Как проверить tl494 на работоспособность мультиметром
Перейти к содержимому

Как проверить tl494 на работоспособность мультиметром

  • автор:

Проверка 494 мультиметром и принцип ее работы для гуманитариев

Интро:
Данный сабж предназначен для тех, кому слова «операционный усилитель», «компаратор», «ШИМ» мало что говорят, а слова «отрицательный передний фронт импульса» — это что-то такое, что видно только людям с аквариумами вместо очков на сверхсекретном армейском или насовском приборе, но нужно/хочется проверить и/или отремонтировать/собрать/модернизировать БП. Все нижесказанное не претендует на истинность и суть лишь результат эмпирического опыта аффтара по изготовлению регулирумого БП с годным амперажем из компьютерного — старинного АТ блока.

Микруха представляет собой жучка на 16-ти ножках, в коих есть свои функции:
12-я нога: плюс питания (7-40) вольт
7-я нога: 0 или минус питания.

14-я нога — источник 5 вольт +-5% (на практике — +-10%). Используется в основном как опорное напряжение для сравнения с выходным, т.е. служит французкой палатой мер и весов — сферические 5 вольт в вакууме.

Дальше уже интересная функциональная часть:
5-я и 6-я нога — генератор частоты. Оттуда берется частота работы микрухи, и, соответственно, всего блока.
На 5-ю ногу вешается конденсатор (обычно керамика 103), на 6-ю — сопротивление (12-23 к). Они-то и задают частоту работы. Исходить нужно из того, что при 25 кОм — частота порядка 10 000 Хз, при 12 кОм — 50 тысяч Хз. Графики зависимости частоты от кондера и сопротивления в приложениях (приложу позжее).

Намерянная лично мной напруга на этих ногах: — 5-я — 1.5 — 2.05 вольта, 6-я — 2.5 — 4.05 вольта. Меряется мультиметром относительно массы (7-й ноги).

Вопщем, эта конструкция генерирует частоту, и эта частота подается внутри схемы через хитро закрученную конструкцию на пары ног 8 и 9 и 10 и 11. Тут следует упомянуть о 13-й ноге микрухи — когда она замкнута с 14-й — то пары 8 и 9 — 10 и 11 работают попеременно, когда 13-я на массе (?) — синхронно. На самом деле я не знаю, не проводил эхпериментов по этому поводу, но есть основания (анализ литературы) полагать, что это как-то так.
Работа этих пар ног заключается в том, что они, с нужной (ноги 5-6) частотой, «сливают ток», который берется из середины маленькой катушки (эхперты с раздутым ЧСВ заметят, что это не «катушка», а «трансформатор»), которая одной стороной выходит на низковольтную часть схемы БП, а второй — на высоковольтную. При этом обычно эти пары ног «сливают» не сами, а с помощью транзисторов 945, которые стоят между микрухой 494 и «катушкой».

Условный принцип работы на пальцах:
5-6 генерирует частоту — частота подается на 8-9 10-11, они «разрешают» току протекать по маленькому трансформатору, который, в свою очередь, разрешает току протекать по большому трансформатору, с которого, собственно, и берется напряжение на выходе БП. Обычно 9 и 11 лежат на земле, а 8 и 10 подключены к 945-м транзисторам. Вольтаж на 8 и 10 ололо 1,2-2,8 вольта (может другой, но вольтажа там минимум два в любом случае, об этом чуть ниже).

И все бы так прекрасно и спокойненько себе и работало, но хитрым инженерам нужно зарабатывать себе на хлеб с икоркой, поэтому они, мудрствуя лукаво, и придумали что-то по типу обратной связи — т.е. дополнительные уровни регулировки и усложнения всей этой конструкции .
Это пары ног 1-2 и 15-16, с каким-то хитрым названием типа «усилители ошибки» или еще как-то, только бы простой человек не разобрался в этом да не сделал все без инженеров-элекронщиков.
На самом деле все это работает просто — когда напряжение на одной ноге больше, чем на другой — частота с генератора (5-6 ноги) не подается на 8-9 10-11, они не сливают ток через катушку, катушка не управляет мощными транзисторами, те не позволяют току течь через большой трансформатор — БП не работает.

Эти пары ног, опосля «сравнения» напряжений, выходят на 3-ю ногу. При чем выходят хитро — только в случае получения в ОБОИХ сравнениях разрешения работать — результат будет в сторону работы микросхемы. В случае сравнения «в нашу пользу» — разрешения работы микросхемы (сливать ток из середины маленькой катушки, которая, в свою очередь, посредством силовых ключей — высоковольтных транзисторов. которая в чочорном чулане хранится в доме который построил Джек), на 3-й ноге будет небольшое (так нравится, как в литературе используется это выражение без указания цифр, ведь для какого-то работника АЭС и пару киловольт будет «небольшим» напряжением) — ололо +0,5 +0,05 вольта — напряжение. В случае «торможения» работы микрухи 15-16 парами — будет «-» вольт, в случае торможения 1-2 парами — +3,5 (от двух до пяти по-идее). В любом случае, отличное от «небольшого» (0,05 В) напряжения — свидетельствует о блокировании работы микросхемы, ибо внутри этой микрухи это напряжение 3-й ноги «сравнивается» с напряжением на 5-й (генераторе частоты), и должно быть меньше, чем на ней (на 5-й, как мы измерили и помним, ололо 1,6 вольта). Почему отрицательное напряжение на 3-й ноге уводит микруху в даун — может расскажут эхперты с осцилографами и ололометрами, я не пытался понять полностью, что в ней внутри творится. Наверное, «передний фронт импульса» становится неотрицательным, или еще какая-то сложное интересное и замечательное явление.
Теперь немного о 4-й ноге — генераторе «мертвой зоны», т.е. о длительности разрешения прохождения тока по маленькой катушке. Частота, генерируемая 5-6 ногами и идущая с 5-й ноги внутрь схемы, задает частоту разрешения протекания тока через маленькую катушку, однако в пределах одного такта этой частоты ток течет не все время, а лишь то, которое позволяет 4-я нога. Т.е., для примера, что бы не крутиться в наносекундах, допустим, что пятая нога дает частоту один раз в час, при этом напряжение этот час линейно нарастает — а через час резко пропадает. Как мы помним, 8-9 и 10-11 позволяют току проходить только если напряжение 5-й ноги больше, чем 3-й или 4-й, соответственно 8-9 и 10-11 не позволят току проходить, пока напряжение 5-й ноги не превысит напряжение 4-й, ибо, как мы помним, напряжение 5-й нарастает линейно, и, допустим, напряжение 4-й 1,5 вольта, за наш условный час напряжение 5-й нарастает до 1,5 вольта за сорок минут, и в этом часе 8-9 и/или 10-11 работают лишь те 20 минут, когда напряжение 5-й растет от 1,5 вольт до максимума, а когда первые сорок минут от нуля до 1,5 — 8-9 и/или 10-11 не пропускают ток.

