Генератор прямоугольных импульсов для промывки форсунок на микросхеме NE555.
Схема для промывки форсунок
Не думал, что рисунок, который я нарисовал несколько лет назад, начну встречать в Интернете. На myfielder.ru я его выложил с комментариями, а в народ ушла голая картинка, а отсюда и вопросы.
Не стоит на схему возлагать больших надежд, потому что это просто усовершенствованная кнопка от звонка.
Пояснение про кнопку от звонка
•D1,2,3 – диоды 1N4007. Как достаточно распространенные.
•C1,3,4 – конденсаторы керамические 50В. С4 можно поставить электролитический 2,2мкФх25В. Необходимо соблюсти полярность. Конденсаторы можно ставить и с бОльшим напряжением.
•С2 — конденсатор электролитический. При маленькой его емкости питание микросхемы может быть нестабильным, а отсюда и сбои в работе.
•Постоянные резисторы все 0,25 Вт. R1 не менее 1k. Для остальных можно взять и ближайшее значение. R5 просто 20 Ом, а не кОм.
•R3,4 — переменные резисторы. Желательно с линейной характеристикой. На схеме показаны 16К1-В10К и 16К1-В500К.
С платы резисторы вынес специально, потому что это дает возможность подобрать их в других корпусах, да и расположить в какой-нибудь коробке будет проще.
Если не оказалось с номиналом 10к, то можно ставить 5к или 20к. В первом случае время открытого состояния форсунки уменьшится примерно в два раза и, если его окажется мало для полного открытия форсунки, то надо будет увеличить номинал резистора R1. Во втором случае время открытого состояния форсунки увеличится примерно в два раза, и здесь мы выходим из рабочего диапазона форсунки. Это надо будет помнить и не выводить R3 больше чем наполовину.
Если не оказалось с номиналом 500к, то можно ставить 200к или 1М. В первом случае минимальная частота будет примерно 3 Гц и будет зря повышенный расход промывающей жидкости. Во втором случае на минимальной частоте схема может работать неустойчиво, но это не страшно, потому что достаточно R4 не выводить больше чем наполовину.
•Транзистор IRF3710 или IRF3710Z в корпусе ТО220. N-канал, Uси 100В, Iси max 57A. Можно попробовать и с другим Iси. При сильном нагреве установить радиатор. У транзисторов других производителей назначения выводов могут не совпадать.
•NE555 – микросхема-таймер в корпусе DIP-8. Можно попробовать отечественную КР1006ВИ1.
•Панелька SCS-8 под микросхему.
Для режима "Кавитация" необходимо частоту увеличить до 400Гц. Для этого С4 ставим 0,22 мкФ, а R4 скручиваем по часовой в крайнее положение.
Если есть желание использовать оба режима, то можно конденсатор 2,2мкФ подключить через кнопку С фиксацией или через выключатель. В обычном режиме суммарная емкость будет немного больше, но это на работе не отразится.
Регулировка скважности – регулировка времени открытого состояния форсунок. При данных значениях R1, R3 и С4 время будет лежать в рабочем диапазоне форсунок и будет примерно 1,5-20 млСек. При изменении скважности частота будет оставаться неизменной.
Регулировка частоты при данных значениях С4, R4, R2, R3 будет примерно 1-50Гц, что соответствует 120-6000 об/мин двигателя. Форсунка срабатывает 1 раз/сек (1Гц), если коленвал вращается со скоростью 2об/сек, что соответствует 120об/мин. При изменении частоты время открытого состояния форсунок будет оставаться неизменным.
Можно сделать и без регулировок, но тогда автолюбитель лишится возможности что-нибудь покрутить и будет ему постоянно казаться, что быстро или медленно. Интересно было наблюдать, как взрослый дядька 1м 90 ростом, сидя на корточках, в одной руке держал переноску и подсвечивал с обратной стороны колбы, а другой постоянно менял регулировки. И так полчаса.
Узкая мама в термоусадке хорошо подходит для подключения форсунок.
В схеме отсутствует защита от короткого замыкания и от перегрузки, поэтому перед включением желательно проконтролировать сопротивление обмоток форсунок, которое должно быть в районе 14 Ом.
Это набросок для печатной макетной платы размером 35х50мм с шагом 2,54мм. Cогласно правой части рисунка, вставить детали, а, согласно левой (для удобства она зеркально повернута), все это соединить. Для коротких дорожек можно использовать вывода самих деталей, а для длинных — медный одножильный лужёный провод. Стендом это назвать язык не поворачивается, а вот держателем форсунок можно. Помыли, разобрали, сложили в чемодан и на полку до следующего лета.
Скачать список деталей в формате WORD
Скачать картинку для Лазерно-утюжной технологии. Печатать в масштабе 100%. Сначала лучше потренироваться на обычной бумаге.
———————————————————————————————————————-
На чём машина работает, то не моет, а что моет, то на том машина не работает.
