Как подобрать драйвер светодиодной лампы: виды, назначение + особенности подключения
Светодиодные светильники получили массовое распространение, вследствие чего началось активное производство вторичных источников питания. Драйвер светодиодной лампы способен стабильно поддерживать заданные значения тока на выходе устройства, стабилизируя напряжение, проходящее через цепочку диодов.
Мы расскажем все о видах и принципах действия устройства преобразования тока для работы диодной лампочки. В предложенной нами статье приведены ориентиры выбора драйвера, даны полезные рекомендации. Самостоятельный домашние электрики у нас найдут проверенные на практике схемы подключения.
Назначение и сфера использования
Диодные кристаллы состоят из двух полупроводников – анода (плюс) и катода (минус), которые и отвечают за трансформацию электросигналов. Одна область имеет проводимость P-вида, вторая – N. При подключении источника питания через эти элементы потечет ток.
За счет такой полярности электроны из зоны P-типа устремляются в зону N-типа, и наоборот, заряды из точки N устремятся к Р. Однако каждый раздел области имеет свои границы, называющиеся P-N переходами. На этих участках частицы встречаются и взаимопоглощаются или рекомбинируются.
Во время P-N переходов напряжение снижается на определенное количество вольт, всегда одинаковое для каждого элемента цепи. Учитывая эти значения, драйвер стабилизирует показатели входящего тока и образует на выходе постоянную величину.
Какая требуется мощность и какие значения потерь при P-N прохождении указываются в паспорте светодиодного прибора. Поэтому при выборе диодной лампочки необходимо учитывать параметры блока питания, диапазон которых должен быть достаточным для компенсации утраченной энергии.
Блоки питания с напряжением от 10 до 36 В применяются для оснащения осветительных приборов.
Техника может быть самых различных видов:
- фары автомобилей, велосипедов, мотоциклов и т. д.;
- небольшие переносные или уличные фонари; , ленты, потолочные лампочки и модули.
Однако для маломощных светодиодов, а также в случае использования постоянного напряжения, драйверы допустимо не применять. Вместо них в схему вносится резистор, также питающийся от сети 220 В.
Принцип работы блока питания
Разберемся, в чем же состоят различия между источником напряжения и блоком питания. В качестве примера рассмотрим схему, изображенную ниже.
Подключив к источнику питания 12 В резистор на 40 Ом, через него будет проходить ток в 300 мА (рисунок А). При параллельном включении в цепь второго резистора значение тока составит – 600 мА (Б). Однако напряжение будет неизменным.
Теперь рассмотрим, как изменятся значения, если в схеме будут подключены резисторы к блоку питания. Аналогичным образом вводим реостат 40 Ом с драйвером 300 мА. Последний создает на нем напряжение в 12 В (схема В).
Если же цепь составлена из двух резисторов, то величина тока неизменна, а напряжение составит 6 В (Г).
Делая выводы, можно сказать, что качественный преобразователь поставляет нагрузке номинальный ток даже при падении напряжения. Соответственно, кристаллы диодов на 2 В или на 3 В и током на 300 мА будут гореть одинаково ярко со сниженным напряжением.
Отличительные характеристики преобразователя
Один из важнейших показателей – передаваемая мощность под нагрузкой. Устройство нельзя перегружать и пытаться получить максимально возможные результаты.
Неправильное использование способствует быстрому выходу из строя не только обзорного механизма, но и LED чипов.
К главным факторам, влияющим на работу, относятся:
- составляющие элементы, используемые в процессе сборки;
- степень защиты (IP);
- минимальные и максимальные значения на входе и выходе;
- производитель.
Современные модели преобразователей выпускаются на базе микросхем и применяют технологию широтно-импульсных преобразований (ШИМ).
Такие устройства отличаются высокой степенью защиты от коротких замыканий, перегрузок сети, а также обладают повышенным КПД.
Правила подбора преобразователя тока
Для приобретения преобразователя LED лампы следует изучить ключевые характеристики прибора. Опираться стоит на выходное напряжение, номинальный ток и выдаваемую мощность.
Мощность световых диодов
Разберем изначально выходное напряжение, которое подчинено нескольким фактором:
- значение потерь напряжения на P-N переходах кристаллов;
- количество световых диодов в цепочке;
- схема подключения.
Параметры номинального тока можно определить по характерным особенностям потребителя, а именно мощности LED элементов и степени их яркости.
Этот показатель будет влиять на потребляемый кристаллами ток, диапазон которого варьируется исходя из необходимой яркости. Задача преобразователя — обеспечить этим элементам подачу нужного количества энергии.
Мощность устройства зависит от силы каждого LED элемента, их цвета и количества.
Для просчета потребляемой энергии используют такую формулу:
- PLED – электрическая нагрузка, создаваемая одним диодом,
- N – количество кристаллов в цепи.
Полученные показатели не должны быть меньше мощности драйвера. Теперь необходимо определить требуемое номинальное значение.
Максимальная мощность прибора
Следует учитывать и тот факт, что для обеспечения стабильной работы преобразователя его номинальные показатели должны превышать на 20-30 % полученное значение PH.
Таким образом формула приобретает вид:
где Pmax — номинальная мощность блока питания.
