлить отверстие под место еще одного И К диода.
Если аналогичного ИК излучающего диода нет в наличии или, как часто бывает, невозможно определить в точности тип примененного в ПДУ штатного ИК диода (для пультов с напряжением питания схемы до 6 В), допускается включение AJI156A, AJI147A, AJI164A9, АЛ164А91 (зарубежные аналоги L-315EIR, L-514CIR). Они имеют прозрачный цвет колбы, прямой ток /щахпр достигает значения 100 мА, длина волны 920-940 нм, мощность излучения 8-10 мВт.
Повышать напряжение питания электронной схемы формирователя импульсов ПДУ не нужно, равно как нет необходимости и в другом вмешательстве в штатную схему. Увеличение дальности действия ПДУ проверены с моделями Setro STV-2080MH, ПДУ минисистемы МАХ-930 производства Samsung, ПДУ видеоплеера W131W и других.
Самый простой способ проверки ПДУ
Этот способ можно применять для быстрой проверки ПДУ в любом месте, даже, если потребуется, в поле.
Для этого потребуется простой радиоприемник с диапазоном средних волн, например, «0лимпик-402» или «Селга-401-405», выпускаемые отечественной промышленностью. Сегодня таких радиоприемников, принимающих радиоволны в диапазоне средних волн, много и от их «китайских» названий «пестрит в глазах».
При испытании ПДУ предложенным методом проверяется не наличие И К излучения, а фиксируются радиопомехи, создаваемые электронными компонентами пульта. Известно, что каждый радиоэлемент является в той или иной степени источником электромагнитных помех «шумит» и слабого излучения радиоволн. На небольшом удалении от источника излучения эти «шумы» и фиксирует радиоприемник типа «Селга».
На всем протяжении диапазона средних волн в радиоприемнике будет слышен прерывистый сигнал звуковой частоты (примерно с частотой 400 Гц) в том случае, если на находящемся рядом (на расстоянии до 1 м) пульте ДУ (при вставленных элементах питания) нажата ка- кая-то кнопка. Пока кнопка нажата, радиоприемник излучает в динамике сигнал звуковой частоты. Этим же методом можно контролировать эффективность нажатия всех кнопок пульта, ведь важно, чтобы они все нажимались с примерно одинаковым усилием. Особенно этот метод важен тогда, когда ПДУ, например, для телевизора, стоящего на кухне, покупают на рынке или «с рук». Здесь все возможно.
Для того чтобы не купить «кота в мешке», разумно взять с собой портативный радиоприемник с возможностью приема средних волн и, вставив при проверке элементы питания в ПДУ, проверить нажатие каждой кнопки пульта. Каждое нажатие исправного ПДУ будет непременно сопровождаться звуковым сигналом в радиоприемнике (на всем диапазоне вещания средних волн) с расстояния до 1 м.
Вторая жизнь радиоприемников типа «Селга-404» и аналогичных не заканчивается этой рекомендацией. Данный тип радиоприемников, настроенный на прием средних волн, может также эффективно контролировать работу (с небольшого расстояния до 1-2 м) ИК передающих устройств различных охранных систем, например, сигнализации или работу дистанционно передающих устройств (жучков), осуществляющих передачу информации через ИК светодиоды.
Кроме радиоприемника «Селга» разных модификаций, для проверки ПДУ и осуществления сопутствующих задач подойдет любой (в том числе современный) радиоприемник, уверенно работающий на приме в диапазоне средних волн.
Проверить исправность в ПДУ ИК излучающего диода придется другим методом (например, первым, рекомендуемым в данной статье), однако для проверки работы электроники пульта данный метод по своей простоте не имеет аналогов.
Пульт ДУ для бытовой электронной аппаратуры обычно представляет собой небольшое устройство с кнопками, и питанием от батареек, посылающее команды посредством инфракрасного излучения с длиной волны 0,75-1,4 микрон. Этот спектр невидим для человеческого глаза, но распознаётся приёмником принимающего устройства. В большинстве ПДУ применяется одна специализированная микросхема-формирователь команд с кварцевым резонатором, корпусная либо бескорпусная (помещенная прямо на печатную плату и залитая компаундом, для предотвращения повреждения), усилитель сигналов, состоящий из одного или двух транзисторов, и излучающий диод (или два) ИК диапазона. Дополнительно в некоторых ПДУ еще устанавливают светодиод для индикации посылки команд.
Схема пульта EUR51971 для ТВ.
Схема пульта IP-Q 1 на Микросхеме SAA /7 со своим протоколом команд (количество 448), разработаны фирмой Thomson при содействии Philips, эти телевизоры можно отнести к группе Saba T6301/FF345. ТС342/365/440/460, Telefunken Chassis 418A, FB-180, Thomson Chassis ICC7.
Во всем мире для бытовой радиоаппаратуры наибольшее распространение получила система ДУ RC-5. Эта система была разработана фирмой Philips для нужд управления бытовой аппаратурой и используется во многих телевизорах. Для пультов ДУ выпускается специализированная микросхема передатчика SAA3010 ( ПО «Интеграл» выпускает аналог INA3010 ). Применение специализированной микросхемы передатчика резко уменьшает необходимое количество компонентов, и позволяет поместить ИК передатчик в корпус небольшого размера. Кроме того, в таких микросхемах решен вопрос низкого потребления в режиме ожидания, что делает эксплуатацию пульта очень удобной: нет необходимости в отдельном выключателе питания. Схема переходит в активный режим при нажатии любой кнопки и возвращается в режим микропотребления при ее отпускании. В настоящее время разными производителями выпускается большое количество модификаций пультов ДУ RC-5, причем некоторые модели имеют, вполне приличный дизайн. Промышленные пульты, как правило, предназначены для управления телевизорами. Поэтому они используют систему 0 кода RC-5. Совсем несложно перейти на другой номер системы, и тогда взаимное влияние разных пультов будет исключено.
Когда мы нажимаем кнопку пульта, микросхема передатчика активизируется и генерирует последовательность импульсов, которые имеют заполнение частотой 36 КГц. Светодиоды преобразуют эти сигналы в ИК-излучение. Излученный сигнал принимается фотодиодом, который снова преобразует ИК-излучение в электрические импульсы. Эти импульсы усиливаются и демодулируются микросхемой приемника. Затем они подаются на декодер. Декодирование обычно осуществляется программно с помощью микроконтроллера. Код RC5 поддерживает 2048 команд. Эти команды составляют 32 группы (системы) по 64 команды в каждой. Каждая система используется для управления определенным устройством, таким как телевизор, видеомагнитофон и т.д. Одной из наиболее распространенных микросхем передатчика является микросхема SAA3010. Микросхема передатчика SAA3010 допускает питание напряжением +5V .
· Напряжение питания – 2. 7V
· Потребляемый ток в ждущем режиме – не более 10 мка
· Максимальный выходной ток — ±10 мА
· Максимальная тактовая частота – 450 КГц
Структурная схема микросхемы SAA3010 показана на рисунке 1.
Рисунок 1. Структура ИС SAA3010.
Описание выводов микросхемы SAA3010 приведено в таблице:
Входные линии матрицы кнопок
Вход выбора режима работы
Входные линии матрицы кнопок
Модулированные выходные данные
Тестовый вход 2
Тестовый вход 1
Входные линии матрицы кнопок
Микросхема передатчика является основой пульта дистанционного управления. На практике один и тот же пульт может использоваться для управления несколькими устройствами. Микросхема может адресовать 32 системы в двух различных режимах: комбинированном и в режиме одной системы. В комбинированном режиме сначала выбирается система, а затем команда. Номер выбранной системы (адресный код) хранится в специальном регистре и происходит передача команды, относящейся к этой системе. Таким образом, для передачи любой команды требуется последовательное нажатие двух кнопок. Это не совсем удобно и оправдано только при работе одновременно с большим количеством систем. На практике передатчик чаще используется в режиме одной системы. При этом вместо матрицы кнопок выбора системы монтируется перемычка, которая и определяет номер системы. В этом режиме для передачи любой команды требуется нажатие только одной кнопки. Применив переключатель, можно работать с несколькими системами. И в этом случае для передачи команды требуется нажатие только одной кнопки. Передаваемая команда будет относиться к той системе, которая в данное время выбрана с помощью переключателя.
Для включения комбинированного режима на вывод передатчика SSM (Single System Mode ) нужно подать низкий уровень. В этом режиме микросхема передатчика работает следующим образом: во время покоя X и Z-линии передатчика находятся в состоянии высокого уровня с помощью внутренних p-канальных подтягивающих транзисторов. Когда нажата кнопка в матрице X-DR или Z-DR, запускается цикл подавления дребезга клавиатуры. Если кнопка замкнута на протяжении 18 тактов, фиксируется сигнал «разрешение генератора». В конце цикла подавления дребезга DR-выходы выключаются и запускаются два цикла сканирования, включающие по очереди каждый выход DR. В первом цикле сканирования обнаруживается Z-адрес, во втором — X-адрес. Когда Z-вход (матрица системы) или X-вход (матрица команды) обнаруживается в состоянии нуля, происходит фиксация адреса. При нажатии кнопки в матрице системы передается последняя команда (т.е. все биты команды равны единице) в выбираемой системе. Эта команда передается до тех пор, пока кнопка выбора системы не будет отпущена. При нажатии кнопки в матрице команды передается команда вместе с адресом системы, хранимом в регистре-фиксаторе. Если кнопка отпущена до начала передачи, происходит сброс. Если же передача началась, то независимо от состояния кнопки, она будет выполнена полностью. Если одновременно нажато более одной Z или X кнопки, то генератор не запускается.
Для включения режима одной системы на выводе SSM должен быть высокий уровень, а адрес системы должен быть задан соответствующей перемычкой или переключателем. В этом режиме во время покоя X-линии передатчика находятся в состоянии высокого уровня. В то же время Z-линии выключены для предотвращения потребления тока. В первом из двух циклов сканирования определяется адрес системы и сохраняется в регистре-фиксаторе. Во втором цикле определяется номер команды. Эта команда передается вместе с адресом системы, хранимом в регистре-фиксаторе. Если нет перемычки Z-DR, то никакие коды не передаются.