Ультразвук моет, а химия делает профилактику. Один раз в жизни форсунку помыть, а дальше делать ей периодические профилактики.
Хотите за 5 минут отмыть то, что маралось 5 лет? Это вопрос на минутное пшикание Карбклинером.
Собрались в гараже в пятницу вечером владелец Филдера, владелец Хонды Stream и владелец Калдины. Форсунки установили на промывку и начали за пивом вести беседы. И спросил я у владельца Хонды: «Владелец Филдера – Филдеровод, а владелец Хонды Stream кто?». Не стал дожидаться и ответил за него: «Стремачи Вы». Стремач немножко обиделся, а владелец КАЛдины сделал вид, что ничего не слышал, и продолжал разглядывать факел распыла.
лабы федот / Подготовка и проверка работы генератора импульсов
3)
6.Выводы и оценка полученных результатов:
Выполнив данную лаб. Работу я овладел практическими навыками работы с генератором импульсов.
Овладел практическими навыками измерения параметров выходного сигнала генератора с помощью осциллографа. Собрал сему состоящую из генератора импульсов и осциллографа. Все данные записал в таблицу
Как проверить импульс мультиметром
В связи с широким распространением импульсных блоков питания, в различной технике, требуется в случае поломки, уметь самостоятельно выполнять их ремонт. Все это, начиная от маломощных зарядных для смартфона, со стабилизацией напряжения, блоков питания цифровых приставок, ЖК и LED ТВ и мониторов, до тех же самых мощных компьютерных блоков питания, формата ATX, простейшие случаи ремонта которых, мы уже рассматривали ранее, это все будут импульсные блоки питания.
Фото — импульсный блок питания
Также ранее было сказано, что нам для проведения большинства измерений, бывает достаточно обычного цифрового мультиметра. Но здесь есть один важный нюанс: при проверке, например измеряя сопротивление, либо в режиме звуковой прозвонки, мы можем определить только условно не рабочую деталь, по низкому сопротивлению, между ее ножками. Обычно оно составляет где-то от нуля, до 40-50 Ом, либо обрыв, но тогда для этого нужно знать, какое сопротивление должно быть, между ножками у рабочей детали, что не всегда есть возможность проверить. Но в случае проверки работоспособности ШИМ контроллера, этого обычно бывает недостаточно. Нужен либо осциллограф, либо определение его работоспособности, по косвенным признакам.
Мультиметр дешёвый DT
Сопротивление между ножками может быть и выше этих пределов, а микросхема на деле, может быть нерабочая. Но недавно столкнулся с таким случаем: разъем шлейфа питания, идущий с блока питания на скалер, сверху имел доступ для измерения только к верхнему, из двух рядов контактов на разъеме, нижний был скрыт корпусом, и доступ к нему имелся только с обратной стороны платы, что сильно затрудняет ремонт. Даже простое измерение напряжения на разъемах, в такой ситуации, бывает затруднено. Требуется второй человек, который согласится держать плату, на разъеме которой, ты будешь проводить измерения напряжения на выводах, с обратной стороны платы, причем часть деталей там, находится под сетевым напряжением, а сама плата находится на весу. Это не всегда возможно, часто люди, которых просишь подержать плату, просто боятся брать ее в руки, особенно если это платы питания, с одной стороны они правильно делают, меры предосторожности с не подготовленным персоналом, всегда должны быть более строгими.
ШИМ контроллер — микросхема
Так как же быть? Как можно быстро и без заморочек, условно проверить работу ШИМ контроллера, а если быть более точным, цепей питания, а одновременно и импульсного трансформатора, повышающего трансформатора, питающего лампы подсветки? А очень просто. Недавно нашел один интересный способ на Ю-тубе, для мастеров, автор очень доступно объяснял все. Начну издалека.
Что есть, упрощенно говоря, обычный трансформатор? Это две, или более обмоток, на одном сердечнике. Но здесь есть один нюанс, которым мы и воспользуемся, сердечник, как и сами обмотки, в теории могут быть раздельными, и просто находиться рядом, близко друг от друга. Параметры при этом сильно ухудшатся, но для наших целей, этого будет более чем достаточно. Так вот, вокруг каждого трансформатора, или дросселя, со значительным количеством витков, после включения питания схемы, присутствует магнитное поле, и оно тем больше, чем больше витков у обмотки трансформатора, или дросселя. Что же будет, если мы к обмотке трансформатора или дросселя, включенного в сеть устройства, поднесем другой дроссель, например с индуктивностью 470 мкГн, а нам для нашего пробника нужен именно такой, нагруженный светодиодом? Например такой, как на фото ниже:
Пробник для проверки импульсных бп
Другими словами, магнитное поле дросселя или трансформатора, будет пронизывать у нас, витки нашего дросселя, и на выводах его появится напряжение, которое можно будет использовать, в нашем случае, для индикации работоспособности схемы блока питания. Подносить пробник разумеется, нужно как можно ближе к проверяемой детали, и дросселем вниз. Как выглядят детали на плате, к которым нужно подносить наш пробник?