Помимо мощности и количества потребителей на плате, сила нагрузки также подчинена цветовым факторам потребителя. При одинаковом токе, в зависимости от оттенка, они имеют разные показатели падения напряжения.
Возьмем для примера, светодиоды американской фирмы Cree из линейки XP-E в красном цвете.
Их характеристики выглядят следующим образом:
- падение напряжения 1,9-2,4 В;
- ток 350 мА;
- средняя мощность потребления 750 мВт.
Аналог зеленого цвета при том же токе, будет иметь совсем другие показатели: потери на P-N переходах 3,3-3,9 В, а мощность 1,25 Вт.
Соответственно можно сделать выводы: драйвер, рассчитанный на 10 Вт, применяется для питания двенадцати красных кристаллов или восьми зеленых.
Схема подключения светодиодов
Выбор драйвера должен осуществляться после определения схемы подключения LED-потребителей. Если в первую очередь приобрести световые диоды, а затем подбирать к ним преобразователь, этот процесс будет сопровождаться массой сложностей.
Для поиска устройства, обеспечивающего работу именно такого количества потребителей при заданной схеме подключения, придется потратить немало времени.
Приведем пример с шестью потребителями. Потери напряжения у них составляют 3 В, потребляемый ток 300 мА. Для их подключения можно использовать один из методов, при этом в каждом отдельном случае требуемые параметры блока питания будут отличаться.
В нашем случае при последовательном подключении необходим блок на 18 В с током 300 мА. Основной плюс такого способа в том, что через всю линию проходит одинаковая сила, соответственно, все диоды горят с идентичной яркостью.
Если применено параллельное размещение – достаточно использовать преобразователь на 9 В, однако значения затрачиваемого тока будет увеличено вдвое, в сравнении с предыдущим методом.
Если используется последовательный метод с формированием пар по два светодиода, используется драйвер с аналогичными показателями, как в предыдущем случае. При этом яркость освещения будет уже равномерной.
Однако и здесь не обошлось без отрицательных нюансов: при подаче питания к группе, вследствие разброса характеристик один из светодиодов может открываться быстрее второго, соответственно, через него и пойдет ток, вдвойне превышающий номинальное значение.
Многие виды светодиодок для домашнего освещения рассчитаны на подобные краткосрочные скачки, но такой метод относится к менее востребованным.
Виды драйверов по типу устройства
Приспособления, преобразующие питание 220 В на необходимые показатели для светодиодов, условно делятся на три категории: электронные; на базе конденсаторов; диммируемые.
Рынок светотехнических аксессуаров представлен обширным разнообразием моделей драйверов в основном китайского производителя. И несмотря на низкий ценовой диапазон, из этих приборов можно выбрать вполне достойный вариант. Однако стоит обращать внимание на гарантийный талон, т .к. не вся представленная продукция имеет приемлемое качество.
Электронный вид прибора
В идеальном варианте электронный преобразователь должен быть оснащен транзистором. Его роль состоит в осуществлении разгрузки регулировочной микросхемы. Для исключения или максимального сглаживания пульсации, на выходе монтируется конденсатор.
Такого типа устройство относится к дорогостоящей категории, однако оно способно стабилизировать ток до 750 мА, на что балластные механизмы неспособны.
Пульсирование – это не единственный недостаток преобразователей. Вторым можно назвать электромагнитные помехи высокочастотного (ВЧ) диапазона. Так, если в розетку, связанную со светильником, будут подключаться другие электроприборы, например, радио — можно ожидать помехи при приеме цифровых FM-частот, телевидения, роутера и т. д.
В опциональном устройстве качественного прибора должны быть два конденсатора: один – электролитический для сглаживания пульсаций, другой – керамический, для понижения ВЧ. Однако такое сочетание можно встретить нечасто, особенно если говорить о китайских изделиях.
За счет высокого КПД (до 95%) такие механизмы подходят для мощных приборов, используемых в различных сферах, например, для тюнинга автомобилей, в уличных осветительных приборах, а также бытовых LED источниках.
Блок питания на основе конденсаторов
Теперь переходим к не столь популярным устройствам – на базе конденсаторов. Практически все схемы светодиодных ламп дешевого образца, где применены такого типа драйверы, имеют схожие характеристики.
Однако вследствие модификаций производителем они претерпевают изменения, например, удаление какого-либо элемента цепи. Особо часто этой деталью служит один из конденсаторов — сглаживающий.
Плюсов у таких механизмов всего два: они доступны для самостоятельной сборки, а их КПД приравнивается к стопроцентному, т. к. потери будут только на p-n переходах и сопротивлениях.
Такое же количество и отрицательных сторон: низкая электробезопасность и высокая степень пульсации. Второй недостаток составляет около 100 Гц и образуется в результате выпрямления переменного напряжения. В ГОСТе прописана норма допустимой пульсации в 10-20 % в зависимости от предназначения помещения, где установлен светотехнический прибор.
Единственный способ сгладить этот недостаток – подбор конденсатора с правильным номиналом. Тем не менее не стоит рассчитывать на полное устранение проблемы, – такое решение может всего лишь сгладить интенсивность всплесков.