Если кнопка была отпущена между посылками кода, то происходит сброс. Если кнопка была отпущена во время процедуры подавления дребезга или во время сканирования матрицы, но до обнаружения нажатия кнопки, то также происходит сброс. Выходы DR0 – DR7 имеют открытый сток, в состоянии покоя транзисторы открыты.
В коде RC-5 имеется дополнительный управляющий бит, который инвертируется при каждом отпускании кнопки. Этот бит информирует декодер о том, удерживается кнопка или произошло новое нажатие. Бит управления инвертируется только после полностью завершенной посылки. Циклы сканирования производятся перед каждой посылкой, поэтому даже если во время передачи посылки сменить нажатую кнопку на другую, все равно номер системы и команды будут переданы правильно.
Вывод OSC представляет собой вход/выход 1-выводного генератора и предназначен для подключения керамического резонатора на частоту 432 КГц. Последовательно с резонатором рекомендуется включать резистор сопротивлением 6,8 Ком.
Тестовые входы TP1 и TP2 в нормальном режиме работы должны быть соединены с землей. При высоком логическом уровне на TP1 повышается частота сканирования, а при высоком уровне на TP2 – частота работы сдвигового регистра.
В состоянии покоя выходы DATA и MDATA находятся в Z-состоянии. Генерируемая передатчиком на выходе MDATA последовательность импульсов имеет заполнение частотой 36 кГц (1/12 частоты тактового генератора) со скважностью 25%. На выходе DATA генерируется такая же последовательность, но без заполнения. Этот выход используется в том случае, когда микросхема передатчика выполняет функции контроллера встроенной клавиатуры. Сигнал на выходе DATA полностью идентичен сигналу на выходе микросхемы приемника дистанционного управления (но в отличие от приемника он не имеет инверсии). Оба этих сигнала могут обрабатываться одним и тем же декодером.
Передатчик генерирует 14-битное слово данных, формат которого следующий:
· 2 стартовых бита.
· 1 управляющий бит.
· 5 бит адреса системы.
Рисунок 2. Формат слова данных кода RC-5.
Стартовые биты предназначены для установки АРУ в IC приемника. Управляющий бит является признаком нового нажатия. Длительность такта составляет 1.778 мс. Пока кнопка остается нажатой, слово данных передается с интервалом 64 такта, т.е. 113.778 мс (рис. 2). Для обеспечения хорошей помехоустойчивости применяется двухфазное кодирование (рис. 3).
Рисунок 3. Кодирование «0» и «1» в коде RC-5.
При использовании кода RC-5 может понадобиться вычислить средний потребляемый ток. Сделать это достаточно просто, если воспользоваться рис. 4, где показана подробная структура посылки.
Рисунок 4. Подробная структура посылки RC-5.
Для обеспечения одинакового реагирования оборудования на команды RC-5, коды распределены вполне определенным образом. Такая стандартизация позволяет конструировать передатчики, позволяющие управлять различными устройствами. С одними и теми же кодами команд для одинаковых функций в разных устройствах передатчик с относительно небольшим числом кнопок одновременно может управлять, например, аудиокомплексом , телевизором и видеомагнитофоном.
Номера систем для некоторых видов бытовой аппаратуры приведены ниже:
0 — Телевизор (TV)
2 — Телетекст
3 — Видеоданные
4 — Видеопроигрыватель (VLP)
5 — Кассетный видеомагнитофон (VCR)
8 — Видео тюнер (Sat.TV )
9 — Видеокамера
16 — Аудио предусилитель
17 — Тюнер
18 — Магнитофон
20 — Компакт-проигрыватель (CD)
21 — Проигрыватель (LP)
29 — Освещение
Остальные номера систем зарезервированы для будущей стандартизации или для экспериментального использования. Стандартизировано также соответствие некоторых кодов команд и функций.
Коды команд для некоторых функций приведены ниже:
0-9 — Цифровые величины 0-9
12 — Дежурный режим
15 — Дисплей
13 — mute
16 — громкость +
17 — громкость —
30 — поиск вперед
31 — поиск назад
45 — выброс
48 — пауза
50 — перемотка назад
51 — перемотка вперед
53 — воспроизведение
54 – стоп
55 — запись
Для того чтобы на основе микросхемы передатчика получить законченный пульт ИК ДУ, необходим еще драйвер светодиода, который способен обеспечивать большой импульсный ток. Современные светодиоды работают в пультах ДУ при импульсных токах около 1А.
Драйвер светодиода очень удобно строить на низкопороговом (logic level ) МОП-транзисторе , например, КП505А.
Пример принципиальной схемы пульта приведен на рис. 5.
Номер системы задается перемычкой между выводами Zi и DRj .
Номер системы при этом будет следующим: SYS = 8i + j
Код команды, который будет передаваться при нажатии кнопки, которая замыкает линию Xi с линией DRj , вычисляется следующим образом: COM = 8i + j
Часто встречающиеся неисправности.
Неисправности беспроводных пультов ДУ
- севшие батарейки (самая частая неисправность);
- пульт залит какой-либо жидкостью и кнопки либо западают, либо не отпускаются;
- от удара отвалился (или повреждён) кварцевый резонатор либо ИК-светодиод;
- от частого использования проводящее напыление на самих кнопках (либо проводники под кнопками) истирается;
- грязь от рук, попадающая внутрь пульта и скапливающаяся с течением времени.
Отсутствует сигнал с ПДУ.
Сначала проверяют исправность элементов питания. Если напряжение на элементе менее 1,3V , его необходимо заменить. Амперметром измеряют ток «короткого замыкания» элемента. Если он меньше 300 мА, элемент также необходимо заменить.
Проверить работоспособность ПДУ можно любым фотодиодом ИК диапазона. Под действием ИК излучения на выводах фотодиода появляется напряжение, которое регистрируют осциллографом. Фотодиод располагают напротив окошка ПДУ. При нажатии кнопок пульта на осциллографе должны появиться импульсы размахом 0,2. 0,5V .
Проверка пульта без специальных средств.
Можно, включить приёмник на диапазон «AM» и нажав кнопку на пульте, поднести близко к приёмнику, из динамика будут отчётливо слышны звуки (пакетов импульсов)
Другой простой способ, с помощью которого можно проверить работоспособность пульта дистанционного управления заключается в следующем: включаем на мобильном телефоне камеру, направляем ПДУ на камеру и нажимаем любую кнопку, если пульт исправен на дисплее телефона будет видно свечение инфракрасного излучателя.
Если сигнал отсутствует, пульт неисправен. Его вскрывают. Эта операция требует определенных навыков и аккуратности, чтобы не оставить царапин на корпусе и не сломать защелки.
Осматривают печатную плату, и контакты клавиатуры следы высохшей жидкости в виде белесого налета удаляют с печатной платы и контактного поля ватным тампоном, смоченным спиртом. Трещины на печатных проводниках устраняют, напаивая сверху перемычки из луженого провода.
Контролируют качество паек, и отсутствие обрыва выводов деталей в первую очередь это касается излучающего ИК диода и кварцевого резонатора. Затем проверяют режимы работы.
Измеряют напряжение питания (обычно +3V ) на микросхеме. Осциллографом контролируют работу генератора при замыкании пары контактов кнопок. Если генерация отсутствует, проверяют постоянное напряжение +1. 1.5V на кварцевом резонаторе. Если напряжение имеется, заменяют резонаторы. В случае отсутствия постоянного напряжения проверяют исправность микросхемы (заменой).
При наличии генерации возможны следующие неисправности:
1. Появление утечки в одной из пар контактов клавиатуры. Проверяют омметром. Сопротивление между контактами исправной пары должно быть не менее 100 кОм. В ином случае контакты протирают ватным тампоном, смоченным спиртом.
2. Возникла утечка с графитовых перемычек на печатные проводники, проходящие под перемычками. Для поиска неисправности поочередно отпаивают выводы микросхемы, соединенные с контактами клавиатуры. Если при отпайке очередного вывода генерация прекратилась, проверяют цепи, подходящие к этому выводу. Печатный проводник, находящийся под графитовой перемычкой, обрезают с обеих сторон и восстанавливают отрезком изолированного провода.
3. Попадание пыли, грязи, частиц олова и канифоли между выводами микросхемы. Кисточкой с жестким ворсом и спиртом промывают плату между выводами.
4.Дефект микросхемы. Если после отпайки ее выводов сопротивление пары контактов возросло до нормы, неисправна микросхема. Её необходимо заменить.
Сигнал с ПДУ отсутствует, на выходе микросхемы импульсный сигнал имеется.
1. Отсутствует напряжение питания усилителя.
2. Неисправен один из транзисторов усилителя или диод ИК излучения.
Поиск неисправности начинают с проверки осциллографом наличия импульсного сигнала на катоде диода ИК излучения. Если сигнал отсутствует, а постоянное напряжение равно нулю, проверяют исправность диода. Если он исправен, и имеется постоянное напряжение, но сигнал отсутствует, проверяют прохождение сигнала с выхода микросхемы до диода ИК излучения, исправность транзисторов, наличие напряжения питания.
Наиболее часто встречаются дефекты: неисправность выходного транзистора усилителя, нарушение паек выводов элементов.
Сигнал с ПДУ отсутствует. На диоде ИК излучения присутствует постоянное напряжение. Происходит быстрая разрядка элементов питания.
Характер неисправности указывает на то, что диод ИК излучения постоянно открыт, через него протекает значительный ток, приводящий к разрядке элементов.
Возможные причины неисправности:
Пробой одного из транзисторов усилителя. Проверяют омметром.
Наличие двух или более пар замкнутых контактов клавиатуры. Проверяют омметром.
Дефектна микросхема. Проверяют заменой.
При не нажатых кнопках клавиатуры с ПДУ постоянно поступает команда.
Возможные причины неисправности:
1. Уменьшение сопротивления изоляции между выводами микросхемы или контактами контактного поля. Устраняют промывкой спиртом.
2. Утечка с графитовой перемычки на печатный проводник, проходящий под ней. Дефектный проводник с обоих концов обрезают и припаивают сверху отрезок изолированного провода.
3.Дефектна микросхема. Проверяют заменой.