На плате обведены импульсный трансформатор красным, и трансформатор ламп подсветки зеленым. Если схема работает исправно, при поднесении пробника к ним, должен загореться светодиод. Это означает что питание на нашу, образно говоря проверяемую индуктивность, поступает. Разберем на практике. Если выходной транзистор пробит, не будет работать импульсный трансформатор.
Схема импульсного блока питания
На схеме снова выделено красным. Если пробит диод Шоттки, на выходе, после трансформатора, не будет индикации на дросселе фильтра. Но здесь есть один нюанс, если у дросселя на плате, небольшое количество витков, свечение будет либо еле заметным, либо вообще будет отсутствовать. Аналогично, если пробиты, например транзисторные ключи, или диодные сборки, через которые приходит питание на повышающий трансформатор, для ламп подсветки, LCD монитора или телевизора, не будет индикации при проверке на этом трансформаторе.
Фото дроссель для пробника
Стоимость данного дросселя в радиомагазине всего 30 рублей, также иногда они встречаются в блоках питания ATX, обычного светодиода, в стеклянной колбе 5 рублей. В результате мы имеем, простой, дешевый, и очень полезный при ремонтах прибор, который позволяет провести предварительную диагностику, импульсного блока питания, в течение буквально одной минуты. Условно говоря, данным пробником можно проверить, наличие напряжения на всех деталях, представленных на следующем фото.
Дросселя и трансформаторы
Я пользуюсь данным пробником пока всего 3-4 дня, но уже считаю, что могу рекомендовать его к использованию, всем начинающим радиолюбителям – ремонтникам, пока еще не имеющим, в своей домашней мастерской, осциллографа. Также этот пробник, может быть полезен тем, кто чинит электронную технику на выездах. Всем удачных ремонтов — AKV.
Дорогие драйвчане, одна из причин плохого запуска двигателя является перегорание в ЭБУ силового ключа gb10nb37lz.
Но почему то в основном многие владельцы авто думают сразу что у них полетел Датчик Положения Коленчатого Вала, у меня когда то была данная проблема. Но и то из-за того что провод от датчика лежал на массе и при нагреве двигателя оплетка плавилась и происходил КЗ. В моем БЖ: www.drive2.ru/l/6251079/
И так, схема нашего зажигания:
1 – аккумуляторная батарея
2 – выключатель зажигания
3 – реле зажигания
4 – свечи зажигания
5 – модуль зажигания
6 – контроллер
7 – датчик положения коленчатого вала
8 – задающий диск
А – устройство согласования
Когда не заводиться автомобиль большинство сразу грешат на датчик положения коленчатого вала. Меняя его понимают что это не помогло. Проверяя колодку, провод это не дает не какого результата.
Следующим действиям начинают побывать ставить новый модуль, или эбу это тоже не чего не дает.
Машина так и не заводиться.
Все просто: просто датчик коленчатого вала имеет свое сопротивление, как и модуль зажигания прозвонив ее можно понять в исправном ли они состояние.
Так же не забываем проверить предохранитель и главное реле. Далее проверяем свечи и брони провода, работает ли втягивающий на стартере ( просто положите на него руку, и если при заводке не бъет значит он). В ходе этой проверки можно понять что же не исправно.
Проверка Датчика Положения Коленчатого Вала:
2. Быстро проносим лезвие отвертки вблизи торца датчика, при этом на вольтметре наблюдаем скачки напряжения.
Вывод: Датчик исправен.
Проверка цепи ДПКВ:
При выключенном зажигании отсоединяем колодку жгута проводов системы управления двигателем от датчика положения коленчатого вала. Подсоединяем щупы тестера к выводу «В» колодки жгута проводов и «массе» двигателя.
Слово мультиметр складывается из двух слов: multi – много и meter – измерения, измерительный прибор. Эти определения можно найти в англо-русском словаре multitran, и поэтому, с полной уверенностью можно сказать, что мультиметр это множество измерительных приборов «упакованных» в одну небольшую коробочку. Все эти измерительные приборы предназначены для измерений в электрических цепях, и начать рассказ об электрических измерениях, не вспомнив закон Ома, было бы непростительно.
В школьных учебниках про закон Ома для участка цепи написано так: «Ток в цепи (I) прямо пропорционален напряжению (U), и обратно пропорционален сопротивлению (R)». Все, кто занимается электричеством серьезно, знают эту фразу как Отче наш. И то сказать, не зная закон Ома – сиди дома.
Если закон Ома записать в виде математической формулы, то получится совсем просто: I=U/R.
Это закон Ома для участка цепи, которым мы здесь и ограничимся. Для получения правильных результатов следует в формулу подставлять значения тока в Амперах, напряжения в Вольтах, сопротивления в Омах. Первые буквы заглавные, поскольку единицы измерения произошли от фамилий ученых, открывших эти законы.