Диммируемые преобразователи тока
Драйверы-светорегуляторы для диммируемых LED-лампочек позволяют менять входящие и выходящие показатели тока, при этом снижается или увеличивается степень яркости света, излучаемого диодами.
Существует два метода подключения:
- первый предполагает плавный пуск;
- второй – импульсный.
Рассмотри принцип работы диммируемых драйверов на основе микросхемы CPC9909, используемой в качестве регулирующего аппарата для светодиодных цепей, в том числе и с высокой яркостью.
При плавном пуске микросхема с драйвером обеспечивает постепенное включение диодов с нарастающей яркостью. Для этого процесса задействуют два резистора, подключенные к выводу LD, предназначенного для выполнения задачи плавного диммирования. Так реализуется важная задача – продление срока эксплуатации LED элементов.
Этот же вывод обеспечивает и аналоговое регулирование — резистор на 2,2 кОм меняют на более мощный переменный аналог — 5,1 кОм. Таким образом достигается плавное изменение потенциала на выходе.
Применение второго способа предполагает подачу импульсов прямоугольного типа на низкочастотный вывод PWMD. При этом задействуют либо микроконтроллер, либо импульсный генератор, которые обязательно разделяются оптопарой.
С корпусом или без него?
Драйвера выпускаются в корпусе или без. Первый вариант является самым распространенным и более дорогим. Такие устройства защищены от попадания влаги и частиц пыли.
Приспособления второго типа применяются при проведении скрытого монтажа и, соответственно, отличаются дешевизной.
Каждый из них отличается допустимой температурой в процессе эксплуатации – на это также необходимо обращать внимание при подборе.
Классическая схема драйвера
Для самостоятельной сборки LED блока питания разберемся с наиболее простым устройством импульсного типа, не имеющего гальванической развязки. Главное преимущество такого рода схем – простое подключение и надежная работа.
Схема такого механизма составлена из трех основных каскадных областей:
- Разделитель напряжения на емкостном сопротивлении.
- Выпрямитель.
- Стабилизаторы напряжения.
Первый участок – противодействие, оказываемое переменному току на конденсаторе С1 с резистором. Последний требуется исключительно для осуществления самостоятельной зарядки инертного элемента. На работу схемы он не оказывает влияния.
Когда образованная полуволна напряжения проходит через конденсатор, ток протекает до тех пор, пока обкладки полностью не зарядятся. Чем меньше емкость механизма, тем меньше времени будет затрачено на его полный заряд.
Например, прибор объемом 0,3-0,4 мкФ заряжается в течение 1/10 периода полуволны, т. е. всего десятая доля проходящего напряжения пройдет через этот участок.
Второй каскад является электрическим устройством, преобразующим (выпрямляющим) переменный ток в пульсирующий. Такой процесс называется двухполупериодным. Поскольку одна часть полуволны была сглажена конденсатором, на выходе этого участка постоянный ток будет равен 20-25 В.
Третий каскад работает на базе сглаживающего стабилизирующего фильтра – электролитического конденсатора. Выбор его емкостных параметров зависит от силы нагрузки.
Поскольку собранная схема воспроизводит свою работу сразу, нельзя касаться оголенных проводов, т. к. проводимый ток достигает десятков ампер – предварительно проводится изоляция линий.
Выводы и полезное видео по теме
Все сложности, с которыми может столкнуться радиолюбитель, подбирающий преобразователь для мощных LED ламп, подробно описаны в видеосюжете:
Ключевые особенности самостоятельного подключения преобразовательного прибора в электросхему:
Поэтапный инструктаж, описывающий процесс сборки своими руками светодиодного драйвера из подручных средств:
Несмотря на заявленные производителем десятки тысяч часов бесперебойной работы светодиодных ламп, есть множество факторов, существенно снижающих эти показатели.
Для сглаживания всех прыжков тока в электросистеме предназначены драйверы. К их выбору или самостоятельной сборке нужно подходить ответственно после просчета всех необходимых параметров.
Расскажите о том, как подбирали драйвер для работы светодиодной лампочки. Поделитесь своими аргументами и способами стабилизации поставки напряжения диодному прибору освещения. Оставляйте комментарии в находящемся ниже блоке, задавайте вопросы, размещайте фотоснимки по теме статьи.
Как подобрать драйвер для светодиодных светильников
На нашем сайте большинство светильников Quantum line, Quantum board и Booster line продаются в виде готовых комплектов с уже подобранными драйверами и всеми необходимыми проводами для их подключения. Эти готовые комплекты можно найти в соответствующих разделах Каталога.
Но иногда у покупателей возникают нестандартные задачи, связанные с подключением нескольких модулей к одному драйверу, и тогда появляется вопросы, например: «Как подобрать блок питания для нескольких квантум бордов / лайнов / бустеров?»
В данной статье мы прольем свет на эти вопросы и разберемся в этом более подробно.
Первое, что нужно понимать, — это то, что у серий Quantum Board и у серий Quantum line и Booster line используются разные токи питания. Поэтому на один из наиболее частых вопросов:
«Можно ли запитать бустеры и борды одним драйвером?» — ответ: «нет».