Итак, проверка 494 манометром мультиметром:
1. Отключаем питание разряжаем кондеры.
2. Проверяем, что точно отключено 220.
3. Припаиваем к 12-й и ноге микры проводок, на него подаем плюс и на землю минус или 0 стабилизированного(?) напряжения ололо 12 вольт.
4. Меряем +5 на 14-й ноге.
5. Меряем напряжение на 5-й ноге (генераторе частоты). (Ололо 1,5-3,3 вольт).
6. Меряем 4-ю. Должно быть меньше 5-й. Если на четвертой больше — ищем причину, устраняем.
7. Меряем 3-ю. Должно быть меньше 5-й. Если больше — то вспоминаем, что она результирует то, что насравнивали 1-2 и 15-16 ноги.
8. Меряем 2-ю ногу. Меряем 1-ю. На второй должно быть больше на типовой схеме. Если не больше первой — то бида-бида, глядим откуда поступает напруга на первую, устраняем.
9. Проверяем 15-16 ногу. На 15-й должно быть больше на типовой схеме.
10. Начинаем играться:
10.1. Берем в одну руку пинцет, а в другую — положительный щуп -манометра- вольтметра. (Отрицательнй закрепляем на земле).
10.2. Тычем красненьким щупом в 3-ю ногу, запоминаем показания.
10.3. Не убирая щупа, пинцетом подаем напряжение с 14-й (палата мер и весов) на 1-ю (на второй должно быть меньше 5-ти вольт, т.е. делаем на первой ноге овервольтаж относительно второй). Напряжение на 3-й ноге должно измениться — подняться вольт до 3,5, что свидетельствует о том, что пары 8-9 и 10-11 перестали позволять току течь через маленькую катушку. Если не поднялось — подаем пинцетом 5 вольт на вторую (на первой должно быть меньше — делаем овервольтаж второй над первой). Если напряжение на 3-й не упало — ололо, идем ковырять 15-16 выводы, проделывать с ними те же манипуляции по подаче напряжения с 5-й лапы на 15-ю (в случае 16-й на земле). Нужно добиться этими манипуляциями, что бы напряжение на 3-й ноге было меньше напряжения на 5-й. В случае успешности данной деятельности идем дальше.
10.4. Ставим щуп на 11 или 8-ю ногу и глядим, что там происходит. При подаче напруги с 14-й на 1-ю и, соответственно, подскока напруги на 3-й — напряжение на 8 и 11-й должно вырасти где-то на 1 вольт — каналы -в астралы- закрываются.
Если все работает как написано — исследуем частоту. При сопротивлении, подключенному между землей и 6-й ногой порядка 30-50к и 103-м кондере на 5-й — частота уже слышима. Подлючаем динамик от наушников к 5-й ноге и слушаем частоту. Установив подстроечный резистор на 50к на 6-ю ногу можно слушать изменения частоты. Про динамик — теоретизирование, сам я частоту и ее изменения слушал «поющим» трансформатором, динамика не было под рукой, так что коли вы не услышите ничего в наушнике при пении в трансе — дайте знать — вычеркнем.
Таким образом без всех этих ваших осцилографов обычным мультиметром можно проверить работоспособность TL494. Эхперты, конечно же скажут, что нифига мы не проверим, ибо не увидим «отрицательной волны левого переднего фронта», но с инертностью мультиметра все изменения на рабочей частоте обретают усредненное значение, и по величине «усредненных» значений можно сделать много правильных выводов.

Как проверить tl494 на работоспособность мультиметром

Ремонт блока питания для светодиодной ленты

Используя светодиодное освещение, многие радуются лишь до тех пор, пока оно исправно работает. Поломка блока питания светодиодной ленты может не только огорчить, но и ударить немного по карману. Сегодня мы рассмотрим ремонт блока питания для светодиодной ленты, типичные его неисправности и методики их устранения.

Ремонт блока питания для светодиодной ленты

Зачастую все дешевые китайские блоки питания для светодиодных лент выглядят примерно так. Стоит ли браться за ремонт такого блока? Стоит однозначно!

Ремонт блока питания для светодиодной ленты

Как правило, если плата блока питания целая, и не превратилась в кусок обуглившегося радио-хлама, то ремонту такой блок подлежит.

Схема, блок питания для светодиодной ленты

Схемы в таких блоках почти всегда одинаковые, для наглядности можно пользоваться схемой изображенной ниже. Типичная схема, которая используется в подобных блоках питания.

Схема, блок питания для светодиодной ленты

Основные неисправности в этих блоках питания:

  1. Микросхема ШИМ контроллер – TL494. Аналог: МВ3759, IR3M02, М1114ЕУ, KA7500 и т.д.
  2. Конденсаторы С22, С23 – высыхают, вздуваются и т.д.
  3. Ключевые транзисторы Т10, Т11.
  4. Сдвоенный диод D33 и конденсаторы С30-С33.
  5. Остальные элементы выходит из строя крайне редко, но тоже не стоит упускать их из вида.

Для начала вскрываем наш блок и осматриваем предохранитель. Если он целый, подаем питание и измеряем напряжение на конденсаторах С22, С23. Оно должно быть порядка 310 В. Если напряжение такое, значит сетевой фильтр и выпрямители исправны.

Следующим этапом станет проверка ШИМ. У нашего блока это микросхема КА7500.

Ремонт блока питания для светодиодной ленты

– на 12 выводе должно быть около 12-30 В. Если нет, проверяем дежурку. Если есть – проверяем микросхему.

Ремонт блока питания для светодиодной ленты

– на 14 выводе должно быть около +5 В.

Ремонт блока питания для светодиодной ленты

Если нет, меняем микросхему. Если есть – проверяем микросхему осциллографом согласно схеме.

Как проверить TL494 без осциллографа?

Если нет осциллографа, рекомендуем взять заведомо рабочий блок питания, установить вместо микросхемы DIP панель, куда можно подключать проверяемые ШИМ контроллеры. Это единственный достоверный и вменяемый способ проверки TL494 без осциллографа.

Наша микросхема КА7500 после проверки, оказалась неисправной. Перед установкой нового ШИМ контроллера устанавливаем DIP панель.

Ремонт блока питания для светодиодной ленты

На фото мы подготовили все для замены ШИМ.

Ремонт блока питания для светодиодной ленты

Меняем ее на аналог TL494CN.

меняем ее на аналог TL494CN.

Следующим этапом станет небольшая модернизация блока. Если внимательно осмотреть сетевой фильтр есть место для установки варистора.

Ремонт блока питания для светодиодной ленты

Устанавливаем варистор К275. Он будет защищать блок от скачков высокого напряжения. При коротком скачке – варистор поглощает энергию импульса, а при длительном – сопротивление варистора станет настолько малым, что сработает предохранитель и вся схема блока останется целой.

Ремонт блока питания для светодиодной ленты

Блок перед финальным тестом.

Ремонт блока питания для светодиодной ленты

После замены неисправных компонентов подключаем блок в сеть. Как видим блок прекрасно работает. Подстроечным резистором Р1 (возле зеленого светодиода) можно точно выставить выходное напряжение на блоке питание. Диапазон корректировки лежит в пределах от 11,65 В. до 13,25 В.

Ремонт блока питания для светодиодной ленты

Как видим все работает исправно, ремонт блока питания для светодиодной ленты окончен. Учитывая, что в блоке отсутствует активная система охлаждения, рационально установить на крышку блока дополнительный кулер, закрытый сеткой в виде гриля.

Ремонт блока питания для светодиодной ленты

Важно! При ремонте блока многие его компоненты находятся под опасным для жизни напряжением. Не стоит проводить манипуляции без достаточных знаний и навыков!

glooch

4 нога — ограничение скважности.
Если там 3 вольта — скважность равна нулю.

Но запрет на запуск БП может подаваться и на один из усилителей ошибки.

Edited at 2021-12-17 07:41 am (UTC)

  • 1

Хм. Та чуждая антидемократическая совковая колонка, наверное, пару-тройку десятков лет оттрубила, там по сути и ломаться нечему.

Да, после первого-второго десятка лет службы и косяки возникали…

Вы столкнулись с совершенно типовой ситуацией.

Никакие коробки никто не путал. Который кондёр на 6 вольт — он сглаживает 5 вольт. Который на 16 вольт — сглаживает 12.