Правда, не возбраняется подставлять, например, сопротивление в килоомах (1 КОм = 1000 Ом), тогда ток получится в миллиамперах (1 мА = 0,001 А). Такой подстановкой в слаботочных цепях пользоваться приходится достаточно часто.
Простейшая электрическая цепь, показанная на рисунке 1, состоит из источника напряжения, соединительных проводов, выключателя и нагрузки. Но на примере этой цепи можно увидеть все, что упоминается в законе Ома, все, что можно измерить с помощью приборов, ознакомиться с подключением амперметра, вольтметра и омметра.
Рисунок 1. Простейшая электрическая цепь
Для проведения измерений токов, напряжений и сопротивлений потребуются три различных прибора: амперметр, вольтметр и омметр. Подключение приборов показано на рисунке 2.
Рисунок 2. Подключение измерительных приборов к электрической цепи
Из этого рисунка понятно, что амперметр включается в разрыв электрической цепи последовательно с нагрузкой, вольтметр подключается параллельно участку цепи, омметр также параллельно исследуемому участку, но напряжение питания при этом должно быть отключено, или вовсе проверяется никуда не подключенная деталь. Конечно, можно померить сопротивления резисторов R1, R2, не выпаивая их из схемы, только не забыть отключить питание.
Что не надо делать или верные способы спалить мультиметр
Вот тут сразу можно сделать несколько замечаний, задать несколько каверзных вопросов. Что будет, если поменять местами, перепутать, например, вольтметр и амперметр?
Вольтметр, включенный в разрыв цепи вместо амперметра особых неприятностей, скорей всего, не принесет: большое внутренне сопротивление вольтметра ограничит ток на таком уровне, что схема просто перестанет работать, как будто разомкнули выключатель.
Совсем другое дело, если амперметр включить на место вольтметра, например, вместо V1. Ток через амперметр достигнет максимума, который способен выдать источник питания, поскольку внутреннее сопротивление амперметра очень маленькое (при нормальном режиме измерения, чем меньше, тем лучше).
В случае гальванического элемента это не особо и страшно, поскольку ток ограничится внутренним сопротивлением батареи, а предел измерения амперметра достаточно большой (10 или более Ампер).
Именно так можно проверить гальванический элемент размера AA или AAA с напряжением 1,5В. Если элемент исправный, то амперметр покажет ток не менее 1А, или даже больше, в то время, как ток разряженного элемента не более нескольких миллиампер или вовсе никакого тока и нет.
Но такая рекомендация абсолютно непригодна для проверки аккумуляторов этих же размеров: аккумуляторы очень не любят коротких замыканий, и даже могут взорваться! Даже если до взрыва дело не дойдет, зарядить такой аккумулятор будет проблематично.
Если же амперметр (мультиметр в режиме измерения тока) «сунуть» в розетку 220В, то взрыв прибора просто неминуем. То же самое произойдет, если попытаться померить напряжение в розетке мультиметром в режиме измерения сопротивлений. Поверьте, таких случаев было немало. Вот почему не надо, когда не надо, чисто из интереса, мерить напряжение в розетке!
Это просто надо принять как закон, взять себе за правило. Ну, какая разница, сколько в этой розетке 210 или 235В? Ведь вся современная электронная техника работает в очень широком диапазоне напряжений, чему способствуют современные импульсные блоки питания.
Много приборов для простых измерений
Показанная на рисунке 2 электрическая цепь питается от источника постоянного тока – гальванической батареи, поэтому амперметр и вольтметр должны быть предназначены для измерения в цепях постоянного тока. Если же питание даже такой простой схемы осуществляется переменным током (220В, выключатель, лампочка), то и приборы потребуются переменного тока. Получается, что понадобится целая куча приборов, даже при столь простой схеме!
Эта простая схема показана для того, чтобы освежить в памяти способы подключения приборов. Более подробно об измерении токов и напряжений можно прочитать в статье «Измерения в электрических цепях».
Избавиться от такого количества приборов очень просто: все приборы собрать в одном корпусе и с помощью переключателей к каждому из них подключать одну и ту же измерительную стрелочную головку. Такие приборы когда-то назывались комбинированными или авометрами – АмперВольтОмметр.
Еще одно название этих приборов тестер, от английского test – проверка, проба, поскольку точность измерений такими приборами невелика. Как правило, это приборы 4-го класса точности, т.е. погрешность измерений, составляет 4%, что вполне достаточно для большинства практических целей.
В настоящее время стрелочные тестеры, не то что ушли на покой, но применяются достаточно редко, хотя в некоторых случаях, без них просто не обойтись. Но многие, в основном старые специалисты, предпочитают пользоваться именно стрелочными авометрами. Ну, это кто к чему привык. Вот так, потихоньку, мы подошли к современному комбинированному прибору – мультиметру.
Современный цифровой мультиметр
В отличие от антикварных авометров – тестеров, мультиметр стал прибором цифровым, на упаковочной коробке так и написано «Цифровой мультиметр». Это не от того, что показания выводятся в виде цифр, отличие заключается в самом принципе работы. Измеряемая величина, напряжение, ток или сопротивление с помощью аналого-цифрового преобразователя (АЦП) переводится в цифровой код, который затем показывается на цифровом жидкокристаллическом индикаторе.
Кроме, собственно, результатов измерений, на индикаторе может показываться дополнительная информация: состояние заряда батареи (когда батарею пора менять, на дисплее появляется мигающее изображение батарейки) и предупреждение об измерении высоких напряжений. Мультиметры, при небольших габаритах и незначительной цене, обладают высокой точностью измерений, что обеспечило им заслуженную популярность у пользователей.
Проще всего разобраться с устройством и работой прибора, когда он находится в руках. Но, коль скоро, такой возможности нет, то вполне подойдет и картинка с изображением прибора. Достаточно сделать фотографию и снабдить ее пояснительными надписями. Подобная фотография показана на рисунке 3 (для увеличения нажмите на рисунок) .
Рисунок 3. Внешний вид цифрового мультиметра D838
Зачем и кому нужен мультиметр
Мультиметры серии D83X, являются бюджетным вариантом – при минимальной стоимости имеется набор всех, или почти всех режимов работы, которыми пользуется большинство электриков, электронщиков и просто те, кому приходится общаться с электричеством от случая к случаю. Существуют, конечно, и более дорогие модели, имеющие дополнительные пределы измерений и различные эксплуатационные удобства.
Прежде всего, это возможность измерения емкости конденсаторов и индуктивности катушек. Некоторые мультиметры имеют даже режим измерения частоты, правда, он, как правило, ограничен частотами звукового диапазона, до 20КГц. Практически все мультиметры, включая бюджетный вариант, имеют режим измерения коэффициента усиления маломощных транзисторов, но пользуются им не особо часто.
К дополнительным опциям можно также отнести подсветку шкалы (а как же еще проводить измерения ночью?) и кнопку сохранения последнего результата измерений. Такое запоминание дает возможность записать результат в блокнот или в предварительно напечатанную таблицу. Собственно, весьма полезное свойство.
Показанный на рисунке 3 мультиметр DT838 в качестве приятного дополнения, имеет режим измерения температуры: если просто включить мультиметр в этот режим, то с помощью внутреннего температурного сенсора можно наблюдать за температурой в рабочем помещении.
Прибор комплектуется внешней термопарой типа K, которая позволяет измерить температуру до нескольких сотен градусов, например, температуру паяльника или термофена.
Подобные приборы других серий, например, DT832 вместо измерителя температуры имеют встроенный генератор прямоугольных импульсов с фиксированной частотой около 1 КГц, что позволяет проверять, например, усилители звуковой частоты.
Не забывайте выключить мультиметр на ночь
Еще одно из приятных свойств, присущих более дорогим мультиметрам, это автоматическое выключение питания: по истечении 15 минут прибор отключается. Дальнейшая работа возможна лишь при повторном нажатии на кнопку включения прибора.
В приборах, подобных D83x выключение производится установкой единственного переключателя в положение OFF (см. рис. 3). Если очень увлечься работой и забыть выключить прибор, оставить его на ночь (почему-то такое случается чаще всего), то батарейку на следующий день придется поменять.
Стоимость батарейки «Крона» (старое отечественное название, теперь это просто тип 6F22) среднего качества невелика, и купить ее не проблема. Но, тем не менее, даже в одном из последних журналов «Радио» за 2014 год, а именно, в номере 9, появилась статья под названием «Преобразователь для питания цифрового мультиметра».
Преобразователь работает от одной батарейки размера AA или от одного никель-кадмиевого аккумулятора. Там же приведена несложная схема, печатная плата, методика сборки и настройки. В конце статьи дан перечень еще нескольких, более ранних публикаций на эту тему: тоже журналы «Радио» с подобными схемами.
Рисунок 4. Импортная «Крона»
Такая конструкция была уместна во времена советского всеобщего дефицита, когда «достать» батарейку «Крона» было невозможно, как и многое другое. Сейчас собирать такой преобразователь можно лишь только «из любви к искусству».
Вообще, редакция журнала «Радио» в последние годы ведет себя очень странно: вместо того, чтобы публиковать хорошие, интересные материалы, повышать качество публикаций, она (редакция) гоняется по файлообменникам и изымает оттуда свои творения под маркой закона о защите авторских прав.
Пусть читатель не подумает, что это субъективное мнение автора статьи о журнале: на форумах электронщиков на этот счет можно найти предостаточно рассуждений, куда более категоричных.
Приступим к изучению мультиметра
Нередко приходится слышать такие заявления: «Вот, я знаю, как прозвонить провод от электрогитары на обрыв или короткое замыкание. А другого мне и не надо». Чтобы таких заявлений было поменьше, давайте, еще раз обратимся к рисунку 3, который поможет разобраться, что же может измерить мультиметр.
На передней панели мультиметра сразу бросаются в глаза две больших детали: сверху жидкокристаллический индикатор (дисплей), а посередине большая круглая ручка управления. В данном приборе она, собственно, единственная, других попросту нет. Именно этой ручкой и осуществляется переключение режимов работы и пределов измерений на этих режимах. Мультиметры других торговых марок выглядят примерно также.
Для указания на выбранный предел измерений на ручке имеется скос с выдавленным треугольником, что не очень удобно при работе. Если этот треугольник залить белой краской, как показано на рисунке 3, то ошибочных включений будет намного меньше.
Режимы измерений
С помощью только что упомянутой ручки можно выбрать один из режимов измерений. Рассматриваемый мультиметр обеспечивает несколько РЕЖИМОВ:
Измерение постоянных напряжений
Измерение переменных напряжений
Измерение постоянных токов
Прозвонка проводов и полупроводников
Измерение коэффициента усиления транзисторов
Каждый режим измерений, кроме измерения температуры, прозвонки полупроводников и коэффициента усиления транзисторов, разбит на несколько ПРЕДЕЛОВ, что позволяет существенно повысить точность измерений, о чем будет рассказано далее.
В практической работе наиболее часто приходится измерять постоянные напряжения и пользоваться режимом «прозвонки» для определения целостности монтажа или исправности диодов, транзисторов, иногда даже микросхем. Поэтому об этих измерениях придется рассказать достаточно подробно.
Измерение постоянных напряжений
Электронная аппаратура питается от источников постоянного напряжения. Это могут быть аккумуляторы, гальванические элементы, а при питании от сети это блоки питания различных схем и конструкций. Поэтому, при ремонте и наладке электронной аппаратуры чаще всего приходится измерять постоянные напряжения на электродах транзисторов и микросхем, проверять режимы работы по постоянному току. Как пользоваться мультиметром для измерения постоянных напряжений, рассказывается дальше.
На рисунке 3 ручка переключения рода работ установлена в режим измерения постоянных напряжений, причем, на самый высокий предел до 1000В. При этом на дисплее показывается предупреждение об опасности высокого напряжения: HV — (high voltage — высокое напряжение). Такое же предупреждение появится, и на пределе измерения переменного напряжения 750В. Таким образом, сам прибор предупреждает, что на этом диапазоне измерений могут присутствовать опасные для жизни напряжения.
Но это вовсе не обязательно, поскольку на этом пределе можно измерять и напряжения совсем не опасные, например, в автомобильной проводке, где напряжение всего 12В, или просто отдельно взятый гальванический элемент. Правда, результаты измерений будут не очень точными. Более достоверные результаты получатся при измерении на пределе 20В.
Когда цифровые приборы были редкостью, — в основном это были громадные лабораторные приборы «с двумя ручками для переноски», практически все измерения проводились стрелочными авометрами. И тогда существовало такое правило, что наиболее точный результат получится, если в процессе измерения стрелка находится не ниже первой трети шкалы, лучше, если ближе к середине. Например, напряжение 5В можно измерить на пределе 30В, но результат будет точнее, если воспользоваться пределом 10В.
Этой рекомендации следует придерживаться и при работе с цифровым мультиметром, т.е. выбирать самый подходящий предел измерений. Об этом и будет рассказано дальше.
Пределы измерения постоянных напряжений
В РЕЖИМЕ измерения постоянных напряжений имеется пять ПРЕДЕЛОВ:
На пределе 200m (здесь и далее, как написано на приборе рис.3) можно измерять напряжения, не превышающие 200 милливольт, если сказать проще, то всего 0,2В.
Предел 2000m позволяет измерять напряжение до 2В. Например, это позволяет измерить напряжение гальванического элемента или падение напряжения на резисторе в эмиттерной цепи транзистора.
Следующие три предела обозначены просто цифрами без букв: 20, 200, 1000. Это напряжения пределов измерения в Вольтах. Рассуждения о точности измерений могут подтвердить рисунки, показанные ниже. В качестве источника измеряемого напряжения был взят пальчиковый аккумулятор размера AA, просто первое, что попалось под руку, но результаты измерений получились достаточно наглядными.
Измерения на разных пределах
Первое измерение напряжения на аккумуляторе выполнено на пределе 1000, как показано на рисунке 5. Следует обратить внимание на то, что незначащие нули не гасятся на всех пределах.
Здесь удалось намерить ровно 1В, поскольку разрешающая способность этого предела как раз 1В, десятые доли вольта просто не показываются, о чем говорит отсутствие запятой после младшего знака. Если измеряемое напряжение составляет, например, 135,2В, то удалось бы увидеть результат 135В.