Ток питания у этих модулей различается более чем в два раза, поэтому если запитать бустер драйвером от борда, он просто сгорит, а если борд запитать драйвером от бустера (при условии попадания в диапазон напряжения, о чем мы поговорим дальше), то он будет работать вполсилы.
Поэтому далее мы будем рассматривать только варианты подбора драйвера для питания модулей, поддерживающих только один и тот же ток питания. А про возможный вариант запитки бустеров драйвером от борда поговорим в конце статьи и расскажем о минусах такого решения.
Также для облегчения подбора бустеров (поскольку у всех бустеров разные падения напряжений и сложно сориентироваться) на сайте есть удобный калькулятор , поэтому если у Вас вопрос по подбору драйвера для бустеров, далее статью читать необязательно.
И напоследок, сразу оговорим, что на всех драйверах мощность указана номинально, и на нее смотреть при выборе драйвера не требуется. Вариант «бустер 20 Вт, борд 60 Вт, значит, я запитаю 3 бустера и 1 борд одним драйвером 120 Вт» — в корне неправильный и приведет к выходу из строя всех подключаемых модулей! Будьте внимательны!
Итак, приступим. Для начала Вам необходимо определиться, какие именно модули и в каком количестве Вы хотите подключать.
*Обратите внимание, что мы не рекомендуем подключать слишком много модулей к одному драйверу. Это связано с простой логикой: в случае повреждения одного из модулей, запитанных одним драйвером, остальные также перестанут работать из-за нехватки падения напряжения. И если будет поврежден драйвер, все модули также перестанут работать. В обоих этих случаях Ваши растения останутся полностью без света. В случае же, если модули будут запитаны несколькими драйверами, при повреждении только одного комплекта остальные продолжат работу, и растения удастся сохранить. Вторая причина: драйверы, рассчитанные на мощности более 150 Вт, начинают непропорционально расти в цене. То есть дешевле будет приобрести 4 драйвера на 50-60 Вт, чем один драйвер на 200-240 Вт.
В описании любого модуля Quantum и Booster есть данные о токе запитки и падении напряжения:
Чтобы подобрать драйвер только к одному любому модулю, этой информации уже достаточно: драйвер должен иметь указанный выходной ток, а диапазон выходного напряжения драйвера должен включать в себя указанное в характеристиках модуля значение. То есть для модуля с характеристиками со скриншота подойдет драйвер с характеристиками:
Далее будем рассматривать подключение сразу нескольких модулей к одному драйверу.
Как уже было сказано ранее, ток запитки у всех модулей должен быть одинаковым. Затем необходимо просуммировать падения напряжения на всех модулях, которые Вы подобрали.
Соответственно, драйвер, который Вам необходимо искать для питания выбранных модулей, должен иметь выходной ток, указанный на модулях, и диапазон напряжений, включающий в себя суммарное падение напряжений на всех модулях.
Теперь давайте разберем на примерах:
- Хотим подключить модули Quantum board 1.1 и 1.3 к одному драйверу. Смотрим характеристики в их описании на сайте:
Модуль 1.1 имеет ток 1300 мА и падение напряжения 43,9 В, а 1.3 – 1300 мА и 47 В.
Ток одинаковый, значит, мы можем запитать эти модули одним драйвером. Суммируем напряжения: 43,9+47 = 90,7 В.
Значит, нам необходимо искать драйвер с характеристиками выходного тока 1300 мА и диапазоном выходного напряжения, включающим в себя значение 90,7 В.
В этом случае подойдет, например, драйвер 120W 1300mA .
- Хотим подключить к одному драйверу 3 шт Booster line: 4.1, 4.6 и 4.11.
У всех модулей рекомендуемый ток питания 600 мА. Падения напряжения суммируем: 31+15,5+10,5 = 57 В.
Значит, нам нужен драйвер с выходным током 600 мА и диапазоном напряжения, включающим в себя значение 57 В. Идеально подходит драйвер 30 Вт 600 мА .
Обратите внимание, что все разобранные примеры и принцип подбора основаны на последовательном подключении модулей. Мы настоятельно рекомендуем именно этот вариант подключения и подбора.
Ниже мы рассмотрим обещанный вариант подключения бустеров в одну цепь с бордами. Это будет последовательно-параллельный тип соединения, более сложный и рискованный, поэтому настоятельно рекомендуем выбирать этот вариант подключения только тем, кто хорошо разбирается в электрике. И вот почему:
- гарантия на светильники не распространяется на неверные расчеты и неверно сделанное подключение.
- этот вариант представляет повышенный риск в связи с тем, что мы будем подключать бустеры в цепь с бордами параллельно, а не последовательно, чтобы разделить ток 1300 мА пополам на каждый бустер (подключать их нужно только попарно), чтобы получить по 650 мА на каждый бустер, но при этом если один из бустеров будет поврежден и выйдет из строя, ток перераспределится, и на второй бустер придет 1300 мА, что приведет к выходу из строя и второго бустера тоже. Так что имейте это в виду, если все-таки решите выбрать этот вариант.
- Подключать бустеры попарно необходимо только с полностью одинаковыми электрическими характеристиками, то есть одного и того же спектра. Если подключить параллельно два бустера с разным падением напряжения, ток может распределиться неравномерно, что, опять же, приведет к выходу обоих бустеров из строя.
Итак, разберем сразу на примере. Имеем борд 1.1 и хотим добавить к нему 2 бустера 4.1. Смотрим характеристики:
У борда ток 1300 мА, падение напряжения 43.9В. У бустеров – 600 мА и 31В.
При параллельном подключении двух бустеров их общее падение напряжения останется 31В (почему — читаем в учебнике физики о том, как делятся ток и напряжение при последовательном и при параллельном соединениях). То есть суммарное падение напряжения бустеров с бордом получится 74,9 В. Для драйвера 60 Вт это много, а для драйвера 120 Вт – маловато. Значит, нужно добавить еще одну группу параллельного соединения. Например, 2 бустера 4.6 .У них ток 600 мА, падение напряжения 15,5 В (в параллели будет столько же).
Тогда суммарное падение напряжения у борда 1.1, двух бустеров 4.1 и двух бустеров 4.6 получится 43,9+31+15,5 = 90,4 – идеально для драйвера Драйвер для Quantum board 1050-1400мА 120W .
Как правильно подобрать драйвер для светодиодов
Лидирующую позицию среди наиболее эффективных источников искусственного света занимают сегодня светодиоды. Это во многом является заслугой качественных источников питания для них. При работе совместно с правильно подобранным драйвером, светодиод длительно сохранит устойчивую яркость света, а срок службы светодиода окажется очень-очень долгим, измеряемым десятками тысяч часов.
Таким образом, правильно подобранный драйвер для светодиодов — залог долгой и надежной работы источника света. И в этой статье мы постараемся раскрыть тему того, как правильно выбрать драйвер для светодиода, на что обратить внимание, и какие вообще они бывают.
Драйвером для светодиодов называют стабилизированный источник питания постоянного напряжения или постоянного тока. Вообще, изначально, светодиодный драйвер — это источник стабильного тока, но сегодня даже источники постоянного напряжения для светодиодов называют светодиодными драйверами. То есть можно сказать, что главное условие — это стабильные характеристики питания постоянным током.
Электронное устройство (по сути — стабилизированный импульсный преобразователь) подбирается под необходимую нагрузку, будь то набор отдельных светодиодов, собранных в последовательную цепочку, или параллельный набор таких цепочек, либо может быть лента или вообще один мощный светодиод.
Стабилизированный источник питания постоянного напряжения хорошо подойдет для питания светодиодных лент, LED-линеек, или для запитки набора из нескольких мощных светодиодов, соединенных по одному параллельно, — то есть когда номинальное напряжение светодиодной нагрузки точно известно, и достаточно только подобрать блок питания на номинальное напряжение при соответствующей максимальной мощности.
Обычно это не вызывает проблем, например: 10 светодиодов на напряжение 12 вольт, по 10 ватт каждый, — потребуют 100 ваттный блок питания на 12 вольт, рассчитанный на максимальный ток в 8,3 ампера. Останется подрегулировать напряжение на выходе при помощи регулировочного резистора сбоку, — и готово.
Для более сложных светодиодных сборок, особенно когда соединяется несколько светодиодов последовательно, необходим не просто блок питания со стабилизированным выходным напряжением, а полноценный светодиодный драйвер — электронное устройство со стабилизированным выходным током. Здесь ток является главным параметром, а напряжение питания светодиодной сборки может автоматически варьироваться в определенных пределах.
Для ровного свечения светодиодной сборки, необходимо обеспечить номинальный ток через все кристаллы, однако падение напряжения на кристаллах может у разных светодиодов отличаться (поскольку немного различаются ВАХ каждого из светодиодов в сборке), — поэтому напряжение не будет на каждом светодиоде одним и тем же, а вот ток должен быть одинаковым.
Светодиодные драйверы выпускаются в основном на питание от сети 220 вольт или от бортовой сети автомобиля 12 вольт. Выходные параметры драйвера указываются в виде диапазона напряжений и номинального тока.
Например, драйвер с выходом на 40-50 вольт, 600 мА позволит подключить последовательно четыре 12 вольтовых светодиода мощностью по 5-7 ватт. На каждом светодиоде упадет приблизительно по 12 вольт, ток через последовательную цепочку составит ровно по 600 мА, при этом напряжение 48 вольт попадает в рабочий диапазон драйвера.
Драйвер для светодиодов со стабилизированным током — это универсальный блок питания для светодиодных сборок, причем эффективность его получается довольно высокой и вот почему.
Мощность светодиодной сборки — критерий важный, но чем обусловлена эта мощность нагрузки? Если бы ток был не стабилизированным, то значительная часть мощности рассеялась бы на выравнивающих резисторах сборки, то есть КПД оказался бы низким. Но с драйвером, обладающим стабилизацией по току, выравнивающие резисторы не нужны, вот и КПД источника света получится в результате очень высоким.
Драйверы разных производителей отличаются между собой выходной мощностью, классом защиты и применяемой элементной базой. Как правило, в основе — импульсный ШИМ-преобразователь на специализированной микросхеме, со стабилизацией выхода по току и с защитой от короткого замыкания и перегрузки.