С ПДУ не поступает одна или несколько команд.
Причиной дефекта может быть увеличение сопротивления замыкающих контактов клавиатуры, грязь на контакт ном поле, трещины на плате, неисправность микросхемы.
Омметром проверяют сопротивление контактов из токопроводящей резины на клавиатуре. У исправных контактов оно должно находиться в пределах от 2 до 5 кОм. Если сопротивление превышает 10кОм, контакты неисправны. Прежде чем менять «резину» целиком, можно попытаться восстановить неисправные контакты. Для этого резиновую клавиатуру вначале очищают от грязи, для чего промывают ее под струей горячей воды с мылом и щеткой. Затем неисправный контакт прикладывают к листу писчей бумаги и с небольшим усилием проводят по нему. За счет шероховатости бумаги с контакта снимается тонкий слой грязи и окислов. Возможно использование мелкозернистой наждачной бумаги.
Другой способ восстановления работоспособности состоит в наклеивании на неисправные контакты кружков из токопроводящей резины. Они входят в специальные ремонтные комплекты для ПДУ, имеющиеся в продаже. Неплохие результаты дает наклеивание кружков из металлической фольги (от сигарет). Фольга на бумажной основе обеспечивает надежное клеевое соединение с резиной. Разрывы на проводниках устраняют напаиванием перемычек. Трещины на контактном поле устраняют нанесением слоя токопроводящего клея (имеется в продаже).
ПДУ команду излучает, однако телевизор на нее не реагирует. Телевизор исправен.
Возможные причины неисправности: дефект кварцевого резонатора или микросхемы.
Распространенные микросхемы П ДУ
История
Одно из самых ранних устройств для дистанционного управления придумал и запатентовал Никола Тесла в 1893 году.
В 1903 году испанский инженер и математик Leonardo Torres Quevedo представил в Парижской академии наук Telekino — устройство, представлявшее собой робота, выполняющего команды, переданные посредством электромагнитных волн.
Пульт ДУ Zenith Space Commander 500, 1958 год
Первый пульт ДУ для управления телевизором был разработан американской компанией Zenith Radio Corporation в начале 1950-х годов. Он был соединён с телевизором кабелем. В 1955 году был разработан беспроводной пульт Flashmatic, основанный на посылании луча света в направлении фотоэлемента. К сожалению, фотоэлемент не мог отличить свет из пульта от света из других источников. Кроме того, требовалось направлять пульт точно на приёмник.
Пульт ДУ Zenith Space Commander 600
В 1956 году американец австрийского происхождения Роберт Адлер разработал беспроводной пульт Zenith Space Commander. Он был механическим и использовал ультразвук для задания канала и громкости. Когда пользователь нажимал кнопку, она щёлкала и ударяла пластину. Каждая пластина извлекала шум разной частоты, и схема телевизора распознавала этот шум. Изобретение транзистора сделало возможным производство дешёвых электрических пультов, которые содержат пьезоэлектрический кристалл, питающийся электрическим током и колеблющийся с частотой, превышающей верхний предел слуха человека (хотя слышимой собаками). Приёмник содержал микрофон, подсоединённый к схеме, настроенной на ту же частоту. Некоторыми проблемами этого способа были возможность приёмника сработать от естественного шума и то, что некоторые люди, могли слышать пронзительные ультразвуковые сигналы.
В 1974 году фирмы GRUNDIG и MAGNAVOX выпустили первый цветной телевизор с микропроцессором управления на ИК-лучах. Телевизор имел экранную индикацию (OSD) — в углу экрана отображался номера канала.
Толчок к появлению более сложных типов пультов ДУ появился в конце 1970-х, когда компанией Би-би-си был разработан телетекст. Большинство продаваемых пультов ДУ в то время имели ограниченный набор функций, иногда только четыре: следующий канал, предыдущий канал, увеличить или уменьшить громкость. Эти пульты не отвечали нуждам телетекста, где страницы были пронумерованы трёхзначными числами. Пульт, позволяющий выбирать страницу телетекста, должен был иметь кнопки для цифр от 0 до 9, другие управляющие кнопки, например для переключения между текстом и изображением, а также обычные телевизионные кнопки для громкости, каналов, яркости, цветности. Первые телевизоры с телетекстом имели проводные пульты для выбора страниц телетекста, но рост использования телетекста показал необходимость в беспроводных устройствах. И инженеры Би-Би-Си начали переговоры с производителями телевизоров, что привело в 1977-1978 к появлению опытных образцов, имевших гораздо больший набор функций. Одной из компаний была ITT, её именем был позже назван протокол инфракрасной связи.
В 1980-х Стивен Возняк из компании Apple основал компанию CL9. Целью компании было создание пульта ДУ, который мог бы управлять несколькими электронными устройствами. Осенью 1987 года был представлен модуль CORE. Его преимуществом была возможность «обучаться» сигналам от разных устройств. Он также имел возможность выполнять определённые функции в назначенное время благодаря встроенным часам. Также это был первый пульт, который мог быть подключён к компьютеру и загружен обновлённым программным кодом. CORE не оказал большого влияния на рынок. Для среднего пользователя было слишком сложно программировать его, но он получил восторженные отзывы от людей, которые смогли разобраться с его программированием. Названные препятствия привели к роспуску CL9, но один из её работников продолжил дело под маркой Celadon.
К началу 2000-х количество бытовых электроприборов резко возросло. Для управления домашним кинотеатром может потребоваться пять-шесть пультов: от спутникового приёмника, видеомагнитофона, DVD-проигрывателя, телевизионного и звукового усилителя. Некоторые из них требуется использовать друг за другом, и, из-за разобщённости систем управления, это становится обременительным. Многие специалисты, включая известного специалиста по юзабилити Jakob Nielsen и изобретателя современного пульта ДУ Роберта Адлера, отмечают, сколь запутанно и неуклюже использование нескольких пультов.
Появление КПК с инфракрасным портом позволило создавать универсальные пульты ДУ с программируемым управлением. Однако в силу высокой стоимости этот метод не стал слишком распространён. Не стали широко распространёнными и специальные универсальные обучаемые пульты управления в силу относительной сложности программирования и использования.
Инфракрасный (ИК) излучающий диод представляет собой полупроводниковый прибор, рабочий спектр которого расположен в ближней области инфракрасного излучения: от 760 до 1400 нм. В интернете часто встречается термин «ИК светодиод», хотя свет, видимый человеческим глазом, он не излучает. То есть в рамках физической оптики этот термин неверен, в широком же смысле название применимо. Стоит отметить, что во время работы некоторых ИК излучающих диодов можно наблюдать слабое красное свечение, что объясняется размытостью спектральной характеристики на границе с видимым диапазоном.
Не стоит путать ИК светодиоды с лазерными диодами инфракрасного излучения. Принцип действия и технические параметры этих приборов сильно отличаются.
Область применения
На том, какими бывают инфракрасные светодиоды и где применяются, остановимся подробнее. Многие из нас ежедневно сталкиваются с ними, не подозревая об этом. Конечно же, речь идёт о пультах дистанционного управления (ПДУ), одним из важнейших элементов которого является ИК излучающий диод. Благодаря своей надёжности и дешевизне метод передачи управляющего сигнала с помощью инфракрасного излучения получил огромное распространение в быту. Главным образом такие пульты применяются для управления работой телевизоров, кондиционеров, медиа проигрывателей. В момент нажатия кнопки на ПДУ ИК светодиод излучает модулированный (зашифрованный) сигнал, который принимает и затем распознаёт фотодиод, встроенный в корпус бытовой техники. В охранной сфере большой популярностью пользуются видеокамеры с инфракрасной подсветкой. Видеонаблюдение, дополненное ИК подсветкой, позволяет организовать круглосуточный контроль охраняемого объекта, независимо от погодных условий. В данном случае ИК светодиоды могут быть встроены в видеокамеру либо установлены в её рабочей зоне в виде отдельного прибора – инфракрасного прожектора. Применение в прожекторах мощных ИК светодиодов позволяет осуществлять надёжный контроль прилегающей территории.
На этом их сфера применения не ограничивается. Весьма эффективным оказалось применение ИК излучающих диодов в приборах ночного видения (ПНВ), где они выполняют функцию подсветки. С помощью такого прибора человек может различать предметы на достаточно большом расстоянии в тёмное время суток. Устройства ночного видения востребованы в военной сфере, а также для скрытого ночного наблюдения.
Разновидности ИК излучающих диодов
Ассортимент светодиодов работающих в инфракрасном спектре насчитывает десятки позиций. Каждому отдельному экземпляру присущи определённые особенности. Но в целом, все полупроводниковые диоды ИК диапазона можно разделить по следующим критериям:
- мощности излучения или максимальному прямому току;
- назначению;
- форм-фактору.
Слаботочные ИК светодиоды предназначены для работы на токах не более 50 мА и характеризуются мощностью излучения до 100 мВт. Импортные образцы изготавливаются в овальном корпусе 3 и 5 мм, который в точности повторяет размеры обычного двухвыводного индикаторного светодиода. Цвет линзы – от прозрачного (water clear) до полупрозрачного голубого или жёлтого оттенка. ИК излучающие диоды российского производства до сих пор производят в миниатюрном корпусе: 3Л107А, АЛ118А. Приборы большой мощности выпускают как в DIP корпусе, так и по технологии smd. Например, SFH4715S от Osram в smd корпусе.
Технические характеристики
На электрических схемах ИК излучающие диоды обозначают так же, как и светодиоды, с которыми они имеют много общего. Рассмотрим их основные технические характеристики.
Рабочая длина волны – основной параметр любого светодиода, в том числе инфракрасного. В паспорте на прибор указывается её значение в нм, при котором достигается наибольшая амплитуда излучения.
Так как ИК светодиод не может работать только на одной длине волны, принято указывать ширину спектра излучения, которая свидетельствует об имеющемся отклонении от заявленной длины волны (частоты). Чем уже диапазон излучения, тем больше мощности сконцентрировано на рабочей частоте.
Номинальный прямой ток – постоянный ток, при котором гарантирована заявленная мощность излучения. Он же является максимально допустимым током.