Может кто-то скажет: «Подумаешь, две десятых вольта!». Да, во втором случае эти две десятых абсолютно никакой роли не играют, но при измерении напряжения на аккумуляторе такое округление результата измерений недопустимо.
Дело в том, что никель-кадмиевый или металлогидридный аккумулятор считается заряженным, если напряжение на нем не менее чем 1,2В. Если же напряжение всего 1В, то это говорит о том, что аккумулятор нуждается в подзарядке. А ведь именно он просто попался под руку, хотя был ни в чем не виноват.
Переключим предел измерения напряжения на 200. Тут уже появляется десятичная запятая, после которой будут показываться десятые доли вольта. Результат измерений намного ближе к истине, что и можно увидеть на рисунке 6.
Рисунок 6. Напряжение аккумулятора 1,2 В
На пределе измерений 20 результат будет точнее, до сотых долей вольта, посмотрите, на рисунок 7.
Рисунок 7. Напряжение аккумулятора 1,22 В
А на пределе 2000m результат показывается в милливольтах, т.е. с точностью до 1/1000 вольта (1 милливольт). Показано на рисунке 8.
Рисунок 8. Напряжение аккумулятора 1,222 В
Некоторые приборы имеют предел измерения 2 (2 вольта), тогда результат будет выглядеть, как 1,222В. После запятой имеются три знака, что также позволяет проводить измерения с разрешением в 1 милливольт.
Предел 200m позволяет измерить напряжения не выше 0,2В и для рассматриваемого случая (аккумулятор) он не подходит, просто маловат. Прибор, может быть, и не сгорит, но делать этого не следует. Вообще, существует такое ЗОЛОТОЕ правило: если величина измеряемого напряжения (тока) неизвестна хотя бы приблизительно, то измерения следует начинать с самого большего предела измерений!
ГЕНЕРАТОР — прибор телемастера
ГЕНЕРАТОР — прибор телемастера
Архивная статья с описанием ГЕНЕРАТОРА .
16/03/2002
________________________________________
НОВЫЕ МЕТОДИКИ В РЕМОНТЕ ИМПУЛЬСНЫХ ИСТОЧНИКОВ ПИТАНИЯ.
ИИП не самая сложная часть в аппаратуры, но отслеживая в доступной литературе и интернете проблемы стоящие перед ремонтниками, обращает на себя внимание «страдания» именно по этой теме. Количество вопросов и качество «ответов» о способах определения параметров трансформатора, микросхем и их проверок, включая «резонансные» — неприлично значительно. Максимально сложный способ защиты от выгорания ИИП в процессе ремонта, описанный в доступных источниках — применение «генератора тока» на лампочке, или ЛАТРа. Делаются попытки использовать в ремонте ИИП осциллограф, и даже предлагают «осциллограммы». Но на практике, используя традиционные методы ремонта, это сомнительная процедура, Амплитуда импульсов в ИИП практически постоянна, длительность мало информативна и к тому же сильно «дрожит». Для интерпретации крутизны фронтов и формы выбросов на площадках необходим определенный опыт. Использовать это можно разве что в качестве пробника импульсов, или «на глаз», но эти импульсы еще нужно как — то получить! А в работающем блоке питания осциллограммы и вообще не нужны, что уже проверять если работает?
В России в телеаппаратуре, ИИП появились, массово с 1980 года, по край ней мере я, с ними столкнулся именно тогда. А методики ремонта «дремучие» до сих пор, и не только в России, но и за «бугром».
Попытаюсь описать новый вид прибора и способ его использования для ремонта ИИП, Прототип которого был использован еще в 1981году, сейчас разработан и имеется в наличии очень совершенный прибор обеспечивающий ремонт и диагностику ИИП, его компонентов и узлов разверток телевизоров включая отклоняющие системы и ТДКСы.
Для создания прибора можно использовать стандартный импульсный источник питания (ИИП) от телевизора. Блоки питания на микросхемах для этих целей не подходят. Стандартный блок модернизируют, адаптируя под источник питания с необходимыми параметрами. Вторичка (120V) нагружается лампочкой 10 – 20 W. Подстроечник, регулятора напряжения меняется на потенциометр с ручкой. Манипулируя резисторами и стабилитроном в цепи регулировки, устанавливают изменение предела выходного напряжения 90 – 230V. Получился гальванически развязанный источник питания и ГЕНЕРАТОР импульсов, к тому же, имеющий встроенную защиту от перегрузок по току и напряжению. Импульсы ГЕНЕРАТОРА снимаются непосредственно с обмотки (120 V), до диода. А постоянное напряжение с конденсатора, емкость которого должна быть в пределах 10 – 20 мкФ. Полезно доработать блок, установив, по крайней мере, второй режим защиты по току — в пределах 200 мА, и максимальный, который обеспечивается ИИП штатно.