Питание от сети переменного тока 220 вольт или постоянного тока с напряжением 12 вольт. Самые простые компактные драйверы с низковольтным питанием могут быть выполнены на одной универсальной микросхеме, но надежность их, про причине упрощения, ниже. Тем не менее, такие решения популярны в автотюнинге.
Выбирая драйвер для светодиодов следует понимать, что применение резисторов не спасает от помех, как и применение упрощенных схем с гасящими конденсаторами. Любые скачки напряжения проходят через резисторы и конденсаторы, и нелинейная ВАХ светодиода обязательно отразится в виде скачка тока через кристалл, а это вредно для полупроводника. Линейные стабилизаторы — тоже не лучший вариант в плане защищенности от помех, к тому же эффективность таких решений ниже.
Лучше всего, если точное количество, мощность, и схема включения светодиодов будут заранее известны, и все светодиоды сборки будут одинаковой модели и из одной партии. Затем выбирают драйвер.
На корпусе обязательно указывается диапазон входных напряжений, выходных напряжений, номинальный ток. Исходя из этих параметров выбирают драйвер. Обратите внимание на класс защиты корпуса.
Для исследовательских задач подходят, например, бескорпусные светодиодные драйверы, такие модели широко представлены сегодня на рынке. Если потребуется поместить изделие в корпус, то корпус может быть изготовлен пользователем самостоятельно.
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Все про светодиоды
Что такое драйвер для led-светильников, как подобрать и проверить это устройство?
Специальные электронные схемы – драйверы – позволяют продлевать работу светодиодов, делать их свечение равномерным и качественным. Узнаем, как работает это устройство, как правильно его выбрать и установить, а также изготовить своими руками.
Что такое драйвер и зачем он нужен?
Светодиоды очень чувствительны к изменениям параметров электросети, поэтому их подключают в сеть через драйвер – электронное устройство, контролирующее силу тока и напряжение.
Обычно драйвер к led-светильнику подбирают с запасом по мощности и с учетом диапазона выходного напряжения и тока. Если его параметры не будут подходить к светодиодному устройству, оно придет в негодность, его придется утилизировать.
Принцип работы, классическая схема и отличие от блока питания
Несмотря на то, что драйвер часто называют блоком питания, между этими двумя понятиями есть разница. Драйвер – источник тока, который поддерживает его неизменное значение для прохождения через светодиод, а блок питания поддерживает стабильное напряжение.
- Подключим к источнику на 12 В сопротивление (R) 40 Ом.
- Пусть через резистор протекает ток (I) 300 мА. При установке двух резисторов ток удвоится и станет равен 600 мА. При этом напряжение не изменится, так как оно имеет пропорциональную связь с током и сопротивлением (закон Ома I=U/R).
- Пусть в цепь с драйвером на 225 мА включено сопротивление (R) 30 Ом.
- Если при напряжении (U) 12 В включить два параллельно включенных резистора по 30 Ом, ток останется прежним – 225 мА, а напряжение станет вдвое меньше – 6 В.
Драйвер в итоге обеспечивает нагрузку заданным выходным током независимо от скачков напряжения. Поэтому светодиоды, на которые будет подаваться напряжение 6 В, будут светить так же ярко, как и при источнике в 10 В, если на него будет подан ток заданного уровня.
Схема драйвера для светодиодов:
- емкостного сопротивления для разделения напряжения;
- выпрямляющего модуля;
- стабилизатора.
- При прохождении тока конденсатор С заряжается до полной зарядки. Чем его емкость меньше, тем быстрее он зарядится.
- Переменный ток преобразуется в пульсирующий. Первая часть волны сглаживается при прохождении через конденсатор С.
- Электролитический конденсатор, завершающий цепь, служит сглаживающим фильтром-стабилизатором.
Технические характеристики
При покупке светодиодного светильника может возникнуть потребность в покупке драйвера, если осветительное устройство не имеет преобразователя тока.
- ток на выходе, А;
- рабочая мощность, Вт;
- напряжение на выходе, В.
Выходное напряжение может меняться. Оно зависит от схемы подключения к питанию и числа светодиодов. От величины тока зависит уровень яркости и мощность.
Чтобы диоды светили ярко и не притухали, на выходе драйвера ток поддерживается на заданном уровне. Мощность преобразователя должна быть несколько выше, чем суммарное количество Вт всех диодов.
- P (led) – это мощность одного светодиода;
- Х – количество диодов.
Если расчетная мощность получилась 10 Вт, драйвер надо брать с запасом на 20-30 %.
Виды драйверов
Все драйвера различают по трем критериям – по способу стабилизации, конструкционным особенностям и наличию/отсутствию защиты. Рассмотрим все варианты подробнее.
Линейные и импульсные
В зависимости от схемы стабилизации тока драйверы делятся на два типа – линейные и импульсные. Они отличаются принципом работы и эффективностью.
Перед электронной схемой драйвера поставлена задача – обеспечение стабильных значений тока и напряжения, подводимых к кристаллу (светодиоду). Самый простой и дешевый вариант – включение в цепь ограничительного резистора.
Линейная схема питания:
Эта элементарная схема не способна обеспечивать автоматическое поддержание тока. При повышении напряжения он пропорционально растет и, когда превысит допустимое значение, кристалл разрушится от перегрева.