Как проверить tl494 на работоспособность мультиметром

Если блок не запускается, а предохранитель целый, то надо начинать с первичных цепей. Потом проверяем неисправные детали в цепи транзисторов Q1 и Q2, затем элементы преобразователя и микросхемы управления преобразователем IC1 и еще проверяем элементы R25-31, C14-15. После разборки БП необходимо прозвонить на короткое замыкание ключевые транзисторы (типично BUT11A), резисторы на 1..3 Ом в базе их на обрыв, мост на короткое/обрыв, предвыходные транзисторы на кз/обрыв, диоды во вторичных цепях на пробой. После замены неисправных деталей проверить исправность микросхемы ШИМ TL494, если определено, что она неисправна — заменить.

При включении в сеть для проверки, необходимо вместо предохранителя включить лампу накаливания 100 Вт 220 В (тогда в случае короткого замыкания лампа накаливания ярко загорится, если же она будет гореть слабо то к/з нет и следующее включение можно проводить с предохранителем), а в выходную цепь +5 В нагрузочный резистор 2. 5 Ом 20вт. Если все целое, в том числе и на внешний вид, включаем блок питания и проверяем наличие напряжения +300 Вольт на коллекторе транзистора Q1. Если напряжения нет, то проверяем исправность деталей TR1/ T1/ D1-D4. При наличии выпрямленного напряжения +300В на транзисторе, но отсутствии сигнала на эмиттере транзистора Q1 (см. осц), проверяем исправность транзисторов Q1 и Q2. Потом проверяем элементы С11, D14-D17 затем трансформаторы T2, T3, T4.

осциллограмма на эмиттере Q1

Проверка работоспособности микросхемы производится при отключенном БП и при питании ИС от внешнего ИВЭП напряжением +9В. +15В поданного на 12-й вывод относительно 7-го. Все измерения проводятся тоже относительно 7-го вывода. Кроме того, подключение к ИС лучше осуществлять подпайкой проводов, а не с помощью "крокодилов", это обеспечит повышенную надежность контакта и исключит возможность ложных соприкосновений.

Если все элементы исправны, то начинаем проверять работоспособность микросхемы управления преобразователем IC1 в следующем порядке:

1) Берем внешний источник питания +12 вольт, предварительно отключив блок питания от сети, и подаем напряжение +12 вольт на 12 вывод микросхемы, а -12 вольт на 7-ой;

2) Берем вольтметр и проверяем напряжение +5 вольт на выводе 14, если этого напряжения нет или оно значительно отличается от 5 вольт, то микросхему можно считать неисправной!

3) Берем осциллограф и проверяем наличие пилы на выводе 5 микросхемы (см осц.). Если этих пилообразных импульсов нет или они выглядит по-другому,

осциллограмма на выводе 5

то надо проверить элементы С14, R31. Исправность этих элементов свидетельствует о неисправности самой микросхемы. Ее следует заменить!

4) Потом проверяем наличие выходных сигналов на выводах 8 и 11 этой же микросхемы (см.осц.)

осциллограмма вывода 8

осциллограмма вывода 11

Если этих сигналов нет — значит, микросхема неисправная! Если все эти испытания положительны, значит, микросхему можно считать исправной!

Tl494cn как проверить мультиметром

Шим-контроллер считают «сердцем» источников питания, но предварительно нужно проверить и другие компоненты блока питания выполнив стандартную последовательность действий по ремонту блока питания (БП):

1) В выключен­ном состоянии источник внимательно осмотреть (особое внимание обра­тить на состояние всех электролитических конденсаторов — они не должны быть вздуты).

2) Проверить исправность предохранителя и элементов входного фильтра БП.

3) Прозвонить на короткое замыкание или обрыв диоды выпрями­тельного моста (эту операцию, как и многие другие, можно выполнить, не вы­паивая диоды из платы). При этом в остальных случаях надо быть уверен­ным, что проверяемая цепь не шунтируется обмотками трансформатора или резистором (в подозрительных случаях, элемент схемы необходимо выпаивать и проверять отдельно).

4) Проверить исправность выходных цепей: электролитических конденсаторов низкочастотных филь­тров, выпрямительных диодов и диодных сборок.

5) Проверить силовые транзисторы высокочастотного преобразователя и тран­зисторов каскада управления. Обязательно проверить возвратные диоды, включенные параллельно электродам коллектор-эмиттер силовых транзисторов.

Эти действия, дают положительный результат в обнаружении только следствия неработоспособности всего блока, но причина неисправности в большинстве случаев находится гораздо глубже. Например, неисправность силовых транзисторов может быть следствием: неисправности цепей схемы за­щиты и контроля, нарушения цепи обратной связи, неисправности ШИМ-преобразователя, выхода из строя демпфирующих RC-цепочек или, межвитковый пробой в силовом трансформаторе. Поэтому, если удается найти неисправный элемент, то желательно пройти все этапы проверок, перечисленные выше (т. к. предохранитель сам по себе ни­когда не сгорает, а пробитый диод в выходном выпрямителе становится причиной «смерти» ещё и силовых транзисторов высокочастотного преобразователя).

В качестве шим-контроллера («сердца» источников питания) долгое время использовали микросхему TL494, а затем и ее аналоги (MB3759, KA7500B … KA3511, SG6105 и др.). Проверку работоспособности такой микросхемы, например, TL494 (рис. 1) можно произвести, не включая блок питания. При этом микросхему необходимо запитать от вне­шнего источника напряжением +9В..+20В. Напряжение подается на вывод 12 относительно выв. 7 — желательно через маломощный выпрямительный диод. Все измерения тоже должны проводиться относительно выв. 7. При подаче питания на микросхему контролируем напряжение на выв. 5. Оно должно быть +5В (±5%) и быть стабильным при изменении напряжения питания на выв. 12 В пределах +9В..+20В. В противном случае не исправен внутренний стабилизатор напряжения микросхемы. Далее осциллогра­фом смотрим напряжение на выв. 5. Оно должно быть пилообразной формы амплитудой 3,2 В (рис. 2). Если сигнал отсутствует или иной формы, то проверить целостность конденсатора и резистора, подключенных к выв. 5 и выв. 6, соответственно. В случае исправности этих элементов микросхему необходимо заменить. После этого проверяем наличие управляющих сигна­лов на выходе микросхемы (выв. 8 и выв. 11). Они должны соответствовать осциллограммам, приведенным на рис. 2. Отсутствие этих сигналов так же говорит о неисправности микросхемы. В случае успешного прохождения ис­пытаний микросхема считается исправной.

Tl494cn как проверить мультиметром

В при отказах БП можно различать такие основные и частовстречающиеся несиправности:
1. Выход из строя элементов «дежурки».
2. Выход из строя высоковольтной части основного ИБП (импульсный БП).
3. Выход из строя элементов низкеовольтной части основного ИБП.
4. Выход из строя схемы ШИМ (елементы схемы ШИМ наиболее часто выходят при выходе из строя «дежурки».

Теперь по поводу ремонта.
1. В подавляющем количестве БП дежурный источник питания строиться по двум схемам:
а) однотактный обратноходовой ИБП с стабилизацией выходного напряжения с помощью обратной связи с применением оптопары;
б) однотактный обратноходовой ИБП без стабилизации выходного напряжения (стабилизация дежурного напряжения +5в обычно осуществляется с помощью аналога микросхемы КР142ЕН5А).
Первая схема (ИМХО) более надежна и стабильна. В редких случаях могут выйти из строя силовой транзистор и/или элементы обвязки силового транзистора (в основном из-за перегрева и скачков напряжения питающей сети). Для диагностики неисправности вполне достаточно обычного мультиметра.
Для второй схемы наиболее характерно старение частотозадающего конденсатора, в результате чего обычно выгорают резисторы в коллекторных и эмиттерных цепях, иногда выходит из строя силовой транзистор.