Максимальный импульсный ток – ток, который можно пропускать через прибор с коэффициентом заполнения не более 10%. Его значение может в десять раз превышать постоянный прямой ток.
Прямое напряжение – падение напряжения на приборе в открытом состоянии при протекании номинального тока. Для ИК диодов его значение не превышает 2В и зависит от химического состава кристалла. Например, UПР АЛ118А=1,7В, UПР L-53F3BT=1,2В.
Обратное напряжение – максимальное напряжение обратной полярности, которое может быть приложено к p-n-переходу. Существуют экземпляры с обратным напряжением не более 1В.
ИК излучающие диоды одной серии могут выпускаться с разным углом рассеивания, что отображается в их маркировке. Необходимость в однотипных приборах с узким (15°) и широким (70°) углом распределения потока излучения вызвана их различной сферой применения.
Кроме основных характеристик, существует ряд дополнительных параметров, на которые следует обращать внимание при проектировании схем для работы в импульсном режиме, а также в условиях окружающей среды, отличных от нормальных. Перед проведением паяльных работ следует ознакомиться с рекомендациями производителя о соблюдении температурного режима во время пайки. О допустимых временных и температурных интервалах можно узнать из datasheet на инфракрасный светодиод.
Порой, чтобы сделать какие-то переключения пультом, необходимо вставать и почти вплотную подходить к управляемому устройству. А иногда, приходится вращать пульт и судорожно, нажимая кнопки, пытаться, как стрелок попасть в приемник инфракрасного излучения прибора.
В таких случаях хочется запустить пульт куда подальше, и вручную переключить нужный режим.
Почему так происходит?
Диагностика пульта ДУ
Проверить, работает пульт или нет, можно простым способом.
Для этого, во-первых, необходимо вставить в него новые батарейки. Во-вторых, включить камеру телефона и направив на нее пульт, нажать кнопку «ВКЛ». На экране телефона должно быть видно, как засветиться инфракрасный диод.
Человеческий глаз не видит этого спектра излучения, а камера телефона фиксирует его, и на дисплее это свечение похоже на индикацию обычного светодиода.
Если этого не произошло, значит пульт неисправен.
В таких случаях может помочь замена инфракрасного диода.
Метод ремонта и модернизации пульта – аналогичны, поэтому ниже будет описана именно модернизация.
Для примера взята приставка цифрового телевидения Т2, управляемая пультом дистанционного управления.
Сама приставка по своей работе не имеет никаких нареканий, но вот пульт управления, оставляет желать лучшего. Даже при новых батарейках питания, человеку, желающему сделать какие-то переключения, необходимо подходить к устройству, на расстояние меньше двух метров, что не совсем удобно. Если находиться дальше этого расстояния, то пульт становится просто невидимым, и управлять им невозможно.
Модернизация — ремонт
Если такового нет дома, то аналогичный пульт можно приобрести на блошиных рынках за копейки. Главное, чтобы он был рабочий и питался от двух батареек с общим напряжением три вольта.
Идя на рынок, нужно взять две пальчиковые батарейки, для проверки пульта, и мобильный телефон, который в принципе и так должен быть всегда рядом.
Найдя подходящий пульт, вставляем в него батарейки, и включаем камеру телефона. Направляем на неё светодиод пульта, и нажимаем на любую кнопку. Исправный пульт должен излучать инфракрасный свет, который будет виден на экране телефона, в виде пачки импульсов.
Если такового не будет видно, значит пульт, скорее всего неисправный, и покупать такой нет смысла.
На фото пульт, то ли от кондиционера, то ли от калорифера – неизвестно, но он точно рабочий, и с мощным инфракрасным диодом. Самого кондиционера уже давным-давно нет, он сломался и ремонту не подлежал. Он и будет донором.
Обычно две половины корпуса пульта скрепляются на защелке, но бывают случаи, когда ещё есть крепежный винт, который находится под батарейками, в отсеке для элементов питания. Если такой имеется, то откручиваем его, а после, подковырнув ножом место соединения двух частей – разделяем их.
Когда корпус будет разобран, внутри его обнаруживаем плату управления, на которой находятся электронные компоненты, площадка кнопок и сам инфракрасный светодиод.
Далее, отставляем старый пульт в сторону и разбираем тот, который хотим модернизировать. В нашем случае, это пульт от приставки Т2.
Принцип разборки такой же, как и в первом случае. Выкручиваем винт крепления – если он есть, и ножом или отверткой, разделяем половинки корпуса.
На фото, плата с инфракрасным диодом.
Далее, берем паяльник на 25 или 40 Вт, и выпаиваем диод с платы донора.
Очень важно не перегреть прибор паяльником, потому, что полупроводниковые приборы нужно паять не более двух секунд, иначе они могут разрушиться. Так же, нужно быть осторожным с ножками диода, чтобы лишний раз не изгибать, и не сломать их.
Перед тем, как впаивать диод, нужно определить полярность – где анод, а где катод, или плюсовой и минусовой выводы.
Бывает, что на плате указана полярность, но чаще всего маркировка отсутствует, поэтому сразу следует определить, где положительный вывод и пометить его на плате.
Определить вывод можно простым способом. Нужно внимательно посмотреть на диод с помощью лупы, и тот вывод в корпусе, который короче – анод (плюс), а тот, который больше и шире – катод или минус.
Определив на плате пульта Т2, где плюсовой вывод – делаем пометку, нацарапав её чем-нибудь острым, например шилом.
Теперь можно выпаивать диод из платы.
Так, как у выпаянного донорского диода ножки короче, чем у того, который следует заменить, то выпаивать диод с платы Т2 не нужно. Его необходимо откусить кусачками, оставив небольшие выводы. К ним и подпаяем диод-донор. Таким образом, длины должно быть достаточно, чтобы линза диода выходила за закрытый корпус.
Залуживаем выводы на диоде, и концы на плате, и аккуратно – соблюдая полярность – припаиваем их друг к другу.
Как проверить светодиод на пульте. Как проверить пульт дистанционного управления
Бывает, что жмёшь на кнопки пульта дистанционного управления, а телевизор не слушается. Особенно это раздражает (если не сказать, что просто бесит!), когда Вы уже идеально расположились на своём или в любимом кресле, а пульт не работает, а вставать ой как неохота. Но, все же с дивана Вам подняться придётся, ведь нужно выяснить в чём может быть причина, неисправен пульт, или может быть что-то вдруг случилось с ИК-приёмником на самом телевизоре. Проверить работает ли пульт можно очень просто и для этого не понадобится никаких сложных приборов. Всё это мы сделаем с помощью обычного сотового телефона.
Проверяем ДУ пульт с помощью телефона. Как это сделать?
Вообще, метод этот работает не только для пультов от но и для прочих устройств. Здесь всё зависит не от устройства, для которого данный пульт дистанционного управления применяется, а от принципа работы самого пульта. Сразу скажу, что этот метод работает только для пультов, которые работают на инфракрасном излучении. Таких до сих пор остаётся большинство, хотя сейчас, есть и радио пульты к телевизорам и к прочим устройствам. Их Вы уже этим способом не проверите.
Что нам понадобится для проверки? Обыкновенный любой модели. Сейчас уже, наверное, не осталось телефонов, в которых бы не было фотокамеры. Именно фотокамера Вашего мобильного телефона нам и понадобится для проверки пульта. То же самое можно сделать и любым цифровым Но, его держать при этом не очень то удобно, а особенно проблематично, если он довольно громоздкий, и Вам при этом не кому помочь. Так что, идеальный вариант использовать для этого Ваш телефон.
Что мы делаем? Вам просто нужно будет подставить пульт от Вашего телевизора под фотокамеру (камера при этом включена и картинка с неё должна отображаться на дисплее). Делать это нужно таким образом, чтобы в камере Вы видели инфракрасный светодиод, который стоит на всех инфракрасных пультах в верхней их части.
Далее Вы просто нажимаете на любую кнопку Вашего пульта и при этом смотрите, что Вам показывает камера Вашего телефона. Если пульт работает, то он должен посылать инфракрасный сигнал, его Вы и увидите на телефоне. Инфракрасный светодиод будет мигать фиолетовым цветом на экране Вашего телефона. Это означает, что батарейки «живы» и пульт Ваш работает. Хотя, если батарейки чуточку подсели, то яркость сигнала падает. Но, всё равно Вы поймёте, что пульт Ваш рабочий. Для полной уверенности в его полной работоспособности нужно будет просто заменить в нём батарейки на свежие.
Если это поможет и Ваш телевизор снова начнёт слушаться пульт, то очень хорошо. Ну, а, если нет, то ищите проблему уже в самом телевизоре. Вполне возможно, что на нём неисправен приёмник инфракрасного сигнала, или случилось что-то ещё. Здесь проблема уже посложнее, чем домашняя проверка пульта ДУ.
А вот ещё и небольшое видео на эту же тему. Где Вам всё это продемонстрируют. Смотрим. Можете после этого проверить таким образом свой пульт.
Пульты дистанционного управления выводят из строя по разным причинам: загрязнение контактов, порча резонатора, светодиода. Успешный ремонт пульта возможен лишь в том случае, если местонахождение неисправности определено правильно.