Работа с Генератором проста, а навыки нарабатываются в процессе его использования.
Для проверки подозрительного трансформатора его силовую обмотку подключают к выводам Генератора, а по выходным параметрам Генератора (контролируя ток потребления, например) можно судить о качестве трансформатора и наличии КЗ витков. Проверяемый трансформатор можно нагрузить лампой (через диод) создав, таким образом условия максимально приближенные к его штатному режиму. К тому же лампа хороший индикатор возникновения спорадических КЗ, обмоток в процессе нагрева трансформатора. Такой прибор позволяет проверять работу импульсного трансформатора и в составе телевизора без его демонтажа. Теперь о способе ремонта неисправного ИИП, на примере — отключаем первичную обмотку импульсного трансформатора от силового ключа. Подаем на нее импульсы от Генератора. При исправном трансформаторе и отсутствии неисправностей на вторичных выпрямителях и их нагрузках телевизор начинает работать (от ГЕНЕРАТОРА) в ШТАТНОМ РЕЖИМЕ. Это позволяет оценить любой его параметр, от работы процессора до неисправностей разверток и качества кинескопа. То есть, целесообразность ремонта телевизора и его узлов можно определить ЗАРАНЕЕ, еще до ремонта ИИП. Это особенно важно, когда телевизор «мордовали» спецы по «резонансам» или в его антенну попала молния. Используя ГЕНЕРАТОРА можно обеспечить работу телевизора с разорванными цепями обратных связей по питанию, что невозможно другими способами. Это относится и к системам регулировок напряжения развязанных оптопарами, трансформаторами. В телевизоре, работающем от внешнего Генератора, можно БЕЗОПАСНО, (манипулируя напряжением Генератора) менять режим работы узла стабилизации напряжения. Возможна полноценная работа отдельных узлов ИИП, с выпаянными деталями ( микросхемы, оптопары, конденсаторы. ). При неисправностях и замыканиях максимальный ток в цепях ограничивается мощностью ГЕНЕРАТОРА (к тому же этот параметр можно регулировать) и выход из строя деталей в таком случае практически исключен. Доступно в регулируемом режиме, нахождение неисправностей способом «НАГРЕВА» вплоть до «выжигания» Я пользуюсь этим способом для быстрой диагностики. Легко находить конденсаторы с утечками, электролиты, диоды, которые имеют «зенеровские эффекты», не демонтируя их для проверки, Этот же метод, используется для поиска нештатных проблем, когда в предыдущих ремонтах внесли неисправности, например — установили емкости или диоды с противоположной полярностью. В Генераторе имеется вольтметр и миллиамперметр позволяющие анализировать работу нагрузки в процессе ремонта. После проверки «вторичек» приступают к ремонту собственно преобразователя (ШИМ), Так, как на всех обмотках присутствуют штатные импульсы, можно все промерить в рабочем режиме, и с гальванической развязкой обеспечивающей безопасность. При изменении напряжения ГЕНЕРАТОРА, имеется уникальная возможность воздействовать на режим работы узла стабилизации, запирающего устройства (транзисторного, тиристора). Это позволяет оценить работу сомнительных узлов и компонентов, определить напряжение срабатывания защиты, работу узла выделения сигнала ошибки, пределы регулировок. То есть практически полный анализ работы ИИП без силовых цепей. Ремонт можно производить даже при помощи пинцета, замыкая определенные участки схемы и выводы деталей. При наличии гальванической развязки и ограничения по току — это совершенно безопасно, а по приборам контролируют реакцию на такие воздействия. Здесь целесообразен и просмотр наличия сигналов осциллографом (импульсы то, есть!). После ремонта и замены деталей прибор можно применить в качестве источника питания с ограничением по току. Используют его в качестве электронного ЛАТРа, подключив ПОСТОЯННОЕ напряжение 180 – 200 V, непосредственно на сетевой электролит. Это обеспечивает проверку блока питания в безопасном режиме с защитой силовых ключей и микросхем контролеров. При КЗ и аварийных ситуациях максимальный ток в цепи НЕ ПРЕВЫШАЕТ 250 – 400 мА. Это обеспечивается режимом ИИП самого прибора. И так, с некоторыми интерпретациями любой импульсный блок питания.
Тут представлена схема универсального прибора для ремонта и проверки импульсных устройств и их компонентов в частности источников питания, СР…
Для более успешной повторяемости прибор построен на базе типового «китайского» блока питания.
Красным цветом показаны доработки, превращающие стандартный ИИП в устройство для ремонта блоков питания. По мере накопления вопросов, я дополню эту тему информацией, и схемами дополнительных устройств, как – то измерителя ESR, источника тока 500V, устройства прострела кинескопов, токовой проверки переходов …
На данной схеме для простоты, не показано подключение вольтметра и измерителя тока в цепи источников. Необходимая информация по схемотехнике и методике пользования будет сообщена дополнительно.