Второй тип неисправностей. К высоковольтной частип относятся высоковольтные выпрямиительные диоды, высоковольтные конденсаторы, силовые транзисторы, обвязка силовых транзисторов и трансформатор. Сетевой фильтр я сюда не включаю, так как элементы сетевого фильтра довольно редко выходят из строя.
Проверка высоковольтных диодов осуществляеться с помощью мультиметра. Проверка высоковольтных конденсаторов осуществляеться следующим образом. Последовательно с конденсатором включается амперметр и переменный резистор сопротивлением несколько килоом. Подключаеться все это к источнику постоянного тока, который может обеспечить напряжение около 200в. Контроллируя ток утечки конденсатора, уменьшаем сопротивление рзистора, если ток утечки не меняется и при минимальном сопротивлении резистора не превышает 100-1000 мкА, то конденсатор исправный.
Проверка силовых транзисторов осуществляется с помощью мультиметра, если есть подозрение на неисправность одного транзистора, то следует заменить оба транзистора (вероятность неустойчивого отказа второго транзистора в этом случае очень велика).
В любом случае нелишним будет проверить все элементы обвязки силовых транзисторов (пара диодов, резисторы и керамический высоковольтный конденсатор). Проверка высоковольтных конденсаторов должна осуществляться способом, описанным выше. Прозвонка конденсаторов с помощью омметра не дает стопроцентной гарантии что элеме6нт исправен.
Отказ трансформатора бывает по трем причинам. В первом случае это обрав обмотки, во втором случае короткозамкнутые витки, в третьем (довольно редком) потеря магнитной проницаемости сердечника.
В первом случае для определения неисправности достаточно мультиметра, во втором случае я пользуюсь измерителем добротности.

завтра напишу про следующие неисправности.

Третий тип неисправностей.
Отказы низковольтной части основного ИПБ в первую очередь связанны с выходом из строя выпрямительных диодных сборок, неисправности фильтрующих конденсаторов, выход из строя элементов стабилизатора +3.3в. Наиболее часто в дешевых БП встречается выход из строя диодных сборок, которые не могут обеспечить заявленный на этикетке БП выходной ток. Обычно наблюдается пробой р-п-перехода одного из диодов (в диодной сборке их две штуки), в результате чего при запуске БП сразу срабатывает защита. При этом при поиске неисправности помогает следущая особенность — если после запуска БП дергается вентилятор, а после чего српабатывает защита, то это говорит о неисправности элементов (чаще всего диодов) в канале +5в.
Неисправности конденсаторов обычно связанны с перегревом или с непрвавильным режимом эксплуатации (уровень пульсаций, напряжение на конденсаторах). Поэтому если есть подозрение на выход из строя конденсаторов, их рекомендуется заменить, благо они стоят относительно недорого.
Стабилизатор +3.3в обычно достаточно стабильно работает (в самых дешевых БП стабилизатор +3.3в попросту отсутствует), единственное, что имеет смысл менять при выходе из строя, это микросхема (собственно говоря это управляемый стабилитрон) TL431, силовой транзистор и конденсаторы фильтра. При выходе из строя дросселя, работа стабилизатора основана на насыщении сердечника дросселя, стабилизатор ремонтировать просто не имеет смысла (мотать дроссель и подбирать материал для его сердечника просто невыгодно по затратам времени, усилий и денег). С неисправностью дросселя (изменение магнитной проницаемости сердечника) связан такая неприятность, как «плавание» напряжение +3.3В с изменением нагрузки, температуры и с течением времени.
То же можно сказать про дроссель групповой стабилизации. Его перегрев (ИМХО) может вызвать изменения магнитной проницаемости, в результает имеем «плавание напряжений».

Tl494cn как проверить мультиметром

Здравствуйте. Вот собрал такую схему. Если я правильно понял 2 15 13 14 на питание. 4 и 3 можно не нагружать.

15 вольт у меня нет, взял 2х9. Чип нагрелся, сигнала нет. Схема вообще рабочая?

Вложения:
494 pwm-1.jpg [23.74 KiB]
Скачиваний: 2648
494 pwm.jpg [21.97 KiB]
Скачиваний: 1820

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

JLCPCB, всего $2 за прототип печатной платы! Цвет — любой!

Зарегистрируйтесь и получите два купона по 5$ каждый:https://jlcpcb.com/cwc

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

Не флуди! Пиши по теме.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Построение источников бесперебойного питания с двойным преобразованием, широко используемых в современных хранилищах данных, на базе карбид-кремниевых MOSFETs производства Wolfspeed позволяет уменьшить мощность потерь в них до 40%, а также значительно снизить занимаемый ими объем и стоимость комплектующих.

Так 2 13 14 15 на плюс или минус?

Вы выложили это, вам виднее для чего тут транзисторы.

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

Не флуди! Пиши по теме.

Компэл объявляет о значительном расширении складского ассортимента продукции Connfly. Универсальные коммутирующие компоненты, соединители и держатели Connfly сочетают соответствие стандарту ISO9001:2008, высокую доступность и простоту использования. На текущий момент на складе Компэл – более 300 востребованных на рынке товарных наименований с гибкой ценовой политикой.

ОГО а кому это нужно ?
Мне или вам ?
Если вы дуб дубом то так и скажите, а то претендуете на знания , а сами нефига не знаете.
Минусуйте да побольше.)))
Вот из за таких леньтяев и наглых халявшиков, нормальные люди фиг кому уже помогут.

Вобщем даташит вам в руки сидите и изучайте, может вам допетрит куда какие ноги.

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

Не флуди! Пиши по теме.

Соберите вот эту, только седьмой вывод микросхемы не забудьте на землю бросить .

_________________
Собрали и смело включайте, лишнее выгорит!

Я не знаю что вы увидели в моей подписи, я увидел на тестовом мультивибраторе что у меня шнур осциллографа снимает показания только если его заломить к концу входа в прибор. Я к осц-фу бережно относился и ничего больше 18вольт не измерял.

Спасибо всем за отклик, даже не знаю что теперь делать, шнур можно починить?

Дальше подключил питание параллельно к TL и 555 чтобы проверять провод.

По TL494,
Поставил 1к + лед.

Нестабильный меандр появлялся если 13-14 ноги убрать с питания и земли. Если поставить на землю появляются всплески вверх(иглы). Лед гаснет.

p.s.
можно с TL494 снимать импульсы с эмиттеров и коллекторов одновременно?

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

Не флуди! Пиши по теме.

_________________
Собрали и смело включайте, лишнее выгорит!

Мне кажется желтому тюльпану нужно чуть чуть разогнуть лепестки чтобы шнур жестко сидел в гнезде.

ps
простите за качество.

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

Не флуди! Пиши по теме.

_________________
Собрали и смело включайте, лишнее выгорит!

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

Не флуди! Пиши по теме.

Наконец-то, на 3ий день что-то получилось уловить. Сигнал есть частота плавает.

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

Как проверить tl494 на работоспособность мультиметром

Если блок не запускается, а предохранитель целый, то надо начинать с первичных цепей. Потом проверяем неисправные детали в цепи транзисторов Q1 и Q2, затем элементы преобразователя и микросхемы управления преобразователем IC1 и еще проверяем элементы R25-31, C14-15. После разборки БП необходимо прозвонить на короткое замыкание ключевые транзисторы (типично BUT11A), резисторы на 1..3 Ом в базе их на обрыв, мост на короткое/обрыв, предвыходные транзисторы на кз/обрыв, диоды во вторичных цепях на пробой. После замены неисправных деталей проверить исправность микросхемы ШИМ TL494, если определено, что она неисправна — заменить.