Спонсор размещения P&G Статьи по теме «Как проверить пульт от телевизора» Как настроить пульт Philips для телевизора Как настроить универсальный пульт управления Как настроить телевизор Panasonic
Возьмите мобильный телефон с функцией фотоаппарата. Включите в нем соответствующий режим, после чего направьте светодиод пульта в объектив камеры. По очереди нажмите на нем все клавиши. Вспышки инфракрасного светодиода пульта не воспринимаются человеческим глазом, но фиксируются камерой телефона. Если окажется, что светодиод вспыхивает при нажатии одних клавиш, но не реагирует на нажатия других, ищите неисправность в клавиатуре. Хаотическое медленное включение и выключение диода без реакции на нажатия любых клавиш говорит о выходе из строя резонатора. Наконец, полное отсутствие свечения может быть следствием неисправности как резонатора, так и батарей или светодиода. В последнем случае перед вскрытием и ремонтом пульта поменяйте в нем батарейки, соблюдая полярность и вновь проверьте прибор. Возможно, после этого чинить его не потребуется. В случае же, если оказалось, что причина не в батарейках, извлеките их, а затем разберите пульт. При неисправности клавиатуры произведите ее чистку, для чего поместите все детали устройства, кроме батареек, в тазик с водой, в которую добавлено немного средства для мытья посуды. Продержав их там около двух часов, извлеките и просушите при комнатной температуре в течение еще нескольких часов. Не пытайтесь ускорить процесс при помощи фена — это вызовет коробление платы и окончательный выход ее из строя. Снова соберите пульт, установите в него батарейки и проверьте. Если и после этого заработали не все клавиши, причина — в истощении токопроводящего слоя на контактных площадках резиновых толкателей. Восстановление его — дело хлопотное. При неисправности светодиода или резонатора выпаяйте его. Учтите, что светодиод — полярный элемент, поэтому перед выпайкой зарисуйте, какой его вывод был куда припаян. Также учтите, что резонаторы чувствительны к ударам и потому выходят из строя гораздо чаще, чем светодиоды. Неисправную деталь возьмите с собой в магазин электронных компонентов, где покажите продавцу — он подберет другой, подходящий по параметрам. Обязательно скажите, что светодиод вам нужен именно инфракрасный, а резонатор — на точно такую же частоту, что и у образца. Впаяв новый диод или резонатор, соберите пульт и снова проверьте при помощи телефона. После этого испытайте его с телевизором. Очень редко случается, что пульт, безупречно формирующий инфракрасные вспышки при нажатии клавиш, с телевизором работает нечетко. Это означает, что в последнем неисправен фотоприемник либо между ним и окошком в передней панели накопилась грязь. Чистить и ремонтировать телевизор должны только лица, обладающие необходимой для этого квалификацией, поскольку в нем имеются высоковольтные цепи. Как просто
Другие новости по теме:
Несколько десятилетий тому назад на рынке появился пульт дистанционного управления. Сегодня сложно представить себе телевизор, который приходится переключать при помощи панельных клавиш. Компания Philips также занялась производством пультов ДУ для телевизоров, DVD-плееров и прочей техники. Остается
Универсальный пульт Thomson представляют собой хорошую альтернативу использованию персональных ДУ для каждого из устройств. Для того чтобы начать с ним работу, необходимо осуществить настройку. Спонсор размещения P&G Статьи по теме «Как настроить универсальный пульт thomson» Как настроить пульт к
Случается, что инструкция от универсального пульта ДУ теряется. Поддаваться панике в этом случае не следует. Порядок программирования у большинства недорогих пультов этого типа (не оборудованных дисплеем) одинаков. Спонсор размещения P&G Статьи по теме «Как запрограммировать универсальный пульт»
Многие люди считают, что все пульты одинаковые и подходят для любого телевизора. Но, к сожалению, они ошибаются, ведь практически для каждой модели телевизора или DVD-устройства существует свой специализированный пульт. Конечно, вы можете подобрать пульт той же марки, что и была у вас раньше, но
Работа мастера по ремонту электроприборов, по большей части, заключается в том, чтобы произвести ремонт не какой-нибудь сложной техники, а техники «легкого боя» — пульты дистанционного управления от телевизоров или магнитол. Эти устройства приходят в негодность намного чаще самих приборов, которыми
В случае утери или поломки пульта дистанционного управления на помощь приходит универсальный пульт Vivanco, который подойдет практически к любому устройству. Для корректной работы универсального пульта надо лишь настроить прибор должным образом. Вам понадобится — подходящие батарейки питания; —
Инфракрасные пульты дистанционного управления прочно заняли место в бытовой электронике. Какую только аппаратуру не комплектуют этим весьма удобным устройством, это и телевизоры, музыкальные центры, микроволновые печи, автомобильные CD/MP-проигрыватели, люстры и много много других привычных нам вещей.
Столь широкое распространение пультов дистанционного управления не могло не сказаться на их частых поломках. Поскольку новый, необходимый для конкретного прибора пульт иногда трудно приобрести, то их сдают в ремонт.
Как быстро проверить пульт дистанционного управления?
Самым простым и действенным методом можно считать проверку пультов (ПДУ) с помощью цифровых камер. Сейчас практически в каждом сотовом телефоне есть цифровая камера.
Во многих ноутбуках есть встроенная web-камера. Для нетбуков цифровая web-камера вообще обязательный атрибут. Также для проверки пультов ДУ подходят цифровые фото и видеокамеры. В общем, любое устройство в котором есть пусть самая простая цифровая камера сгодятся для проверки пульта.
Для проверки ПДУ необходимо лишь направить излучающий инфракрасный светодиод в объектив камеры. На цифровом дисплее при нажатии кнопок на пульте будут видны периодические вспышки фиолетового цвета свечения. Это свидетельствует об исправности пульта дистанционного управления.
На фото показаны вспышки инфракрасного светодиода, заснятые камерой мобильного телефона Sony Ericsson K810i.
Если же под рукой нет устройств с цифровой камерой, то можно воспользоваться следующим способом.
Необходимо вместо инфракрасного светодиода временно впаять обычный светоизлучающий диод. Светодиод может быть любого цвета свечения: красный , зелёный , жёлтый , белый, в общем, не важно, главное чтобы светодиод был на 3 вольта.
При нажатии на кнопки пульта временно впаянный обычный светодиод будет излучать вспышки света. Следует отметить, что яркость излучения будет небольшой.
На фото – обычный белый светодиод, впаянный вместо инфракрасного.
Пульт ДУ можно проверить с помощью инфракрасного фотодиода и осциллографа.
В данном случае инфракрасный фотодиод подключают ко входу осциллографа. При работе пульта на экране осциллографа будут видны импульсы коротких посылок. Важно, чтобы фотодиод был подключен к открытому входу осциллографа.
Вот так просто и легко можно проверить работоспособность любого инфракрасного пульта дистанционного управления. Для этого совсем не обязательно собирать какие-либо схемы пробников и захламлять итого перегруженную мастерскую, ведь все необходимые инструменты уже есть под рукой, уж мобильник то с камерой точно
Бывает, что жмёшь на кнопки пульта дистанционного управления, а телевизор не слушается. Особенно это раздражает (если не сказать, что просто бесит!), когда Вы уже идеально расположились на своём диване или в любимом кресле, а пульт не работает, а вставать ой как неохота.
Но, все же с дивана Вам подняться придётся, ведь нужно выяснить в чём может быть причина, неисправен пульт, или может быть что-то вдруг случилось с ИК-приёмником на самом телевизоре. Проверить работает ли пульт можно очень просто и для этого не понадобится никаких сложных приборов.
Всё это мы сделаем с помощью обычного сотового телефона.
Проверяем ДУ пульт с помощью телефона. Как это сделать?
Сразу скажу, что этот метод работает только для пультов, которые работают на инфракрасном излучении. Таких до сих пор остаётся большинство, хотя сейчас, есть и радио пульты к телевизорам и к прочим устройствам. Их Вы уже этим способом не проверите.
Что нам понадобится для проверки? Обыкновенный сотовый телефон любой модели. Сейчас уже, наверное, не осталось телефонов, в которых бы не было фотокамеры. Именно фотокамера Вашего мобильного телефона нам и понадобится для проверки пульта.
То же самое можно сделать и любым цифровым фотоаппаратом. Но, его держать при этом не очень то удобно, а особенно проблематично, если он довольно громоздкий, и Вам при этом не кому помочь. Так что, идеальный вариант использовать для этого Ваш телефон.
Что мы делаем? Вам просто нужно будет подставить пульт от Вашего телевизора под фотокамеру телефона (камера при этом включена и картинка с неё должна отображаться на дисплее). Делать это нужно таким образом, чтобы в камере Вы видели инфракрасный светодиод, который стоит на всех инфракрасных пультах в верхней их части.
Далее Вы просто нажимаете на любую кнопку Вашего пульта и при этом смотрите, что Вам показывает камера Вашего телефона. Если пульт работает, то он должен посылать инфракрасный сигнал, его Вы и увидите на телефоне.
Инфракрасный светодиод будет мигать фиолетовым цветом на экране Вашего телефона. Это означает, что батарейки «живы» и пульт Ваш работает. Хотя, если батарейки чуточку подсели, то яркость сигнала падает. Но, всё равно Вы поймёте, что пульт Ваш рабочий. Для полной уверенности в его полной работоспособности нужно будет просто заменить в нём батарейки на свежие.
Если это поможет и Ваш телевизор снова начнёт слушаться пульт, то очень хорошо. Ну, а, если нет, то ищите проблему уже в самом телевизоре. Вполне возможно, что на нём неисправен приёмник инфракрасного сигнала, или случилось что-то ещё. Здесь проблема уже посложнее, чем домашняя проверка пульта ДУ.
Проверить работоспособность пульта в отсутствие телевизора можно с помощью фотодиода (ФД) инфракрасного диапазона. Подойдет, например, отечественный ФД-8К. Выводы ФД подключают к земляному и сигнальному щупам осциллографа. Пульт располагают соосно с ФД вплотную к его окошку. На ПДУ нажимают любую из кнопок. При этом на экране осциллографа должен появиться сигнал ШИМ амплитудой 0,2. 0,5 В.
Схемы большинства телевизионных ПДУ одинаковы и включают:
-микросхему-формирователь команд с кварцевым резонатором;
— усилитель, состоящий из одного или двух транзисторов;
— светодиод (или два);
— клавиатуру и контактное поле.
Кроме того, в некоторых ПДУ имеется индикаторный светодиод, регистрирующий подачу команды.
Рассмотрим возможные неисправности ПДУ, методику их обнаружения и устранения.
1. Нет сигнала с ПДУ
Вскрывать пульт начинают со стороны расположения батареек, причем сначала отсоединяют одну сторону нижней крышки до входного окна, а затем таким же образом другую, после чего крышка легко снимается.
Проводят внешний осмотр состояния печатной платы и контактов клавиатуры.
Следы высохшей жидкости на контактном поле удаляют с помощью ватного тампона, смоченного спиртом. Разрывы проводников устраняют напаиванием перемычек из тонкой проволоки.
Проверяют наличие контакта между графитовыми перемычками и печатными проводниками.
Замкнув какую-либо пару контактов печатной платы, проверяют осциллографом наличие сигнала ШИМ на катоде светодиода.
Если сигнала нет, а постоянное напряжение равно нулю, проверяют прозвонкой светодиод. У исправного светодиода сопротивление в прямом направлении должно быть несколько десятков ом, а в обратном — несколько сотен килоом. Неисправный светодиод необходимо заменить.
Довольно частый дефект — обрыв вывода светодиода в результате механического воздействия, например, после падения пульта.
Проверяют прохождение сигнала ШИМ с выхода микросхемы до светодиода.
2. Нет сигнала на выходе микросхемы ПДУ
Сначала проверяют напряжение питания микросхемы: оно должно быть не менее 2,5 В.
Работоспособность кварцевого резонатора проверяют посредством замыкания любой из пар контактов печатной платы. Если при этом генерации нет, то, скорее всего, неисправна микросхема.
3. Нет сигнала с ПДУ. На выходе микросхемы сигнал есть
Осциллографом проверяют наличие сигнала на катоде светодиода. Если сигнала здесь нет, проверяют его прохождение с выхода микросхемы до светодиода.
Наиболее часто встречающиеся при этом дефекты — выход из строя транзистора выходного каскада усилителя, нарушение паек, выводов элементов усилителя.
4. Нет сигнала с ПДУ. Фотодиод показывает наличие постоянного уровня напряжения. Быстро разряжаются батарейки. Светодиод постоянно открыт и через него протекает значительный ток
Исправность транзисторов и наличие замкнутых контактов проверяют «прозвонкой». Исправность микросхемы проверяют заменой.
5. С ПДУ постоянно идет какая-либо команда при ненажатых кнопках клавиатуры. Быстро разряжаются батарейки
Тщательно промывают спиртом выводы микросхемы, устраняя следы канифоли, пыль, грязь. На печатной плате ватным тампоном, смоченным спиртом, протирают контакты. Выпаивают из платы соответствующие выводы микросхемы. Если после этого команды с ПДУ продолжают поступать — меняют микросхему. Если сигнал пропадет, ищут место утечки тока с графитовой перемычки на печатный проводник. Проводник с обеих сторон обрезают и вместо него ставят (распаивают) перемычку из изолированного провода.
6. Не работает одна или несколько кнопок ПДУ
Мультиметром замеряют сопротивление контактов. У исправных кнопок оно равно 2. 5 кОм. Если сопротивление больше 10 кОм — кнопка неисправна. В этом случае либо меняют «резинку» целиком, либо ремонтируют контакт. В продаже имеются специальные ремонтные комплекты для ПДУ. В их состав входят контакты из токопроводящей резины, которые наклеиваются на неисправные контакты клавиатуры силиконовым клеем, входящим в ремонтный комплект.
Наличие трещин определяют визуально. Поврежденные печатные проводники восстанавливают с помощью перемычек из тонкого провода.
В большинстве современных ПДУ предусмотрена возможность переделки их в сервисный пульт. Сущность переделки заключается в установке новой или перестановке имеющейся на печатной плате перемычки, причем место установки на плате обозначено.
В качестве примера на рисунке показан ПДУ RM-836 для телевизоров SONY со снятой верхней крышкой. После установки перемычки в поз. 1
Изменяется функциональное назначение кнопки изменения формата изображения.
Теперь после двухкратного нажатия на эту кнопку телевизор из рабочего режима переводится в сервисный.
Ремонт пультов дистанционного управления.
После нескольких лет работы часто нарушается функционирование пультов дистанционного управления (ДУ) телевизоров и другой аппаратуры. Это возможно по нескольким причинам: нарушение целостности паек электронных компонентов, окисление пружинящих контактов в отсеке батарей питания, полное или частичное истирание токопроводящего слоя, нанесенного на торцы кнопок (рис. 1),
Которые наиболее часто используются.
Для устранения последнего дефекта предлагается простой способ, прошедший проверку в течение нескольких лет и не требующий больших затрат. На очищенный и обезжиренный, например, спиртом, торец кнопки, работоспособность которой необходимо восстановить, наносят один слой быстросохнущего клея, например, «Секунда», а затем наклеивают кусочек алюминиевой фольги размером чуть больше, чем площадь торца кнопки. Выступающую фольгу после отвердения клея аккуратно обжимают пинцетом (рис. 2).
Практика показала высокую надежность и безотказную работу отремонтированных таким образом пультов.
Если ремонтом пультов ДУ приходится заниматься часто, то можно изготовить устройство контроля их работоспособности, собранное из доступных деталей (рис. 3).
Микросхема DA1 служит для усиления сигнала, поступающего от инфракрасного фотодиода VD1, и формирования последовательности выходных импульсов, которая поступает на делитель DD1.1. При нажатии любой кнопки исправного пульта светодиод VD2 будет мигать с частотой несколько герц. Устройство удобно смонтировать в корпусе размером 100 х40 х30 мм (рис. 4).
Микросхему DA1 можно заменить отечественными аналогами КР1054УИ1, КР1054ХА3, КР1056УП1, КР1084УИ1 с учетом различия цоколевок.
Как проверить светодиод на пульте от телевизора
Проверка светодиода мультиметром является наиболее простым и правильным способом определения его работоспособности. Цифровой мультиметр (тестер) – это многофункциональный измерительный прибор, возможности которого отражены в позициях переключателя на передней панели. На работоспособность светодиоды проверяются при помощи функций, присутствующих в любом тестере. Методы проверки рассмотрим на примере цифрового мультиметра DT9208A. Но сначала немного затронем тему причин неисправности новых и выхода из строя старых светоизлучающих диодов.
Основные причины неисправности и выхода из строя светодиодов
Особенность любого излучающего диода – низкий предел обратного напряжения, который лишь на несколько вольт превышает падение на нём в открытом состоянии. Любой электростатический разряд или неверное подключение в ходе наладки схемы может стать причиной выхода LED (аббревиатура от англ. Light-emitting diode) из строя. Сверхъяркие малоточные светодиоды, применяемые в роли индикаторов питания различных устройств, часто перегорают в результате скачков напряжения. Их планарные аналоги (SMD LED) широко используются в лампах на 12 В и 220 В, лентах и фонариках. В их исправности также можно убедиться с помощью тестера.
Стоит отметить, что небольшая доля бракованных (около 2%) светодиодов поставляется от производителя. Поэтому дополнительная проверка светодиода тестером перед монтажом на печатную плату не помешает.
Методы диагностики
Свечение излучающего диода во время проверки будет небольшой и на некоторых светодиодах при ярком освещении может быть незаметно.
Для точной проверки многоцветных LED с несколькими выводами необходимо знать их распиновку. В противном случае придется наугад перебирать выводы в поисках общего анода или катода. Не стоит бояться тестировать мощные светодиоды с металлической подложкой. Мультиметр не способен вывести их из строя, путём замера в режиме прозвонки.
Для проверки ИК диода в гнёздах тестирования транзисторов дополнительно придётся задействовать цифровую камеру (смартфон, телефон и пр.) Инфракрасный диод вставляют в соответствующие отверстия мультиметра и сверху на него направляют камеру. Если он в исправном состоянии, то ИК излучение будет отображаться на экране гаджета в виде светящегося размытого пятна.
Проверка мощных SMD светодиодов и светодиодных матриц на работоспособность кроме мультиметра требует наличия токового драйвера. Мультиметр включают последовательно в электрическую цепь на несколько минут и следят за изменением тока в нагрузке. Если светодиод низкого качества (или частично неисправный), то ток будет плавно нарастать, увеличивая температуру кристалла. Затем тестер подключают параллельно нагрузке и замеряют прямое падение напряжения. Сопоставив измеренные и паспортные данные из вольт-амперной характеристики можно сделать вывод о пригодности LED к эксплуатации.
Сломался ИК-пульт от IPTV-телеприставки. То есть индикаторы при нажатии клавиш на пульте, как и прежде, вспыхивали, а приставка на пульт не реагировала никак. Конечно, сначала все единогласно решили, что сели батарейки. Но их замена не повлияла на ситуацию.
Самым простым способом с помощью камеры смартфона проверил, что светодиод пульта действительно не загорается.
Дальше – только вскрытие.
Долго возился, пока открыл пульт: защелки оказались тугими. Осмотр показал, что вовнутрь пульта влага не попадала, грязь нигде не скопилась, трещин на плате не было. Визуально не было обнаружено нарушения контактов инфракрасного светодиода в месте его установки и контактных пластинок элементов питания в месте их соединения с платой. Так как пульт вроде бы не роняли на пол (по крайней мере, в этом никто не сознавался) думать, что поврежден кварцевый резонатор, казалось преждевременным.
А вот неисправность самого инфракрасного диода была очевидна. Его нужно было менять.
В доме нашелся пульт с инфракрасным диодом от старого музыкального центра Samsung (видимо, дожидался своего часа), который подходил на роль донора. Он был в рабочем состоянии (как показал тот же смартфон), имел питание от двух АА-батареек с общим напряжением 3 вольта.
И вот здесь внимание. Есть небезосновательное мнение, что прежде в бытовой технике применяли более качественные электронные компоненты. В частности, инфракрасные светодиоды могли иметь большую мощность излучения и более качественную линзу. Тут ремонт пульта, по сути, оказывается близок к его модернизации, если иметь в виду замену светодиода на более качественный аналог.
Дальнейшие действия понятны. Выпаял диод с платы пульта магнитолы. Вообще-то, это надо делать прогретым паяльником 25 или 40 Вт, так как плату можно повредить, если паять слишком долго. Ну и ножки диода изгибать лишний раз не следует, чтобы их не сломать.
На плате пульта от приставки была указана полярность, т. е. где плюсовой, а где минусовой выводы. У светодиода тот вывод, который короче – это анод (плюс), а тот, который больше и шире – катод. Так его и надо впаивать, учитывая при этом то, что линза светодиода должна расположиться в корпусе так же, как и прежняя.
После замены инфракрасного диода пульт не просто заработал, но и заработал по ощущениям заметно лучше. Дальность, с которой пультом стало возможно управлять приставкой, теперь ощутимо увеличилась.