Более сложное управление осуществляется путем включения в цепь транзистора. Минус линейной схемы – снижение мощности при росте напряжения. Такой вариант допустим при работе led-источников малой мощности, но при работе мощных светодиодов такие схемы не применяют.
- простота;
- дешевизна;
- относительная надежность.
- после нажатия кнопки заряжается конденсатор;
- после отпускания конденсатор разряжается, отдавая запасённую энергию полупроводниковому элементу (светодиоду), который начинает испускать свет;
- если напряжение растет, то время зарядки конденсатора сокращается, если падает – увеличивается.
Нажимать кнопку пользователю не приходится – за него всё делает электроника. Роль кнопочного механизма в современных источниках питания выполняют полупроводники – тиристоры или транзисторы.
Рассмотренный принцип работы называется в электронике широтно-импульсной модуляцией. За секунду может происходить десятки и даже тысячи срабатываний. КПД такой схемы достигает 95 %.
Упрощенная схема импульсной стабилизации:
Электронные, диммируемые и на базе конденсаторов
От принципа устройства драйвера зависит область его применения и эксплуатационные характеристики.
-
Электронные. В их схемах обязательно используется транзистор. На выходе устанавливается конденсатор, исключающий или хотя бы сглаживающий пульсации тока. Электронные преобразователи способны стабилизировать токи до 750 мА.
Драйверы электронного типа борются не только с пульсациями, но и с электромагнитными высокочастотными помехами, наводимыми электроприборами (радио, телевизор, роутер и т. п.). Минимизировать помехи позволяет наличие специального керамического конденсатора.
Минус электронного драйвера – высокая стоимость, плюс – КПД близкий к 95 %. Их используют в мощных led-светильниках: автофарах, прожекторах, уличных фонарях.
Драйверы на конденсаторах могут вызывать мерцание, поэтому их не рекомендуется использовать вместе с приборами, установленными внутри помещений. Мерцание вредно влияет на зрение и раздражает нервную систему.
В корпусе и без него
Драйвер может быть размещен внутри защитного корпуса, но может и не иметь его. Электронные схемы уязвимы перед многими внешними факторами, поэтому более надежным вариантом считается размещение драйвера в корпусе.
Корпус защищает электронный преобразователь от влаги, пыли, попадания прямых солнечных лучей и т. д. Бескорпусные модели обходятся дешевле, но у них меньше срок службы и хуже стабильность эксплуатации. Они больше подходят для скрытого монтажа.
Срок годности
Драйвер рассчитан примерно на 30 000 часов. Это немого меньше, чем расчетный срок службы многих светодиодных светильников. Такое уменьшение связано с неблагоприятными факторами, в которых приходится работать стабилизатору тока.
- скачки напряжения в электросети;
- изменения температуры и/или влажности.
Если прибор мощностью 200 Вт имеет нагрузку 100 Вт, то 50 % номинального значения возвращается в сеть. Это может вызвать перегрузку и сбои питания.
Срок службы драйвера ограничен долговечностью сглаживающего конденсатора. Со временем в нем испаряется электролит, и прибор выходит из строя.
Чтобы продлить работу драйвера, его необходимо эксплуатировать в помещениях с нормальной (не повышенной) влажностью, и подключать к сети с качественным, без скачков, напряжением.
Как подобрать драйвер для светодиодного светильника?
При подключении к стабилизатору тока полупроводники получают необходимую им мощность и достигают номинальных характеристик. От того, насколько правильно будет подобран драйвер, зависит срок службы диодов.
- Мощность. По ней определяют максимально допустимую нагрузку, на которую рассчитан прибор. Например, маркировка (20х26)х1Вт означает, что к драйверу можно подключать одновременно от 20 до 26 светодиодов, каждый мощностью 1 Вт.
- Ток и напряжение (номинальные значения). Данный параметр производители указывают на каждом светодиоде, именно по нему подбирают драйвер. Если максимальный номинальный ток равен 350 мА, необходимо подключать источник питания на 300-330 мА.
Подобный диапазон рабочих токов позволяет обеспечивать срок годности светильника, предусмотренный производителем. - Класс защиты. От этого показателя зависит, где именно можно применять светильники – на улице или в помещении. Класс влагостойкости и герметичности обозначается буквами IP и выражается двумя цифрами.
По первой цифре судят о защите от твердых фракций (пыль, грязь, песок, лёд), по второй – от жидких сред. Класс защиты не указывает на температуру, при которой можно применять светильник. - Корпус. Драйвер может иметь открытый перфорированный металлический корпус или закрытый. Во втором случае устройство помещено в металлическую коробку. Для домашних условий подойдет негерметизированный корпус из пластика.
- Принцип работы. Ограничительный резистор не избавляет от перепадов напряжения в электросети и не защищает от импульсных помех. Малейшее изменение напряжения приводит к резким скачкам тока. Линейный стабилизаторы считаются ненадежными и низкоэффективными драйверами, предпочтение отдают импульсным схемам.
Как проверить работоспособность?
Чтобы проверить драйвер без нагрузки, достаточно подать на вход блока 220 В. Если устройство исправно, на выходе появится постоянное напряжение. Его значение будет немного больше верхнего предела, указанного в маркировке драйвера.
Если, к примеру, на стабилизаторе стоит диапазон 27-37 В, то на выходе должно быть около 40 В. Чтобы поддерживать ток в заданном диапазоне, при увеличении сопротивления нагрузки (без нагрузки оно стремится к бесконечности) напряжение также растёт до определенного предела.
Данный способ проверки прост и доступен, но не позволяет делать однозначные выводы о 100%-ной исправности устройства. Попадаются драйвера, которые после включения без нагрузки не запускаются или ведут себя непонятным образом.
- Подключите к выходу драйвера резистор, подобрав его сопротивление на основе закона Ома. К примеру, мощность драйвера 20 Вт, ток на выходе 600 мА, напряжение – 25-35 В. Искомое сопротивление будет составлять 38-58 Ом.
- Подберите сопротивление из заданного диапазона и с соответствующей мощностью. Даже если она будет небольшой, то этого вполне хватит для проверки.
- Подключите резистор и замерьте тестером выходное напряжение. Если оно в заданных пределах, то драйвер точно исправен.
- В линейных стабилизаторах для защиты от перепадов напряжения применяют пару резисторов сопротивлением от 5 до 100 Ом. Один стоит на входе диодного моста, второй – на выходе. Чтобы уменьшить мерцание, параллельно нагрузке включают конденсатор-электролит максимальной емкости.
Неисправности линейных драйверов могут быть связаны с перегоранием одного или сразу двух защитных резисторов. - В импульсных преобразователях тока микросхемы защищены от перегрузки, перегрева и перенапряжения и по идее не могут сломаться. На деле же любая микросхема, особенно в драйверах китайского производства, может прийти в негодность.
Проблема усложняется тем, что многим китайским микросхемам трудно найти замену. Некоторые из них невозможно найти даже в интернете.
Подключение
Подключение драйвера к светодиодам не вызывает сложностей у пользователей, так как на его корпусе имеется необходимая маркировка.
- На входные провода (INPUT) подайте входное напряжение.
- К выходным проводам (OUTPUT) подключите светодиоды.
- Полярный вход (INPUT). Если драйвер запитывается постоянным напряжением, то вывод «+» подключите к аналогичному полюсу источника питания. Если напряжение переменное, обратите внимание на маркировку, нанесённую на входные провода. Возможны два варианта:
- «L» и «N». На вывод «L» подайте фазу (ее найдите посредством индикаторной отвертки), на «N» – ноль.
- «
Есть и второй вариант подключения светодиодов – параллельно включаются несколько цепочек, содержащих равное количество диодов. При последовательном подключении все элементы светятся одинаково, при параллельном варианте линии могут иметь разную яркость.
Как сделать драйвер для светодиодного светильника своими руками?
- Снимите корпус с зарядного устройства.
- С помощью паяльника уберите резистор, ограничивающий напряжение, подаваемое на телефон.
При выполнении работ по созданию дайвера из зарядного устройства необходимо придерживаться правил техники безопасности. Если дотронуться до оголенных частей, можно получить сильный удар током.
Драйвер можно собрать и с нуля. Для этого понадобится паяльник, тестер, провода и интегральный стабилизатор КР142ЕН12А (либо зарубежный аналог – LM317), который можно приобрести в любом специализированном магазине рублей за 20.
Параметры покупной микросхемы – напряжение 40 В и ток 1,5 А. В нем имеется встроенная защита от перегрузки, перегрева и короткого замыкания. Микросхема стабилизирует напряжение, а драйвер выравнивает ток, поэтому понадобится внести изменения в стандартную схему подключения микросхемы.
Драйвер на интегральном стабилизаторе:
- R – сопротивление, Ом;
- I – ток, А.
- Соберите стабилизатор тока на 9,9 В с током 300 мА. Тогда R1 =1,2/0,3= 4 Ом. Мощность резистора – от 4 Вт. Можно взять резисторы, которые применяются в телевизорах. Их также можно купить в магазинах. Мощность этих элементов – 2 Вт, сопротивление – 1-2 Ом.
- Соедините резисторы последовательно. Их сопротивление сложится и будет равно 2-4 Ом.
- Прикрепите микросхему на радиатор и подключите к выходу драйвера цепь из последовательно соединенных диодов. Соблюдайте полярность при подключении светодиодов.
- На вход подайте постоянное напряжение 12-40 В (прибор рассчитан на 9,9 В, поэтому берём с запасом). Превышать предельное значение не стоит – микросхема может сгореть.
Подаваемое напряжение может быть не стабилизированным. Можно воспользоваться автомобильным аккумулятором, блоком питания от ноутбука или понижающим трансформатором с диодным мостом. Подключите драйвер, соблюдай полярность – работа сделана.
Благодаря драйверам удается не только улучшить работу светодиодных светильников, но и обеспечить их долгую, бесперебойную работу. Учитывая стоимость led-светильников, применение драйверов становится экономически выгодным решением.
Если увлекаетесь инвестициями, то рекомендую отличную статью про подсчёт комиссий и расходов на брокерских счетах.