При включении в сеть для проверки, необходимо вместо предохранителя включить лампу накаливания 100 Вт 220 В (тогда в случае короткого замыкания лампа накаливания ярко загорится, если же она будет гореть слабо то к/з нет и следующее включение можно проводить с предохранителем), а в выходную цепь +5 В нагрузочный резистор 2. 5 Ом 20вт. Если все целое, в том числе и на внешний вид, включаем блок питания и проверяем наличие напряжения +300 Вольт на коллекторе транзистора Q1. Если напряжения нет, то проверяем исправность деталей TR1/ T1/ D1-D4 . При наличии выпрямленного напряжения +300В на транзисторе, но отсутствии сигнала на эмиттере транзистора Q1 (см. осц), проверяем исправность транзисторов Q1 и Q2. Потом проверяем элементы С11, D14-D17 затем трансформаторы T2 , T3 , T4 .

осциллограмма на эмиттере Q1

Проверка работоспособности микросхемы производится при отключенном БП и при питании ИС от внешнего ИВЭП напряжением +9В. +15В поданного на 12-й вывод относительно 7-го. Все измерения проводятся тоже относительно 7-го вывода. Кроме того, подключение к ИС лучше осуществлять подпайкой проводов, а не с помощью "крокодилов", это обеспечит повышенную надежность контакта и исключит возможность ложных соприкосновений.

Если все элементы исправны, то начинаем проверять работоспособность микросхемы управления преобразователем IC1 в следующем порядке:

1) Берем внешний источник питания +12 вольт, предварительно отключив блок питания от сети, и подаем напряжение +12 вольт на 12 вывод микросхемы, а -12 вольт на 7-ой;

2) Берем вольтметр и проверяем напряжение +5 вольт на выводе 14, если этого напряжения нет или оно значительно отличается от 5 вольт, то микросхему можно считать неисправной!

3) Берем осциллограф и проверяем наличие пилы на выводе 5 микросхемы (см осц.). Если этих пилообразных импульсов нет или они выглядит по-другому,

осциллограмма на выводе 5

то надо проверить элементы С14, R31. Исправность этих элементов свидетельствует о неисправности самой микросхемы. Ее следует заменить!

4) Потом проверяем наличие выходных сигналов на выводах 8 и 11 этой же микросхемы (см.осц.)

осциллограмма вывода 8

осциллограмма вывода 11

Если этих сигналов нет — значит, микросхема неисправная! Если все эти испытания положительны, значит, микросхему можно считать исправной!

Ремонт блока питания для светодиодной ленты

Ремонт блока питания для светодиодной ленты

Используя светодиодное освещение, многие радуются лишь до тех пор, пока оно исправно работает. Поломка блока питания светодиодной ленты может не только огорчить, но и ударить немного по карману. Сегодня мы рассмотрим ремонт блока питания для светодиодной ленты, типичные его неисправности и методики их устранения.

Ремонт блока питания для светодиодной ленты

Зачастую все дешевые китайские блоки питания для светодиодных лент выглядят примерно так. Стоит ли браться за ремонт такого блока? Стоит однозначно!

Ремонт блока питания для светодиодной ленты

Как правило, если плата блока питания целая, и не превратилась в кусок обуглившегося радио-хлама, то ремонту такой блок подлежит.

Схема, блок питания для светодиодной ленты

Схемы в таких блоках почти всегда одинаковые, для наглядности можно пользоваться схемой изображенной ниже. Типичная схема, которая используется в подобных блоках питания.

Схема, блок питания для светодиодной ленты

Основные неисправности в этих блоках питания:

  1. Микросхема ШИМ контроллер – TL494. Аналог: МВ3759, IR3M02, М1114ЕУ, KA7500 и т.д.
  2. Конденсаторы С22, С23 – высыхают, вздуваются и т.д.
  3. Ключевые транзисторы Т10, Т11.
  4. Сдвоенный диод D33 и конденсаторы С30-С33.
  5. Остальные элементы выходит из строя крайне редко, но тоже не стоит упускать их из вида.

Для начала вскрываем наш блок и осматриваем предохранитель. Если он целый, подаем питание и измеряем напряжение на конденсаторах С22, С23. Оно должно быть порядка 310 В. Если напряжение такое, значит сетевой фильтр и выпрямители исправны.

Следующим этапом станет проверка ШИМ. У нашего блока это микросхема КА7500.

Ремонт блока питания для светодиодной ленты

– на 12 выводе должно быть около 12-30 В. Если нет, проверяем дежурку. Если есть – проверяем микросхему.

Ремонт блока питания для светодиодной ленты

– на 14 выводе должно быть около +5 В.

Ремонт блока питания для светодиодной ленты

Если нет, меняем микросхему. Если есть – проверяем микросхему осциллографом согласно схеме.

Как проверить TL494 без осциллографа?

Если нет осциллографа, рекомендуем взять заведомо рабочий блок питания, установить вместо микросхемы DIP панель, куда можно подключать проверяемые ШИМ контроллеры. Это единственный достоверный и вменяемый способ проверки TL494 без осциллографа.

Наша микросхема КА7500 после проверки, оказалась неисправной. Перед установкой нового ШИМ контроллера устанавливаем DIP панель.

Ремонт блока питания для светодиодной ленты

На фото мы подготовили все для замены ШИМ.

Ремонт блока питания для светодиодной ленты

Меняем ее на аналог TL494CN.

меняем ее на аналог TL494CN.

Следующим этапом станет небольшая модернизация блока. Если внимательно осмотреть сетевой фильтр есть место для установки варистора.

Ремонт блока питания для светодиодной ленты

Устанавливаем варистор К275. Он будет защищать блок от скачков высокого напряжения. При коротком скачке – варистор поглощает энергию импульса, а при длительном – сопротивление варистора станет настолько малым, что сработает предохранитель и вся схема блока останется целой.

Ремонт блока питания для светодиодной ленты

Блок перед финальным тестом.

Ремонт блока питания для светодиодной ленты

После замены неисправных компонентов подключаем блок в сеть. Как видим блок прекрасно работает. Подстроечным резистором Р1 (возле зеленого светодиода) можно точно выставить выходное напряжение на блоке питание. Диапазон корректировки лежит в пределах от 11,65 В. до 13,25 В.

Ремонт блока питания для светодиодной ленты

Как видим все работает исправно, ремонт блока питания для светодиодной ленты окончен. Учитывая, что в блоке отсутствует активная система охлаждения, рационально установить на крышку блока дополнительный кулер, закрытый сеткой в виде гриля.

Ремонт блока питания для светодиодной ленты

Важно! При ремонте блока многие его компоненты находятся под опасным для жизни напряжением. Не стоит проводить манипуляции без достаточных знаний и навыков!

TL494CN: схема включения, описание на русском, схема преобразователя

Импульсные блоки питания (ИБП) очень распространены. Компьютер, который вы используете сейчас, имеет ИБП с несколькими выходными напряжениями (+12, -12, +5, -5 и + 3,3 В, по крайней мере). Практически все такие блоки имеют специальную микросхему ШИМ-контроллера, как правило, типа TL494CN. Аналог ее – отечественная микросхема М1114ЕУ4 (КР1114ЕУ4).

Производители

Рассматриваемая микросхема относится к перечню наиболее распространенных и широко применяемых интегральных электронных схем. Предшественником ее была серия UC38хх ШИМ-контроллеров компании Unitrode. В 1999 г. эта фирма была куплена компанией Texas Instruments, и с тех пор началось развитие линейки этих контроллеров, приведшее к созданию в начале 2000-х гг. микросхем серии TL494. Кроме уже отмеченных выше ИБП, их можно встретить в регуляторах постоянного напряжения, в управляемых приводах, в устройствах плавного пуска, – словом везде, где используется ШИМ-регулирование.