Светодиоды, пришедшие на смену лампам накаливания, позволили сделать осветительные приборы более экономичными, безопасными и надежными. Многие начинающие радиолюбители сталкиваются с проблемой, как проверить светодиод мультиметром. В сегодняшней статье будет дано полное описание конструкции, разновидностям и способам проверки светодиодов.
Конструкция
Светодиод — это полупроводниковый элемент, по конструкции схожий с диодом. При прохождение через светодиод тока создается видимое глазу оптическое излучение. Данная деталь состоит из:
- Анода, через который подается положительный заряд.
- Катода, через который подается отрицательный заряд.
- Отражателя световых потоков.
- Излучающего полупроводникового чипа или кристалла.
- Рассеивателя свечения.
Для ламп любых форм эта стандартная конструкция. Для достижения яркости, производители только увеличивают число слоев или количество кристаллов. Эти значения прямо влияют на мощность.
Разновидности
Светодиоды используются в различной технике. На данный момент существует 2 основных типа этих деталей:
- Индикаторные или DIP. Относятся к маломощным светодиодам. Работают при переменном напряжении до 3.5 вольт, с мощностью до 0.06 Вт. Используются в качестве световых индикаторов для различной электронной техники. Эти элементы используют для поверхностного монтажа для осветительных лент.
- Осветительные или мощные, работают при напряжении до 12 вольт, с мощностью в 2.6–3 Ватт. Используются для ламп и прожекторов освещения.
Технологии не стоят на месте. К лампам обычной конструкции, прибавились различные разновидности, отличающиеся только химическим составом кристалла.
- Филоментные. Лампы, позволяющие получить белое свечения, за счет покрытия люминофорным составом. Мощность этого типа светодиодов увеличена за счет использования 28 параллельно соединенных кристаллов.
- COB. Разработано за счет соединения кристаллов на алюминиевой подставке. Яркость свечения увеличивается за счет фокусировки покрытием из люминофора.
- OLED. Схожи с более ранними типами светодиодов. Яркость и угол свечения увеличены за счет использования полимерных материалов для изготовления светового излучателя.
- Волоконные. Полностью синтетическая конструкция с добавлением люминофора и полимеров.
Принцип действия этих световых элементов остался прежним. Изменилось только потребляемое напряжение, повысилась мощность и надежность.
Принцип работы
Определение мощности
Значение рабочей мощности светодиода необходима для его правильного подключения в рабочую схему любого прибора. Многие сталкиваются с проблемой, как узнать мощность светодиода без маркировки на корпусе или упаковки. Есть 2 способа определения этого параметра.
Визуально
Светодиоды производятся различных размеров и цветов. По цвету и размеру можно узнать мощность этой детали:
- Маленькие инфракрасные работают от напряжения в 20 мА, при мощности менее 2 Ватт.
- Красные обладают рабочим напряжением до 15 мА при мощности до 1.7 Вт.
- Маленькие желтые обладают мощностью до 2.2 Вт.
- Зеленые от 1.9 до 3.6 Вт.
- Голубые от 2.5 до 3.6 Вт.
- Фиолетовые от 2.5 до 4 Вт.
- Большие желтые работают от напряжения до 300 мА, обладают мощностью 2.2 Ватт, при радиаторном охлаждении.
- Большие белые или розовые потребляют напряжение до 20 мА, при мощности до 3.6 Ватт.
Определить размер светодиода можно обычным штангенциркулем. Маленькими считаются детали от 3 до 10 мм.
Мультиметром
Определить мощность светодиода мультиметром не составит труда, если подключить все компоненты согласно схеме. Далее потребуется:
Для этой схемы потребуется блок питания с регулятором подачи напряжения. Далее:
- При помощи регулятора поднять напряжение и замерить его до и после проверяемого элемента. Оно должно быть одинаковым.
- Снова поднять и замерить напряжение.
- Повторять регулировку и замер напряжения до момента появления разницы.
- На этом моменте необходимо запомнить последнее значения в вольтах.
- Сменить резистор 500 Ом на схожий элемент с сопротивлением в 10 Ом.
- Поднять напряжение до рассчитанного значения.
- Переключить мультиметр в режим амперметра.
- Замерить мощность.
Данный способ не требует выпаивания из схемы, если светодиод уже подключен в цепь. Главное правильно определить полярность подключения.
Определение напряжения
Напряжение будет нарастать до момента открытия перехода внутри элемента. Открывшийся переход перестанет пропускать лишний ток. Это значение необходимо зафиксировать. Оно является рабочим напряжением светодиода. Если продолжить наращивать напряжение, PN переход может не выдержать и сгореть. При несоблюдении полярности, катод не станет пропускать электрический ток, что станет причиной потери работоспособности.
Причина неисправности
Светодиоды работают от определенного напряжения. На выходе, напряжение этой детали значительно меньше. Причина неисправности этих элементов заключается в скачках напряжения. В определенный момент, на кристалл подается напряжение, превосходящее порог открытия перехода, при этом увеличивается порог выходного напряжения. Светодиод прогорает. Определить неисправный элемент визуально можно по темной точке в центре. Если визуально определить неисправный элемент невозможно, в этом случае необходимо прозвонить деталь. Далее будет описан процесс прозвонки светодиода мультиметром.
Проверка светодиодов
Вариант 1
Проверка исправности светодиода мультиметром достаточно проста. Это можно сделать прямо на плате мультиметром, не выпаивая сам светоид. Для проверки понадобится только мультиметр, включенный в режим проверки диодов. Перед проверкой необходимо найти анод детали. Если соблюдена правильная полярность, деталь должна засветиться. Тест на работоспособность можно считать пройденным. Также на определение работоспособности влияет яркость свечения. Тусклый свет не показатель испорченной детали. Причиной может стать нехватка напряжения.
Вариант 2
Еще один простой способ проверить светодиоды возможен, если мультиметр оснащен гнездом для прозвонки транзисторов. В этом случае, чтобы проверить исправность светодиода мультиметром, его прозванивают в такой последовательности:
Часто после прозвонки, светодиоды не работают в схеме. Причина этому разница в силе тока мультиметра и рабочего напряжения. Для того чтобы точно определить пригодность детали необходимо выполнить прозвонку проверяемого светодиода мультиметром без выпаивания.
Вариант 3
Подобный способ является опасным, так как проверка проводится с подключением в электрическую сеть. Часто причиной неисправности в лампах, работающих от постоянного напряжения, становится пробой диодного моста.
Вариант 4
Проверить сразу несколько светодиодов в цепи можно не выпаивая их из схемы. Напряжения 9 вольт, от которого работает мультиметр, вполне хватает для прозвонки сразу всех светодиодов.
- Тестер перевести в режим замера сопротивления.
- Определить полярность схемы подключения всех деталей.
- Согласно полярности, подключить один щуп к вводу первого светодиода.
- Второй щуп подключить к выходу последнего элемента.
- При отсутствии сопротивления, поочередно подключать щуп к выходу каждого следующего светодиода.
Появление показаний сопротивления, укажет на последний исправный светодиод в цепи. После него, необходимо осуществить поочередную прозвонку всех деталей, для выявления прогоревшего элемента. Если лампа собрана по двойной схеме, светодиоды во второй цепи могут быть запаяны наоборот. После проверки одной схемы, необходимо сменить полярность подключения тестера.
Заключение
Светодиоды очень чувствительны к перепадам напряжения. Любое увеличение может стать причиной неисправности. Перед подключением новой детали, необходимо четко знать потребляемое напряжение и мощность. Любое отклонение может нарушить целостность элемента и всей схемы. Светодиоды работают по схеме диодов, поэтому самой простой проверкой является прозвонкой в режиме диагностики целостности диодов.
Светодиоды применяются для передачи сигналов пультов ДУ, аппаратуры, камер наблюдения, фонариков и светильников. Они включаются в прямом направлении, после появления положительного напряжения между катодом и анодом. Поэтому при поломках можно проверить светодиод мультиметром, установить причину неисправности и устранить ее.
Этапы проверки
Диоды работают при невысоком напряжении постоянного тока. Его генерируют блоки, к которым проблематично подключится. Но частью конструкции светодиода является полупроводниковый переход, за счет которого ток пропускается в заданном направлении. Если величины тока хватает, лампочка загорается.
Применяя мультиметр, легко определить исправность элемента. Для этого прибор устанавливается на режим прозвонки, после чего:
- Щупы подкидываются на участок полупроводника, который нужно проверять.
- Красный щуп с положительным зарядом подсоединяется к светодиодному аноду.
- Черный щуп с отрицательным зарядом подкидывается на катод.
- На экране прибора должен высветиться показатель падения напряжения после перехода p-n.
- Изменяется полярность подключения. При отсутствии падения напряжения диод является рабочим.
Порядок тестирования светодиодной ленты
Светодиодная лента проблематично проверяется мультимертом, поскольку она не светится. Слабый свет возникает при тестировании в режиме Hfe. Тестирование также осложняется перегораниями не самих диодов, а контактных дорожек или токоведущих участков. Чтобы узнать о неисправности:
- Найдите условные одинаковые отрезки из 3 светодиодов по границе контактов и поперечной полосы.
- Прикасайтесь щупами к каждому участку по очереди, подавая ток на контакты питания.
- Прозвоните блок питания – он выходит из строя по причине перепада нагрузки.
Проверка сопротивления предоставит полную картину о целостности светодиодов.
Особенности проверки светодиодных лампочек
При помощи мультиметра можно прозванивать цветные, стандартные и сверхъяркие диоды.
Стандартная лампочка с цоколем Е27
Подобная лампа используется для бытовых люстр или светильников. Чтобы проверить исправный или нерабочий светодиод, понадобится:
- Убрать рассеиватель с лампочки при помощи пластиковой банковской карты, помещенной между элементом и корпусом.
- Пластиковую карту аккуратно передвигать по склейке. Прочный шов можно прогреть строительным феном.
- Открыть плату.
- Щупами прикоснуться к элементам и дождаться, пока они засветятся тусклым сиянием.
Если диоды не горят, лампочка сломалась.
Сверхъяркие диоды
Синими, желтыми или белыми светодиодами обычно оснащается гирлянда. Тест проводится без щупов с использованием транзисторных гнезд по следующему алгоритму:
- Определить распиновку СМД.
- Найти 8 гнезд внизу прибора – 4 левых под PNP-транзисторы и 4 правых под NPN-транзисторы.
- Поместить щупы, вставив анод в отверстие Е, а катод – в отверстие С.
- Открыть элемент PNP, подав положительный заряд на эмиттер Е. Исправный светодиод будет гореть.
- Поменять полярность транзисторов для NPN. Анод ставится на С, катод – на Е.
Транзисторные гнезда удобны для тестирования диодов с длинными контактами без припоя.
Как проверить LED-прожектор
Проверка светодиода осуществляет после определения типа элемента. На фонарях устанавливаются:
- плата с маленькими SMD, которые проверяются прозвонкой по аналогии со стандартной лампочкой;
- большой желтый элемент, работающий от напряжения 10-30 В.
Напряжения большого элемента много для тестера, поэтому определить работоспособность элемента можно только драйвером. Он должен соответствовать показателям диода.
Нюансы тестирования инфракрасных диодов
Инфракрасный светодиод выдает невидимое излучение, поэтому важно следить за показателями на дисплее мультиметра. Щупы устанавливаются путем подачи плюса на анод и минуса на катод. Касаясь зондами к рабочему ИК-диоду, можно увидеть на экране цифру 1000. При перемене полярности высвечивается 1.
Подпайка параллельного красного LED-свечения наглядно отразит работоспособность диода. Если в момент мерцания сигнал подается на элемент, его следует заменить. Если подсветка не работает, неисправен пульт.
Проверка светодиодного моста
Диодный мост – сборка из 4-х элементов. Они соединяются, так, чтобы переменное напряжение АС подавалось на два из 4-х выводов, переходило в постоянное напряжение DC и снималось с 2-х других выводов. Стабилитроны выравнивают напряжение в узком диапазоне.
Прозвонить светодиод-мост можно так:
- Найти, на какой вывод подключать мультиметр, сделав условную нумерацию.
- Прозвонить первый диод, подкинув щупы на выводы 1 и 2.
- Протестировать второй светодиод путем подключения щупов на выводы 2 и 3.
- Замерить параметры третьего диода, подключив зонды к выводам 1 и 4.
- Определить исправность четвертого элемента, подкинув щупы на выводы 4 и 3.
- Посмотреть показания на табло.
Стабильность напряжения проверяется в режиме максимального диапазона – 220 В. Его увеличивают постепенно и прекращают подавать до момента протекания тока через схему.
Черный щуп понадобится подкинуть на анод, красный – на катод, а затем подключить анод к резистору токоограничения, а катод – к источнику питания.
Специфика режима прозвонки
Мультиметр – это универсальный тестер, при помощи которого проверяются светоизлучающие диоды и другие элементы. В процессе работы устройство издает писк, или звон, поэтому режим называется прозвон.
Эксплуатация мультиметра в режиме прозвонки имеет несколько особенностей:
- переключатель ставится на проверку диодов, щупы подкидываются на контакты;
- определяется полярность выводов, но, если ее не удалось обнаружить, светодиодный источник света не выйдет из строя;
- при правильном подсоединении щупов к контактам и правильной полярности рабочий диод засветится;
- в процессе прозвонки не подается ток с большим значением, поэтому подсветка диодов видна только в затемненной комнате;
- при сложностях с приглушением освещения смотрят на табло прибора – показатель рабочего СМД отличный от 1;
- мощные светодиоды без выпаивания тестируются после подкидывания переходников.
Перед началом работ в режиме прозвона определите анод и катод испытуемого источника света.
Проверка светодиодов без выпаивания
Проверять LED-светильник можно, не выпаивая его диодные элементы. Понадобится переходник, который изготавливается самостоятельно из канцелярских скрепок, отдельных жил провода, кусочков иголок для шитья, витой пары проводки. Выбранное изделие припаивается к щупам измерителя. Между частями переходника делается прокладка из текстолита, а потом вся конструкция обматывается изоляционной лентой.
Щупы мультиметра с переходником подсоединяются на контакты светоизлучающего диода или на колодки PNP. Тестирование производится последовательно, для каждого элемента.
Проверка работоспособности светоизлучающих диодов в фонарике
Тест стандартного фонаря – наглядный пример работ, для которых не понадобится выпаивать элементы. Чтобы узнать, рабочие ли LED-источники, нужно:
- Разобрать фонарик, извлечь из него плату со светодиодами.
- Без удаления припоя подкинуть щупы на контакты PNP-разъема, соблюдая полярность.
- Поставить переключатель на прозвонку.
- Смотреть на табло и на подсветку.
- Установить, исправна ли схема, путем проверки ее сопротивления. Показатель сопротивлений, равный нулю, при параллельном подключении говорит о неисправности одно светодиода.
Тестирование каждого диода проводите по отдельности.
Подручные материалы для проверки
Помимо мультиметра светильник, фонарь или прожектор на светодиодах можно проверять:
Тестирование УФ-диода осложняется его чувствительностью к высокому напряжению. На него подается номинал не более 3,4-4 В.
Самостоятельное изготовление щупа
Стандартным щупом проблематично прозвонить маленький светодиод, поэтому для комфортного пользования мультиметром его можно сделать самому. Для этого используется несколько элементов.
Швейная иголка
Процесс изготовления осуществляется поэтапно:
Оптимальное сечение провода – 1,3 мм2.
Штепсельная вилка
- Извлечение штырей из вилки путем выкручивания верхнего болта.
- Снятие основы со старых щупов – штырьки можно достать плоскогубцами.
- Отделение напильником загнутой части штырей и обточка их так, чтобы они с усилием помещались в отрезок пластиковой трубы.
- Разделение и зачистка акустического провода.
- Залуживание концов кабеля и концов штырей на местах припайки.
- Вставка провода в основу щупов старого мультиметра и припайка к нему латунного штепселя.
- Оттягивание кабеля назад и фиксация области его входа в трубку термоусадкой.
Второй конец провода продевается в разъем. Кабель для прочности фиксации понадобится зажать болтом.
Шпилька от лазерного CD привода
- стальная шпилька с острыми наконечниками;
- разные по размеру термоусадочные трубки;
- два фломастера (черный и красный);
- трубочка по размеру штыря;
- медные провода, рассчитанные на работу в сети с напряжением 300 В.
Порядок изготовления щупа:
- Шпилька разрезается на 2 части. Отпиленные края покрываются флюсом.
- Концы проводов защищаются на 5 мм и облуживаются оловом.
- К отпиленным участкам прикрепляются провода с лужением – по одному на каждый.
- На конструкцию надеваются и усаживаются термотрубки.
- Из фломастеров изготавливаются ручки щупов – достаточно отрезать 5-7 см от начала.
- Шпильки с припаянными проводами вставляются в кусочки фломастеров так, чтобы кончики выступали из фломастера.
- Элементы фиксируются эпоксидкой.
- После высыхания рукоятка устанавливается в цветную трубку с термоусадкой.
- Штекеры изготавливаются из кусочков латунной трубы от антенны длиной 3 см.
- Латунная трубка вставляется в разъем, под нее подгоняется пластиковая.
- Остальные концы припаиваются на латунные трубки и обматываются изолентой так, чтобы подходили под диаметр пластиковых.
- Кусочки термотрубок длиной 4 см надеваются на штекеры и усаживаются.
Советы и рекомендации
В процессе диагностики светодиодных устройств нужно учитывать следующие факторы:
- если номинал напряжения на пределе, а световой поток не появился, можно кратковременно увеличить ток;
- при подаче большой мощности LED-источник греется;
- нормальная температура нагрева диода – от 70 до 75 градусов (при касании нельзя обжечь ладонь);
- используя батарейку, можно дополнительно установить сопротивление подключения диода;
- при изменении полярности даже у исправного элемента не будет подсветки;
- оптимальный материал для самодельного щупа – никелированные иголки, которые легко и быстро припаивать;
- исправный ИК-светодиод при направленном на чувствительную зону излучении светится.
Проверять светодиодные источники света при умении работать с мультиметром несложно. Пользователю необходимо подготовить условия для тестирования – выбрать полярность, сконструировать щупы или переходники, сделать специальные контакты.
Проверка пульта без специальных средств
Ситуация банальна — пришли ремонтировать телевизор, а там до кучи не работает дистанционное управление. В принципе все решаемо, вскрываем пульт и убеждаемся тестером в наличии сигнала на входе излучающего диода. Но не факт что он и сам не помер, в общем без осциллографа начинаем испытывать явный дискомфорт, а кто его в здравом уме будет таскать на линии. Хотя и его наличие при проверке пульта подразумевает некоторые явно лишние тело движения, — подвешенный к осциллографу фотодиод, через который все это и проверяется.
Есть более изящное решение — индикатор наличия сигнала с пульта. Это небольшая платка легко встраиваемая в китайский стрелочник и позволяющая затратить минимум времени при таком ремонте.
Одно но, не все фото приемники работают от пониженного питания, импортным подавай нормируемые 5 вольт. Хотя есть выход при применении отечественного, свободного от этого недостатка. Устанавливался в последних выпускаемых МСН405.
Прекрасно работает при питании 2.5 вольт, что как раз подходит под стрелочник имеющий пару батареек в полтора вольта. Дальность работы при таком питании 20 см, но для проверки пульта этого вполне достаточно. При источнике в 5 вольт, естественно можно поставить любой трех ногий фото приемник, дальность действия будет как у телевизора.
А вот и сама схемка, построенная на широко распространенной микросхеме 555, взята из программы расчета элементов для таймера 555.
В качестве нагрузки R2 может быть применено по желанию пьезо пищалка со встроенным генератором или без, светодиод с сопротивлением ограничения по току, либо все вместе.
Транзисторы, я так подозреваю могут быть любые с соответствующей структурой и коэффициентом усиления. При подаче питания на устройство пяти вольт, обязательна установка электролита не менее 330мкФ по этой шине, при трех вольтах если возбуждения не будет, то можно обойтись и без него.
Евмененко Ю. Опубликована: 2002 г. 0 0