Среди фирм, клонировавших данную микросхему, значатся такие всемирно известные бренды, как Motorola, Inc, International Rectifier, Fairchild Semiconductor, ON Semiconductor. Все они дают подробное описание своей продукции, так называемый TL494CN datasheet.

Документация

Анализ описаний рассматриваемого типа микросхемы от разных производителей показывает практическую идентичность ее характеристик. Объем сведений, приводимых разными фирмами, практически одинаков. Более того, TL494CN datasheet от таких брендов, как Motorola, Inc и ON Semiconductor повторяют друг друга в своей структуре, приводимых рисунках, таблицах и графиках. Несколько отличается от них изложение материала у фирмы Texas Instruments, однако при внимательном его изучении становится ясно, что имеется в виду идентичное изделие.

Назначение микросхемы TL494CN

Описание ее по традиции начнем с назначения и перечня внутренних устройств. Она представляет собой ШИМ-контроллер с фиксированной частотой, предназначенный преимущественно для применения в ИБП, и содержащий следующие устройства:

  • генератор пилообразного напряжения (ГПН);
  • усилители ошибки;
  • источник эталонного (опорного) напряжения +5 В;
  • схема регулировки «мертвого времени»;
  • выходные транзисторные ключи на ток до 500 мА;
  • схема выбора одно- или двухтактного режима работы.
Предельные параметры

Как и у любой другой микросхемы, у TL494CN описание в обязательном порядке должно содержать перечень предельно допустимых эксплуатационных характеристик. Дадим их на основании данных Motorola, Inc:

  1. Напряжение питания: 42 В.
  2. Напряжение на коллекторе выходного транзистора: 42 В.
  3. Ток коллектора выходного транзистора: 500 мА.
  4. Диапазон входного напряжения усилителя: от — 0,3 В до +42 В.
  5. Рассеиваемая мощность (при t< 45 °C): 1000 мВт.
  6. Диапазон температур хранения: от -55 до +125 °С.
  7. Диапазон рабочих температур окружающей среды: от 0 до +70 °С.

Следует отметить, что параметр 7 для микросхемы TL494IN несколько шире: от –25 до +85 °С.

Конструкция микросхемы TL494CN

Описание на русском языке выводов ее корпуса приведено на рисунке, расположенном ниже.

tl494 описание на русском

Микросхема помещена в пластиковый (на это указывает литера N в конце ее обозначения) 16-контактный корпус с выводами pdp-типа.

Внешний вид ее показан на фото ниже.

микросхема tl494cn

TL494CN: схема функциональная

Итак, задачей данной микросхемы является широтно-импульсная модуляция (ШИМ, или англ. Pulse Width Modulated (PWM)) импульсов напряжения, вырабатываемых внутри как регулируемых, так и нерегулируемых ИБП. В блоках питания первого типа диапазон длительности импульсов, как правило, достигает максимально возможной величины (

48% для каждого выхода в двухтактных схемах, широко используемых для питания автомобильных аудиоусилителей).

Микросхема TL494CN имеет в общей сложности 6 выводов для выходных сигналов, 4 из них (1, 2, 15, 16) являются входами внутренних усилителей ошибки, используемых для защиты ИБП от токовых и потенциальных перегрузок. Контакт № 4 – это вход сигнала от 0 до 3 В для регулировки скважности выходных прямоугольных импульсов, а № 3 является выходом компаратора и может быть использован несколькими способами. Еще 4 (номера 8, 9, 10, 11) представляют собой свободные коллекторы и эмиттеры транзисторов с предельно допустимым током нагрузки 250 мА (в длительном режиме не более 200 мА). Они могут соединяться попарно (9 с 10, а 8 с 11) для управления мощными полевыми транзисторами (MOSFET-транзисторов) с предельно допустимым током 500 мА (не более 400 мА в длительном режиме).

Каково же внутренне устройство TL494CN? Схема ее показана на рисунке ниже.

tl494 схема

Микросхема имеет встроенный источник опорного напряжения (ИОН) +5 В (№ 14). Он обычно используется в качестве эталонного напряжения (с точностью ± 1%), подаваемого на входы схем, потребляющих не более 10 мА, например, на вывод 13 выбора одно- или двухтактного режима работы микросхемы: при наличии на нем +5 В выбирается второй режим, при наличии на нем минуса напряжения питания – первый.

Для настройки частоты генератора пилообразного напряжения (ГПН) используют конденсатор и резистор, подключаемые к контактам 5 и 6 соответственно. И, конечно, микросхема имеет выводы для подключения плюса и минуса источника питания (номера 12 и 7 соответственно) в диапазоне от 7 до 42 В.

Из схемы видно, что имеется еще ряд внутренних устройств в TL494CN. Описание на русском языке их функционального назначения будет дано ниже по ходу изложения материала.

Функции выводов входных сигналов

Как и любое другое электронное устройство. рассматриваемая микросхема имеет свои входы и выходы. Мы начнем с первых. Выше уже было дан перечень этих выводов TL494CN. Описание на русском языке их функционального назначения будет далее приведено с подробными пояснениями.

Это положительный (неинвертирующий) вход усилителя сигнала ошибки 1. Если напряжение на нем ниже, чем напряжение на выводе 2, выход усилителя ошибки 1 будет иметь низкий уровень. Если же оно будет выше, чем на контакте 2, сигнал усилителя ошибки 1 станет высоким. Выход усилителя по существу, повторяет положительный вход с использованием вывода 2 в качестве эталона. Функции усилителей ошибки будут более подробно описаны ниже.

Это отрицательное (инвертирующий) вход усилителя сигнала ошибки 1. Если этот вывод выше, чем на выводе 1, выход усилителя ошибки 1 будет низким. Если же напряжение на этом выводе ниже, чем напряжение на выводе 1, выход усилителя будет высоким.

Он работает точно так же, как и № 2. Зачастую второй усилитель ошибки не используется в TL494CN. Схема включения ее в этом случае содержит вывод 15 просто подключенный к 14-му (опорное напряжение +5 В).

Он работает так же, как и № 1. Его обычно присоединяют к общему № 7, когда второй усилитель ошибки не используется. С выводом 15, подключенным к +5 В и № 16, подключенным к общему, выход второго усилителя низкий и поэтому не имеет никакого влияния на работу микросхемы.

Этот контакт и каждый внутренний усилитель TL494CN связаны между собой через диоды. Если сигнал на выходе какого-либо из них меняется с низкого на высокий уровень, то на № 3 он также переходит в высокий. Когда сигнал на этом выводе превышает 3,3 В, выходные импульсы выключаются (нулевая скважность). Когда напряжение на нем близко к 0 В, длительность импульса максимальна. В промежутке между 0 и 3,3 В, длительность импульса составляет от 50% до 0% (для каждого из выходов ШИМ-контроллера — на выводах 9 и 10 в большинстве устройств).

Если необходимо, контакт 3 может быть использован в качестве входного сигнала или может быть использован для обеспечения демпфирования скорости изменения ширины импульсов. Если напряжение на нем высокое (>

3,5 В), нет никакого способа для запуска ИБП на ШИМ-контроллере (импульсы от него будут отсутствовать).

Он управляет диапазоном скважности выходных импульсов (англ. Dead-Time Control). Если напряжение на нем близко к 0 В, микросхема будет в состоянии выдавать как минимально возможную, так и максимальную ширину импульса (что задается другими входными сигналами). Если на этот вывод подается напряжение около 1,5 В, ширина выходного импульса будет ограничена до 50% от его максимальной ширины (или

25% рабочего цикла для двухтактного режима ШИМ-контроллера). Если напряжение на нем высокое (>

3,5 В), нет никакого способа для запуска ИБП на TL494CN. Схема включения ее зачастую содержит № 4, подключенный напрямую к земле.

    Важно запомнить! Сигнал на выводах 3 и 4 должен быть ниже

Служит для присоединения времязадающего конденсатора Ct, причем второй его контакт присоединяется к земле. Значения емкости обычно от 0,01 μF до 0,1 μF. Изменения величины этого компонента ведут к изменению частоты ГПН и выходных импульсов ШИМ-контроллера. Как правило здесь используются конденсаторы высокого качества с очень низким температурным коэффициентом (с очень небольшим изменением емкости с изменением температуры).

Для подключения врямязадающего резистора Rt, причем второй его контакт присоединяется к земле. Величины Rt и Ct определяют частоту ГПН.

  • f = 1,1 : (Rt х Ct).

Он присоединяется к общему проводу схемы устройства на ШИМ-контроллере.

Он замаркирован литерами VCC. К нему присоединяется «плюс» источника питания TL494CN. Схема включения ее обычно содержит № 12, соединенный с коммутатором источника питания. Многие ИБП используют этот вывод, чтобы включать питание (и сам ИБП) и выключать его. Если на нем имеется +12 В и № 7 заземлен, ГПН и ИОН микросхемы будут работать.

Это вход режима работы. Его функционирование было описано выше.

Функции выводов выходных сигналов

Выше они же были перечислены для TL494CN. Описание на русском языке их функционального назначения будет ниже приведено с подробными пояснениями.

На этой микросхеме есть 2 npn-транзистора, которые являются ее выходными ключами. Этот вывод – коллектор транзистора 1, как правило, подключенный к источнику постоянного напряжения (12 В). Тем не менее в схемах некоторых устройств он используется в качестве выхода, и можно увидеть на нем меандр (как и на № 11).

Это эмиттер транзистора 1. Он управляет мощным транзистором ИБП (полевым в большинстве случаев) в двухтактной схеме либо напрямую, либо через промежуточный транзистор.

Это эмиттер транзистора 2. В однотактном режиме работы сигнал на нем такой же, как и на № 9. В двухтактном режиме сигналы на №№ 9 и 10 противофазны, т. е. когда на одном высокий уровень сигнала, то на другом он низкий, и наоборот. В большинстве устройств сигналы с эмиттеров выходных транзисторных ключей рассматриваемой микросхемы управляют мощными полевыми транзисторами, приводимыми в состояние ВКЛЮЧЕНО, когда напряжение на выводах 9 и 10 высокое (выше

3,5 В, но он никак не относится к уровню 3,3 В на №№ 3 и 4).

Это коллектор транзистора 2, как правило, подключенный к источнику постоянного напряжения (+12 В).

  • Примечание: В устройствах на TL494CN схема включения ее может содержать в качестве выходов ШИМ-контроллера как коллекторы, таки эмиттеры транзисторов 1 и 2, хотя второй вариант встречается чаще. Есть, однако, варианты, когда именно контакты 8 и 11 являются выходами. Если вы найдете небольшой трансформатор в цепи между микросхемой и полевыми транзисторами, выходной сигнал, скорее всего, берется именно с них (с коллекторов).

Это выход ИОН, также описанный выше.

Принцип работы

Как же работает микросхема TL494CN? Описание порядка ее работы дадим по материалам Motorola, Inc. Выход импульсов с широтной модуляцией достигается путем сравнения положительного пилообразного сигнала с конденсатора Ct с любым из двух управляющих сигналов. Логические схемы ИЛИ-НЕ управления выходными транзисторами Q1 и Q2, открывают их только тогда, когда сигнал на тактовом входе (С1) триггера (см. функциональную схему TL494CN) переходит в низкий уровень.

Таким образом, если на входе С1 триггера уровень логической единицы, то выходные транзисторы закрыты в обоих режимах работы: однотактном и двухтактном. Если на этом входе присутствует сигнал тактовой частоты, то в двухтактном режиме транзисторные ключи открываются поочердно по приходу среза тактового импульса на триггер. В однотактном режиме триггер не используется, и оба выходных ключа открываются синхронно.

Это открытое состояние (в обоих режимах) возможно только в той части периода ГПН, когда пилообразное напряжение больше, чем управляющие сигналы. Таким образом, увеличение или уменьшение величины управляющего сигнала вызывает соответственно линейное увеличение или уменьшение ширины импульсов напряжения на выходах микросхемы.

В качестве управляющих сигналов может быть использовано напряжение с вывода 4 (управление «мертвым временем»), входы усилителей ошибки или вход сигнала обратной связи с вывода 3.

Первые шаги по работе с микросхемой

Прежде чем делать какое-либо полезное устройство, рекомендуется изучить, как работает TL494CN. Как проверить ее работоспособность?

Возьмите свою макетную плату, установите на нее микросхему и подключите провода согласно нижеприведенной схеме.

tl494cn схема включения

Если все подключено правильно, то схема будет работать. Оставьте выводы 3 и 4 не свободными. Используйте свой осциллограф, чтобы проверить работу ГПН – на выводе 6 вы должны увидеть пилообразное напряжение. Выходы будут нулевыми. Как же определить их работоспособность в TL494CN. Проверка ее может быть выполнена следующим образом:

  1. Подключите выход обратной связи ( № 3) и выход управления «мертвым временем» (№ 4) к общему выводу (№ 7).
  2. Теперь вы должны обнаружить прямоугольные импульсы на выходах микросхемы.
Как усилить выходной сигнал?

Выход TL494CN является довольно слаботочным, а вы, конечно же, хотите большей мощности. Таким образом, мы должны добавить несколько мощных транзисторов. Наиболее просто использовать (и очень легко получить — из старой материнской платы компьютера) n-канальные силовые МОП-транзисторы. Мы должны при этом проинвертировать выход TL494CN, т. к. если мы подключим n-канальный МОП-транзистор к нему, то при отсутствии импульса на выходе микросхемы он будет открытым для протекания постоянного тока. При этом МОП-транзистор может попросту сгореть… Так что достаем универсальный npn-транзистор и подключаем согласно нижеприведенной схеме.

усилитель tl494cn

Мощный МОП-транзистор в этой схеме управляется в пассивном режиме. Это не очень хорошо, но для целей тестирования и малой мощности вполне подходит. R1 в схеме является нагрузкой npn-транзистора. Выберите его в соответствии с максимально допустимым током его коллектора. R2 представляет собой нагрузку нашего силового каскада. В следующих экспериментах он будет заменен трансформатором.

Если мы теперь посмотрим осциллографом сигнал на выводе 6 микросхемы, то увидите «пилу». На № 8 (К1) можно по-прежнему видеть прямоугольные импульсы, а на стоке МОП-транзистора такие же по форме импульсы, но большей величины.

А как поднять напряжение на выходе?

Теперь давайте получим некоторое напряжение повыше при помощи TL494CN. Схема включения и разводки используется та же самая – на макетной плате. Конечно, достаточно высокого напряжения на ней не получить, тем более что нет какого-либо радиатора на силовых МОП-транзисторах. И все же, подключите небольшой трансформатор к выходному каскаду, согласно этой схеме.

tl494cn проверка

Первичная обмотка трансформатора содержит 10 витков. Вторичная обмотка содержит около 100 витков. Таким образом, коэффициент трансформации равен 10. Если подать 10В в первичную обмотку, вы должны получить около 100 В на выходе. Сердечник выполнен из феррита. Можно использовать некоторый среднего размера сердечник от трансформатора блока питания ПК.

Будьте осторожны, выход трансформатора под высоким напряжением. Ток очень низкий и не убьет вас. Но можно получить хороший удар. Еще одна опасность — если вы установите большой конденсатор на выходе, он будет накапливать большой заряд. Поэтому после выключения схемы, его следует разрядить.

На выходе схемы можно включить любой индикатор вроде лампочки, как на фото ниже.

tl494cn схема включения и разводки

Схема с трансформаторным выходом широко применяется в любых ИБП, включая и блоки питания ПК. В этих устройствах, первый трансформатор, подключенный через транзисторные ключи к выходам ШИМ-контроллера, служит для гальванической развязки низковольтной части схемы, включающей TL494CN, от ее высоковольтной части, содержащей трансформатор сетевого напряжения.

Регулятор напряжения

Как правило, в самодельных небольших электронных устройствах питание обеспечивает типовой ИБП ПК, выполненный на TL494CN. Схема включения БП ПК общеизвестна, а сами блоки легкодоступны, поскольку миллионы старых ПК ежегодно утилизируются или продаются на запчасти. Но как правило, эти ИБП вырабатывают напряжения не выше 12 В. Этого слишком мало для частотно-регулируемого привода. Конечно, можно было бы постараться и использовать ИБП ПК повышенного напряжения для 25 В, но его будет трудно найти, и слишком много мощности будет рассеиваться на напряжении 5 В в логических элементах.

Однако на TL494 (или аналогах) можно построить любые схемы с выходом на повышенную мощность и напряжение. Используя типичные детали из ИБП ПК и мощные МОП-транзисторы от материнской платы, можно построить ШИМ-регулятор напряжения на TL494CN. Схема преобразователя представлена на рисунке ниже.

tl494cn схема преобразователя

На ней можно увидеть схему включения микросхемы и выходной каскад на двух транзисторах: универсальном npn- и мощном МОП.

Основные части: T1, Q1, L1, D1. Биполярный T1 используется для управления мощным МОП-транзистором, подключенным упрощенным способом, так наз. «пассивным». L1 является дросселем индуктивности от старого принтера HP (около 50 витков, 1 см высота, ширина 0,5 см с обмотками, открытый дроссель). D1 — это диод Шоттки от другого устройства. TL494 подключена альтернативным способом по отношению к вышеописанному, хотя можно использовать любой из них.

С8 – конденсатор малой емкости, чтобы предотвратить воздействие шумов, поступающих на вход усилителя ошибки, величина 0,01uF будет более или менее нормальной. Большие значения будут замедлять установку требуемого напряжения.

С6 — еще меньший конденсатор, он используется для фильтрации высокочастотных помех. Его емкость — до нескольких сотен пикофарад.

Как проверить tl494 на работоспособность мультиметром

Здравствуйте. Вот собрал такую схему. Если я правильно понял 2 15 13 14 на питание. 4 и 3 можно не нагружать.

15 вольт у меня нет, взял 2х9. Чип нагрелся, сигнала нет. Схема вообще рабочая?

Вложения:
494 pwm-1.jpg [23.74 KiB]
Скачиваний: 2818
494 pwm.jpg [21.97 KiB]
Скачиваний: 1917

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

Не флуди! Пиши по теме.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Источники питания для автомобильной электроники, включая маяки, GPS/ГЛОНАСС-трекеры и охранную сигнализацию, должны обеспечивать бесперебойное питание и безопасность, а также быть устойчивыми к вибрации и исправно работать при низких температурах. Батарейки FANSO EVE Energy обладают всеми необходимыми параметрами для надежной работы оборудования современного автомобиля.

Так 2 13 14 15 на плюс или минус?

Вы выложили это, вам виднее для чего тут транзисторы.

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

Не флуди! Пиши по теме.

Приглашаем 13 октября всех желающих присоединиться к вебинару, который будет проводить компания КОМПЭЛ совместно с представителями бренда MEAN WELL. Вебинар будет посвящен новинкам продукции, планам MEAN WELL на следующий год, аналогам продукции ушедших из РФ брендов, особенностям работы в текущих условиях, возможностях субдистрибьюции и другим вопросам. Мероприятие пройдет в формате живого диалога.

ОГО а кому это нужно ?
Мне или вам ?
Если вы дуб дубом то так и скажите, а то претендуете на знания , а сами нефига не знаете.
Минусуйте да побольше.)))
Вот из за таких леньтяев и наглых халявшиков, нормальные люди фиг кому уже помогут.

Вобщем даташит вам в руки сидите и изучайте, может вам допетрит куда какие ноги.

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

Не флуди! Пиши по теме.

Соберите вот эту, только седьмой вывод микросхемы не забудьте на землю бросить .

_________________
Собрали и смело включайте, лишнее выгорит!

Я не знаю что вы увидели в моей подписи, я увидел на тестовом мультивибраторе что у меня шнур осциллографа снимает показания только если его заломить к концу входа в прибор. Я к осц-фу бережно относился и ничего больше 18вольт не измерял.

Спасибо всем за отклик, даже не знаю что теперь делать, шнур можно починить?

Дальше подключил питание параллельно к TL и 555 чтобы проверять провод.

По TL494,
Поставил 1к + лед.

Нестабильный меандр появлялся если 13-14 ноги убрать с питания и земли. Если поставить на землю появляются всплески вверх(иглы). Лед гаснет.

p.s.
можно с TL494 снимать импульсы с эмиттеров и коллекторов одновременно?

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

Не флуди! Пиши по теме.

_________________
Собрали и смело включайте, лишнее выгорит!

Изображение

Изображение

Мне кажется желтому тюльпану нужно чуть чуть разогнуть лепестки чтобы шнур жестко сидел в гнезде.

ps
простите за качество.

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

Не флуди! Пиши по теме.

_________________
Собрали и смело включайте, лишнее выгорит!

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

Не флуди! Пиши по теме.

Наконец-то, на 3ий день что-то получилось уловить. Сигнал есть частота плавает.

_________________
Я живу в Израиле, советские компоненты мне не доступны, пожалуйста, советуйте что-нибудь импортное.

Не флуди! Пиши по теме.

Часовой пояс: UTC + 3 часа

Кто сейчас на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 9

glooch

4 нога — ограничение скважности.
Если там 3 вольта — скважность равна нулю.

Но запрет на запуск БП может подаваться и на один из усилителей ошибки.

Edited at 2021-12-17 07:41 am (UTC)

  • 1

Хм. Та чуждая антидемократическая совковая колонка, наверное, пару-тройку десятков лет оттрубила, там по сути и ломаться нечему.

Да, после первого-второго десятка лет службы и косяки возникали…

Вы столкнулись с совершенно типовой ситуацией.

Никакие коробки никто не путал. Который кондёр на 6 вольт — он сглаживает 5 вольт. Который на 16 вольт — сглаживает 12.

glooch

4 нога — ограничение скважности.
Если там 3 вольта — скважность равна нулю.

Но запрет на запуск БП может подаваться и на один из усилителей ошибки.

Edited at 2021-12-17 07:41 am (UTC)

  • 1

Хм. Та чуждая антидемократическая совковая колонка, наверное, пару-тройку десятков лет оттрубила, там по сути и ломаться нечему.

Да, после первого-второго десятка лет службы и косяки возникали…

Вы столкнулись с совершенно типовой ситуацией.

Никакие коробки никто не путал. Который кондёр на 6 вольт — он сглаживает 5 вольт. Который на 16 вольт — сглаживает 12.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *