Как работает двухполупериодный выпрямитель
Перейти к содержимому

Как работает двухполупериодный выпрямитель

  • автор:

Выпрямители

Выпрямитель — устройство, предназначенное для преобразования переменного напряжения в постоянное. Основное свойство выпрямителя — сохранение направления протекания тока при изменении полярности входного напряжения.

По количеству выпрямленных полуволн выпрямители делят на однополупериодные и двухполупериодные.

По числу фаз силовой сети различают однофазные, двухфазные, трехфазные и шестифазные выпрямители.

Однофазный однополупериодный выпрямитель

Однофазный однополупериодный выпрямитель пропускает на вход одну полуволну питающего напряжения.

Рис. 1 — Схема и принцип работы однофазного однополупериодного выпрямителя

Во время положительного полупериода, диод находится в открытом положении и пропускает через себя ток на нагрузку. Когда приходит очередь отрицательного полупериода, устройство запирается, и питание на нагрузку не поступает. То есть происходит как бы отсечение отрицательной полуволны (на самом деле это не совсем верно, поскольку при данном процессе всегда имеется обратный ток, его величина определяется характеристикой Iобр ).

В результате, как видно из графика (рис. 1), на выходе мы получаем импульсы, состоящие из положительных полупериодов, то есть, постоянный ток. В этом и заключается принцип работы выпрямительных полупроводниковых элементов.

Импульсное напряжение, на выходе такого выпрямителя подходить только для питания малошумных нагрузок, примером может служить зарядное устройство для кислотного аккумулятора фонарика.

На практике такие схемы находят ограниченное применение в связи с плохим использованием трансформатора и сглаживающего фильтра. Простота конструкции является единственным её достоинством.

К числу недостатков однодиодного выпрямителя можно отнести:

  • Низкий уровень КПД, поскольку отсекаются отрицательные полупериоды, эффективность устройства не превышает 50%.
  • Напряжение на выходе примерно вдвое меньше, чем на входе.
  • Высокий уровень шума, что проявляется в виде характерного гула с частотой питающей сети. Его причина – несимметричное размагничивание понижающего трансформатора (собственно именно поэтому для таких схем лучше использовать гасящий конденсатор, что также имеет свои отрицательные стороны).

Однофазный мостовой выпрямитель (диодный мост)

Однофазный мостовой выпрямитель является двухполупериодным выпрямителем. Существенно отличие такой схемы (от однополупериодной) заключается в том, что напряжение на нагрузку подается в каждый полупериод. Из-за удвоенного количества диодов ограничено его применение при низких напряжениях. Трансформатор в такой схеме используется наиболее полно.

Рис. 2 — Схема и принцип работы диодного моста

Как видно из приведенного рисунка в схеме задействовано четыре полупроводниковых выпрямительных элемента, которые соединены таким образом, что при каждом полупериоде работают только двое из них. Распишем подробно, как происходит процесс:

  • На схему приходит переменное напряжение Uвх . Во время положительного полупериода образуется следующая цепь: VD4 – R – VD2. Соответственно, VD1 и VD3 находятся в запертом положении.
  • Когда наступает очередность отрицательного полупериода, за счет того, что меняется полярность, образуется цепь: VD1 – R – VD3. В это время VD4 и VD2 заперты.
  • На следующий период цикл повторяется.

Как видно по результату (рис. 2,б), в процессе задействовано оба полупериода и как бы не менялось напряжение на входе, через нагрузку оно идет в одном направлении. Такой принцип работы выпрямителя называется двухполупериодным.

Его преимущества очевидны:

  • Поскольку задействованы в работе оба полупериода, существенно увеличивается КПД (практически вдвое).
  • Пульсация на выходе мостовой схемы увеличивает частоту также вдвое (по сравнению с однополупериодным решением).
  • Как видно из графика (рис. 2,б), между импульсами уменьшается уровень провалов, соответственно сгладить их фильтру будет значительно проще.
  • Величина напряжения на выходе выпрямителя приблизительно такая же, как и на входе.

Помехи от мостовой схемы незначительны, и становятся еще меньше при использовании фильтрующей электролитической емкости. Благодаря этому такое решение можно использовать в блоках питания, практически, для любых радиолюбительских конструкций, в том числе и тех, где используется чувствительная электроника.

Заметим, совсем не обязательно использовать четыре выпрямительных полупроводниковых элемента, достаточно взять готовую сборку в пластиковом корпусе.

Рис. 3 — Диодный мост в виде сборки

Такой корпус имеет четыре вывода, два на вход и столько же на выход. Ножки, к которым подключается переменное напряжение, помечаются знаком «

» или буквами «AC». На выходе положительная ножка помечается символом «+», соответственно, отрицательная как «-».

На принципиальной схеме такую сборку принято обозначать в виде ромба, с расположенным внутри графическим отображением диода.

На вопрос что лучше использовать сборку или отдельные диоды нельзя ответить однозначно. По функциональности между ними нет никакой разницы. Но сборка более компактна. С другой стороны, при ее выходе из строя поможет только полная замена. Если же в этаком случае используются отдельные элементы, достаточно заменить вышедший из строя выпрямительный диод.

Другие типы выпрямителей

Двухфазный двухполупериодный выпрямитель

Двухфазный двухполупериодный выпрямитель представляет из себя два параллельно соединенных однофазных однополупериодных выпрямителя. Характеризуется улучшенным использованием трансформатора и сглаживающего фильтра. Другое название такого выпрямителя — выпрямитель со средней точкой .

Рис. 4 — Схема двухфазного двухполупериодного выпрямителя —>

Однофазный выпрямитель с удвоением напряжения

Однофазный выпрямитель с удвоением напряжения представляет собой последовательное соединение однополупериодных выпрямителей. В первом полупериоде через диод VD1 заряжается конденсатор C1, а во втором полупериоде через диод VD2 заряжается конденсатор C2. Выходное напряжение представляет собой сумму напряжений на конденсаторах — удвоенную амплитуду напряжения вторичной обмотки.

Рис. 5 — Схема однофазного выпрямителя с удвоением напряжения

Трехфазный выпрямитель с нулевой точкой

Трехфазный выпрямитель с нулевой точкой обладает значительно меньшими пульсациями выходного напряжения и их утроенной частотой по сравнению с однофазным двухполупериодным выпрямителем. Этой позволяет упростить фильтр а иногда и вообще обойтись без него. Но такой схеме присуще подмагничивание трансформатора постоянным током, что ухудшает его использование.

Рис. 6 — Схема трехфазного выпрямителя с нулевой точкой

Трехфазный мостовой выпрямитель

Трехфазный мостовой выпрямитель (схема Ларионова) по сравнению с предыдущей схемой характеризуется отсутствием подмагничивания трансформатора, еще меньшим коэффициентом пульсаций, и их вдвое большей частотой.

Рис. 7 — Схема трехфазного мостового выпрямителя

Полупроводниковые однофазные выпрямители блоков питания.

В этой статье мы разберем какие бывают выпрямители, для какой цели служат, в чем заключаются особенности того или иного выпрямителя. Если мы решаем собрать какое-либо устройство или просто необходимо запитать готовое, то мы можем использовать питание от гальванических элементов (батареек), либо воспользоваться для этих целей аккумуляторами. Но как быть, если радиоустройство не планируется носить с собой и оно потребляет значительный ток? В таких случаях запитывают устройство от сети 220 вольт.

Фото трансформаторный блок питания

Фото трансформаторный блок питания

Напрямую запитать от 220 вольт, разумеется, мы не можем, напряжение слишком высокое и ток переменный, а для питания электронных устройств почти всегда необходим постоянный ток и более низкое напряжение. Необходим так называемый сетевой адаптер.

Фото трансформатора

Понизить напряжение мы можем с помощью трансформатора, о нем мы поговорим в одной из следующих статей, пока нам достаточно знать, что с помощью трансформатора мы можем понизить или повысить напряжение при переменном токе. Далее нам необходимо сделать из переменного тока постоянный, для этих целей и служит выпрямитель. Существуют три основных типа выпрямителей.

Однополупериодный выпрямитель

Схема однополупериодный выпрямитель

Схема однополупериодный выпрямитель

Этот выпрямитель работает только в течение положительного полупериода синусоиды. Это можно видеть на следующем графике:

Выпрямленный ток после однополупериодного выпрямителя

Выпрямленный ток после однополупериодного выпрямителя

На выходе после диода мы получаем пульсирующее напряжение, нам нужно сделать из него постоянное, то есть из пульсирующего тока получить постоянный. Для этих целей служит электролитический конденсатор большой емкости, подключенный параллельно выходу питания в соответствии с полярностью. На фотографии ниже можно увидеть внешний вид подобного конденсатора:

Электролитический конденсатор большой емкости

Электролитический конденсатор большой емкости

Такой конденсатор благодаря большой емкости разряжается в течении отрицательного полупериода синусоиды. Обычно для фильтрации напряжения в выпрямителях применяют электролитические конденсаторы от 2200 микрофарад. В усилителях и других устройствах, где важно чтобы напряжение не проседало при увеличении мощности нагрузки, ставят конденсаторы на большую емкость, чем 2200 микрофарад. Для устройств питающих бытовую аппаратуру обычно конденсаторов такой емкости бывает достаточно. На следующем графике (выделено красным), мы можем видеть, как конденсатор поддерживает напряжение стабильным во время прохождения отрицательной полуволны.

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Выпрямленный ток в однополупериодном выпрямителе после конденсатора

Сравнение однополупериодного и двухполупериодного выпрямителей Переменное напряжение на входе выпрямителя Сглаживание пульсаций Выходной сигнал

Сравнение однофазных и трехфазных устройств

При сравнении трехфазных схем выпрямления со однофазными аналогами важно отметить следующие моменты:

  • первые используются только в силовых сетях 380 Вольт, а вторую разновидность допускается устанавливать и в однофазные и в трехфазные цепи (по одному на каждую из фаз);
  • выпрямители 380 Вольт позволяют преобразовывать большую мощность и развивать значительные токи в нагрузке;
  • с другой стороны самостоятельно сделать трехфазный выпрямитель несколько труднее, поскольку он состоит из большего числа комплектующих изделий.

Понять суть работы трехфазного выпрямителя совсем несложно. Для этого потребуется ознакомиться с основами работы вентильных устройств и проанализировать электрическую схему их включения. Знание принципа действия выпрямительных приборов поможет пользователю эффективнее использовать его в повседневной работе.

Источники
Источник — https://amperof.ru/elektropribory/dvuxpoluperiodnyj-vypryamitel.html Источник — https://www.joyta.ru/12295-princip-raboty-odnofaznogo-dvuxpoluperiodnogo-vypryamitelya-so-srednej-tochkoj/ Источник — https://electricalschool.info/electronica/2293-dvuhpoluperiodnyy-vypryamitel-so-sredney-tochkoy.html Источник — https://ikit.edu.sfu-kras.ru/CP_Electronics/pages/mm/1_2/index.html Источник — https://go-radio.ru/vipramiteli.html Источник — https://studfile.net/preview/1802278/page:6/ Источник — https://microtechnics.ru/diodnyj-most-i-dvuhpoluperiodnyj-vypryamitel/ Источник — https://infopedia.su/3x14d.html Источник — https://intellect.icu/dvukhpoluperiodnyj-mostovoj-vypryamitel-skhema-ponyatie-printsip-raboty-284 Источник — https://strojdvor.ru/elektrosnabzhenie/princip-dejstviya-i-sxema-trexfaznogo-mostovogo-vypryamitelya/

Двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

Схема двухполупериодный выпрямитель со средней точкой

Для этой схемы необходим трансформатор, с двумя вторичными обмотками. Напряжение на диодах в два раза выше, чем при включении схемы с однополупериодным выпрямителем или при включении мостовой схемы. В этой схеме попеременно работают оба полупериода. В течении положительного полупериода работает одна часть схемы обозначенная В1, во время отрицательного полупериода работает вторая часть схемы обозначенная В2. Эта схема является менее экономичной, чем мостовая схема, в частности у неё более низкий коэффициент использования трансформатора. В этой схеме после диодов получается также пульсирующее напряжение, но частота пульсаций в два раза выше. Что мы и можем видеть на следующем графике:

График двухполупериодного выпрямителя

График двухполупериодного выпрямителя

Полноволновой выпрямитель с нулевым выводом

Выпрямляющий прибор с двумя диодами конвертирует обе полуволны подающегося на него сигнала в импульсный постоянный ток. Чтобы преобразовать ток, применяется трансформирующий прибор, у которого вторичная обмотка разделяется на две половины. Центральный участок присоединен к земле.

Принцип работы:

  1. При положительном полуцикле на одной части витков трансформатора возникает плюс, на второй – минус. Вентиль, который подключают к положительной части, проводит ток. Второй диод закрыт. Проходя через резистор, ток попадает на центральную точку;
  2. При отрицательном полуцикле состояние обмоток меняется. Второй диод проводит ток.

В итоге электричество пропускается во время обеих полуволн, и КПД достигает 90%.

Двухполупериодный выпрямитель, мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

Схема двухполупериодный выпрямитель мостовая схема

И наконец, рассмотрим схему мостового выпрямителя, самую распространенную схему, по которой сделана большая часть всех выпущенных трансформаторных блоков питания. Сейчас объясню принцип работы диодного моста:

Диодный мост рисунок

Диодный мост рисунок

Ток у нас на выходе с трансформатора переменный, а переменный ток, как известно, в течение периода дважды меняет свое направление. Говоря другими словам, конечно же упрощенно, при переменном токе с частотой 50 герц, ток у нас 100 раз в секунду меняет свое направление. То есть сначала он течет от вывода диодного моста под цифрой один, ко второму, потом в течение другой полуволны он течет от вывода под номером два к первому.

Объяснение работы диодного моста

Объяснение работы диодного моста

Рассмотрим, что происходит с диодным мостом при подаче напряжения, мы видим, на рисунке обозначен красным путь тока, напрямую пройти к выводу диодного моста соединенного с переменным током не позволит диод, который получается у нас включенный в обратном включении, а в обратном включении, как мы помним, диоды не пропускают ток. Току остается только один путь (выделено на рисунке синим), через нагрузку и через диод уйти в провод соединенный с выводом переменного тока. Когда у нас ток меняет свое направление, то вступает в действие вторая часть диодного моста, которая действует аналогично той, что описал выше. В итоге у нас получается на выходе такой же график напряжения, как и у двухполупериодного выпрямителя со средней точкой:

График мостого выпрямителя

График мостого выпрямителя

При сборке выпрямителя нужно учитывать полярность на выходе диодного моста, если мы подключим электролитический конденсатор неправильно, то рискуем испортить конденсатор и можно считать, что повезло, если этим все ограничится. Поэтому при сборке диодного моста важно помнить одно правило, плюс на выходе с моста всегда будет в точке соединения 2 катодов диодов, а минус в точке соединения анодов. Встречается и такое обозначение на схемах диодного моста:

Еще одно изображение диодного моста

Еще одно изображение диодного моста

Диодный мост можно собрать как из отдельных диодов, так и взять специальную сборку из 4 диодов, уже соединенных по мостовой схеме, и имеющий 4 вывода. В таком случае остается только подать переменный ток, идущий обычно с вторичной обмотки трансформатора на два вывода моста, а с оставшихся двух выводов снимать плюс и минус. Обычно на самой детали бывает обозначено, где какой вывод у моста. Так выглядит импортный диодный мост:

Фото импортного диодного моста

Фото импортного диодного моста

На фото далее изображен отечественный диодный мост
КЦ405.

Фото диодный мост кц-405

Фото диодный мост кц405

Преобразователь напряжения своими руками

Покупка преобразователя напряжения не всегда выглядит логичной. Стоимость устройства может быть значительной. Поэтому многие предпочитают собирать такие собственноручно. Радиоэлементы извлекаются из блоков питания компьютеров и других приборов. Однако подключать к простейшему элементу чувствительную к перепадам напряжения технику нежелательно.


Схема импульсного преобразователя

Сетевой адаптер с разделением напряжения

На рисунке 2 показаны изменения в схеме. Нужно убрать два диода, и добавить один конденсатор. Теперь, положительная полуволна заряжает С1, а отрицательная — С2.

На выходе будет двуполярное постоянное напряжение.

Принципиальная схема конденсаторного выпрямителя

Рис. 2. Принципиальная схема конденсаторного выпрямителя.

AudioKiller’s site

Блок питания — важнейшая часть усилителя. Усилитель работает так: он передает энергию из источника питания в нагрузку. Если источник питания работает плохо, то никакой усилитель не поможет получить в нагрузке то, что нужно. Для питания усилителей широко используется двуполярный источник, выдающий относительно «земли» два одинаковых напряжения разной полярности. Чтобы получить такой источник питания, нужен трансформатор с двумя вторичными обмотками (или с одной, имеющей вывод от середины), соответствующий выпрямитель и фильтр из двух конденсаторов.

Можно конденсаторов и больше, но два – это минимум. Но вот как быть с выпрямителем? На самом деле возможны две схемы выпрямителей. Одна содержит два диодных моста, вторая – только один (рис. 1).

Рис.1. Два варианта схем двуполярных выпрямителей.

Существует мнение, активно поддерживаемое на аудиофильских интернет-форумах, что левая схема, которая содержит два моста, гораздо лучше схемы с одним мостом. Но вот почему? Те объяснения, которые приводятся, весьма скудны, невнятны и противоречивы. После длительных расспросов мне все же удалось выяснить причину. Она такова (в моем пересказе): в каждом усилителе живет Дух Аудио, и диодный мост – своего рода жертва, дань этому духу. Если моста два, то дань Духу Аудио в два раза больше. За это Дух отблагодарит вас, улучшив звучание. Если вам показалось, что я издеваюсь – таки да, но совсем немного. Просто все объяснения почему-то именно к этому и сводились. Попытки же научного объяснения были настолько жалкими, что я их так и не смог понять. Если кто-то может объяснить с точки зрения науки и техники, почему два моста лучше одного – я с удовольствием послушаю. И подискутирую. А пока я представлю вам свое вИдение этой проблемы. Научное и техническое.

Звучание устройства определяется тем, как работает это устройство и все его составляющие компоненты. Причем не только в общем и целом, но и в деталях. Поэтому если мы добъемся от источника питания наилучшей работы и в целом, и в мелочах, то значит сделаем все для обеспечения хорошего звука усилителя. И все улучшения звука (конечно, если это вам не показалось, что стало звучать лучше, самовнушение — очень коварная штука) происходят от улучшения технических характеристик (то есть работы) узлов аппаратуры, а не по непонятному правилу типа «так надо для хорошего звука».

Итак, в чем разница между схемами.

1. Два моста больше по габаритам, имеют двойной нагрев (это я докажу ниже), и вдвое дороже. То есть, по этому признаку два моста хуже одного.

2. Для одного моста можно использовать любой трансформатор – как с раздельными обмотками, так и с выводом от средней точки. А для двух мостов только трансформатор с двумя отдельными обмотками. То есть, для выпрямителя с двумя мостами подойдет не всякий трансформатор. Схема менее универсальна, запишем ей минус.

3. В схеме с двумя мостами каждая обмотка трансформатора работает на свой выпрямитель, который в свою очередь работает на свое плечо питания усилителя. Т.е. одно плечо усилителя питается от одной вторичной обмотки трансформатора, другое – от другой. В схеме с одним мостом каждое плечо усилителя питается от каждой из вторичных обмоток трансформатора по очереди. Это мы увидим наглядно. Тогда и решим, что лучше. А пока пусть это побудет загадкой.

4. Рассмотрим, как протекают токи через выпрямители. На рис. 2 показано протекание тока через выпрямитель с двумя мостами. На рис. 3 – протекание тока через выпрямитель с одним мостом.

Рис. 2 Протекание тока через выпрямитель с двумя мостами.

Рис. 3. Протекание тока через выпрямитель с одним мостом.

Обратите внимание, что в выпрямителе с двумя мостами, ток каждого плеча всегда протекает последовательно через два диода. А в выпрямителе с одним мостом – только через один диод. Следовательно, падение напряжения на диодах выпрямителя в схеме с двумя мостами в два раза выше. И до усилителя доходит напряжения немного меньше. Вы можете сказать: «Подумаешь, какая мелочь!» Не так, чтобы и мелочь – именно из этого напряжения получается напряжение на выходе усилителя. Раз напряжение питания уменьшилось, то и на нагрузке максимально возможное напряжение тоже уменьшится. Значит, уменьшится и максимальная выходная мощность. Насколько? А давайте рассмотрим насколько.

Для большей наглядности рассмотрим пример. Допустим, трансформатор выдает в каждой из обмоток под нагрузкой 30 вольт. Прямое падение напряжения на диоде 1,2 вольта. Почему такое большое? Потому, что падение напряжения на np-переходе при большом токе складывается с падением напряжения на внутреннем сопротивлении диода. Такое прямое напряжение падает практически на любом кремниевом диоде при прямом токе 3 ампера и больше. Это соответствует току усилителя, равному 1 ампер – ведь ток через усилитель непрерывен, а ток через диод протекает короткими импульсами большой амплитуды. Допустим, минимальное остаточное напряжение на выходных транзисторах составляет 4 вольта. Сопротивление нагрузки 4 ома.

Считаем для амплитудных значений напряжения.

Два моста.

Максимальное напряжение на нагрузке:

Максимальная выходная мощность:

Множитель 2 в знаменателе последней формулы учитывает, что мы пользуемся амплитудными значениями напряжения, а не действующими.

Один мост.

Максимальное напряжение на нагрузке:

Максимальная выходная мощность:

Разница в целых 7 Вт, или в 10%. И как раз этих семи ватт максимальной выходной мощности вам может не хватить, и начнется клиппинг!

Покупая и ставя в схему два моста, вы должны будете заплатить дороже за то, чтобы получить выходную мощность на 7 Вт ниже!

5. Говорят, что схема с двумя мостами менее подвержена подмагничиванию трансформатора постоянным током при воспроизведении усилителем сигнала частотой 25 Гц. Это не так. Подмагничивание происходит при потреблении от вторичной обмотки вообще тока с частотой 25 Гц. Т.е. две вторичные обмотки в этом случае работают как одна, независимо от схемы выпрямителя. Главное, что они транслируют свой ток в первичную обмотку, в которй все и происходит.

Так что у нас целых четыре причины, почему выпрямитель с одним мостом лучше, чем с двумя. И ни одной, показывающей преимущества выпрямителя с двумя мостами.

Ах да! Я же не доказал, что два моста греются вдвое больше, чем один. Посмотрите на рисунки 2 и 3. Ток усилителя проходит через два диода в каждом из мостов. А токи обоих плеч усилителя в среднем одинаковы (за довольно длительное время, определяющее нагрев – секунды и десятки секунд). В одном случае ток проходит через один мост, а в другом точно такой же ток проходит через два моста. Нагрев вызывается током. Два моста – в два раза больший нагрев, каждый мост греется одинаково, что в схеме с одним мостом, что в схеме с двумя. Поэтому два моста дают вдвое больше тепла, чем один.

Теперь вернемся к загадке в пункте 3. Есть ли разница в том, если каждое плечо усилителя от своей собственной обмотки трансформатора, или если каждая из вторичных обмоток работает на оба плеча усилителя поочередно. Тут такое дело… Вторичные обмотки трансформатора не всегда одинаковы. Даже если их числа витков равны. У броневого и тороидального трансформатора обмотки наматываются одна поверх другой. У той, что сверху средний диаметр витка больше, чем у той, что снизу. Отсюда разные сопротивления и разные потери напряжения при протекании тока. И разные поля рассеяния (значит, их напряжения на холостом ходу могут отличаться). Вот у меня на столе лежит высококачественный тороидальный трансформатор 2х28 вольт 75 ВА. Сопротивления его вторичных обмоток 0,7 Ом и 0,75 Ом. На самом деле это мелочи, и реальная разность напряжений на обмотках очень небольшая. Но она бывает. В этом моем трансформаторе 28,6 вольт и 28,65 вольт под нагрузкой. Если напряжения вторичных обмоток не различаются – то все отлично. А если различие все же есть? А оно вполне возможно. Тогда напряжения питания, поступающие на каждое из плеч усилителя, будут выглядеть так, как на рисунке 4.

Рис. 4. Напряжения на выходе выпрямителя при разных значениях напряжений вторичных обмоток трансформатора.

Если выпрямительных моста два, то каждое плечо выпрямителя (и усилителя) питается от своей обмотки. Своим напряжением. И в одном плече напряжение получается больше, в другом меньше. Максимальная выходная мощность будет определяться наименьшим напряжением! Допустим, напряжение положительного плеча в нашем примере меньше, чем отрицательного на 0,2 вольт. Итак, напряжение, создаваемое одной из обмоток не 30 вольт, а 29,8 вольт. Считаем.

Максимальное напряжение на нагрузке:

Максимальная выходная мощность:

Потеряли целый ватт. Мелочь, конечно. Но ведь жалко! А если разница напряжений будет больше? Мало ли какой трансформатор вам удалось приобрести! А в самодельном трансформаторе все может быть еще хуже.

Для одного моста картина совершенно другая. Там на каждое плечо нагрузки работает каждая из обмоток поочередно. Максимальное напряжение в каждом плече получается равно наибольшему из напряжений обмоток. Это же здорово – получить все по максимуму! Явное преимущество перед схемой с двумя мостами. Расплатой за это будет наличие в выпрямленном напряжении пульсаций с частотой 50 Гц, тогда как двухмостовой выпрямитель дает пульсации только с частотой 100 Гц. Пульсации с частотой 50 Гц фильтруются хуже. Есть ли в этом недостаток? Нет! У нас целых две причины не бояться этих более низкочастотных пульсаций:

1. Амплитуда этих пульсаций очень мала и равна разности напряжений вторичных обмоток. В нашем примере это 0,2 вольта.

2. В фильтрах современных усилителей используются конденсаторы большой емкости, которые эффективно все сглаживают. 50-ти герцовые пульсации сглаживаются в 2 раза хуже, чем «стандартные» частотой 100 Гц. Но амплитуда стогерцовых пульсаций составляет десятки вольт (она равна напряжению питания). И все равно эффективно подавляется. А тут доли вольта.

Итак, по всем параметрам выпрямитель с одним мостом превосходит двухмостовую схему. И если не верить в Духа Аудио, то использовать надо именно его. Давайте я для большей наглядности сведу в таблицу результаты нашего примера.

Схема С одним мостом С двумя мостами С двумя мостами
Вариант: для всех случаев одинаковые напряжения вторичных обмоток разные напряжения вторичных обмоток
Максимальная выходная мощность, Вт 76,8 69,6 68,4

И сколько надо дополнительно потратить денег и места, чтобы вместо выходной мощности 76 Вт получить мощность 68 Вт?

Но это еще не все. Вот теперь давайте вспомним, что на свете существуют диоды Шоттки. О том, что их повышенное быстродействие при выпрямлении синусоиды частотой 50 Гц никак не проявляется, я уже писал. Но у них есть другое очень замечательное свойство: гораздо меньшее прямое падение напряжения. Я замерил его для диодов нескольких типов, оно оказалось практически одинаковым и равным 0,7 вольт. То есть по сравнению с диодами с np-переходом мы выигрываем целых полвольта. Много ли это? Я повторю все расчеты для нашего примера, используя в качестве диодов диоды Шоттки, и снова сведу все в таблицу.

Тип выпрямительных диодов «Обычные» диоды «Обычные» диоды «Обычные» диоды Диоды Шоттки Диоды Шоттки Диоды Шоттки
Схема С одним мостом С двумя мостами С двумя мостами С одним мостом С двумя мостами С двумя мостами
Вариант: для всех случаев одинаковые напряжения вторичных обмоток разные напряжения вторичных обмоток для всех случаев одинаковые напряжения вторичных обмоток разные напряжения вторичных обмоток
Максимальная выходная мощность, Вт 76,8 69,6 68,4 80 75,6 74,4

Итак, при замене «обычных» диодов диодами Шоттки мы получили несколько дополнительных ватт к максимальной выходной мощности. Кто знает, может как раз этих ватт нам и не хватало для полного счастья? И нужно ли это счастье убивать собственными руками, ставя два моста туда, где отлично хватает и одного? Два моста даже с диодами Шоттки уступают одному мосту с «обычными» диодами.

И обратите внимание, что разница между самой большой максимальной выходной мощностью и самой маленькой, составляет 11,6 Вт. Представляете! Мы можем потерять целых 11 ватт, просто сделав выпрямитель по другой схеме. Вот вам и разница в схемах и в выпрямителях.

На самом деле, если быть честным, у двухмостовой схемы все же есть преимущество перед одномостовой. У двухмостовой схемы максимальное обратное напряжение на диоде в два раза меньше. Максимальное обратное напряжение на диоде для двухмостовой схемы должно превышать напряжение (действующее значение) на одной вторичной обмотке не менее чем в 1,5 раза. Гораздо лучше, если в 2 раза и более. А для одномостовой схемы максимальное обратное напряжение на диоде должно превышать напряжение на одной вторичной обмотке (если их две раздельные, или на половине, если это одна обмотка с отводом от середины) как минимум в 3 раза, а лучше в 4 и более раза. Поэтому если использовать диодный мост с максимальным обратным напряжением 200 вольт, то одномостовая схема даст максимум ± 60 вольт, а двухмостовая ± 120 вольт питания. Если мост выдерживает 1000 вольт обратного напряжения (а такие мосты легкодоступны и дешевы), то двухмостовая схема выдаст максимальное напряжения питания ± 600 вольт, а одномостовая всего лишь ± 300 вольт. Вам достаточно? Поэтому я это свойство за достоинство и не считаю: ставьте мосты, рассчитанные на напряжение 1000 вольт и ни о чем не беспокойтесь. Хуже ситуация с диодами Шоттки — они гораздо более низковольтные. Я не встречал диодов Шоттки с максимальным обратным напряжением превышающим 150 вольт. Тогда в двухмостовой схеме мы получим напряжение питания максимум ±100 вольт, а в одномостовой — ±50 вольт. Обычно напряжения питания ±50 вольт хватает для большинства усилителей. Но вот если вам действительно нужно больше, то тут надо выбирать, чем пожертвовать. И опять же, смотрим в таблицу: один мост на обычных диодах немного эффективнее двух мостов на диодах Шоттки. Так что выбор за вами.

Total Page Visits: 4852 — Today Page Visits: 4

Диодный мост

Двухполупериодная схема выпрямления, называемая диодным мостом, для работы задействует четыре вентиля, которые формируют замкнутую цепь. С одной части подключается генератор тока, с другой – резистор.

При подключении обмотки конденсатора, вентили работают попарно, сглаживая положительную и отрицательную полуволну. На выходе остается только плюс, при этом показатель пульсаций равняется 0.48.

Главными достоинствами схемы диодного моста являются простота и высокий коэффициент полезного действия. К минусам относят снижение напряжения на вентилях, что сказывается на эффективности работы систем с низким вольтажом.

Видео


Кофе капсульный Nescafe Dolce Gusto Капучино, 3 упаковки по 16 капсул


Кофе в капсулах Nescafe Dolce Gusto Cappuccino, 8 порций (16 капсул)

Трансформаторная схема с двойной обмоткой и общим выводом

Принцип работы заключается в том, что во время положительной полуволны образуется такое же напряжение. В это время нижний вентиль под воздействием отрицательного сигнала остается закрытым, верхний – открывается. Таким образом, от него течет электрический ток.

При отрицательной части полуволны верхний запирательный диод находится в закрытом состоянии, за счет напряжения, текущего на катод от нижнего вентиля, который открыт за счет поступающего на анод положительного сигнала. При этом работают обе полуволны.

Однополупериодные и двухполупериодные выпрямители

Выпрямление электрических колебаний, это процесс, в результате которого переменное входное колебание преобразуется в выходное колебание только одного знака (рисунок 1.5). Процесс выпрямления используется в устройствах электропитания (блоках питания) и демодуляторах.

Выпрямление всегда осуществляется при использовании нелинейных элементов, обладающих свойством однонаправленного пропускания электрического тока. Благодаря таким свойствам на выходе выпрямляющего элемента получают ток одного знака.

Для выпрямления применяют полупроводниковые и вакуумные (кенотроны) диоды, газоразрядные диоды (газотроны), тиратроны, кремниевые и селеновые элементы, тиристоры и другие элементы с нелинейными свойствами в зависимости от применения, значений выпрямленных напряжений и токов, отбираемых нагрузкой. В маломощных электронных устройствах для выпрямления чаще всего применяют полупроводниковые диоды.

Название “выпрямитель” используется, прежде всего, для схем, преобразующих переменный ток в постоянный. Выпрямителем называется также и сам элемент с однонаправленными свойствами, используемые в процессе выпрямления.

Однополупериодным выпрямителем называется такой выпрямитель, на выходе которого после процесса выпрямления остаются колебания одного знака. Схема однополупериодного выпрямителя, возбуждаемого синусоидальным сигналом, представлена на рисунке 1.6.

Диод, включенный таким образом, что приводит ток только при положительных полупериодах входного колебания, т.е. когда напряжение на его аноде больше потенциала катода. Среднее значение колебания, полученного в результате выпрямления синусоидального напряжения с действующим значением и максимальным значением , равно

Например, при выпрямлении напряжения с действующим значением , после выпрямления получаем напряжение .

В отрицательный полупериод диод не проводит ток, и все подведенное к выпрямителю напряжение действует на диоде как обратное напряжение выпрямителя. При изменение направления включения диода он будет проводить в отрицательные полупериоды и не проводить в положительные.

Рассматриваемая схема выпрямителя называется последовательной. Название связано с тем, что нагрузка включается последовательно с нелинейным элементом (вентилем).

Двухполупериодным выпрямителем называют такой выпрямитель, в котором после процесса выпрямления остаются участки входного колебания, имеющие один знак. К ним после изменения знака добавляются участки, имеющие противоположный знак.

Принципиальная схема двухполупериодного выпрямителя, управляемого синусоидальным сигналом от трансформатора, показана на рисунке 1.7.

В периоды времени, когда на аноде диода Д1 действует положительное напряжение, на аноде диода Д2 присутствует отрицательное и наоборот. Это происходит потому, что средняя точка вторичной обмотки трансформатора заземлена, и, следовательно, она имеет нулевой потенциал. При положительной полуволне напряжения на вторичной обмотке диод Д1 пропускает ток, а диод Д2 не пропускает.

При отрицательной полуволне положительное напряжение действует на диоде Д2, который при этом проводит, а диод Д1, смещенный в обратном направлении, не проводит. Среднее значение напряжения, полученого на выходе двухполупериодного выпрямителя в 2 раза больше напряжения, полученного на выходе однополупериодного выпрямителя.

Технические параметры выпрямителя:

Коэффициент пульсаций выпрямителя называется отношение максимального значения переменной составляющей напряжения на выходе выпрямителя к значению его постоянной составляющей на этом выходе. В большинстве применений желательно, чтобы коэффициент пульсаций был как можно меньше. Уменьшение пульсаций достигается путем применения соответствующих фильтров.

Коэффициент использования трансформатора в выпрямительной схеме, определяется как отношение двух мощностей: выходной мощности постоянного тока и номинальной мощности вторичной обмотки трансформатора.

Коэффициент полезного действия, это параметр, характеризующий эффективность схемы выпрямителя при преобразовании переменного напряжения в постоянное. КПД выпрямителя выражается отношением мощности постоянного тока, выделяемой в нагрузке, к входной мощности переменного тока. Коэффициент полезного действия определяется для резистивной нагрузки.

Частотная пульсация выпрямителя, это основная частота переменной составляющей, существующей на выходе выпрямителя. В случае однополупериодного выпрямителя частота пульсаций равна частоте входного колебания. Фильтрация пульсаций тем проще, чем выше частота пульсации.

Понравилась статья? Добавь ее в закладку (CTRL+D) и не забудь поделиться с друзьями:

Двухполупериодный выпрямитель

Двухполупериодный выпрямитель — устройство или контур, проводящий ток в течение обеих половин цикла переменного тока. Двухполупериодный выпрямитель состоит из трансформатора с центральным отводом вторичной обмотки, двух диодов и сопротивления нагрузки.

Схема двухполупериодного выпрямителя

Принцип действия двухполупериодного выпрямителя

В течение первой половины цикла переменного тока верхний конец вторичной обмотки положителен, а нижний конец вторичной обмотки отрицателен. Диод D1 находится в состоянии прямого подключения, а диод D2 находится в состоянии обратного подключения, поскольку средняя точка отрицательна относительно положительной стороны вторичной обмотки и положительна относительно отрицательной стороны вторичной обмотки. Ток протекает от средней точки через сопротивление нагрузки, через D1 к положительной стороне вторичной обмотки. Падение напряжения на сопротивлении RL представляет собой положительную полуволну.

Путь тока через двухполупериодный выпрямитель: D1 находится в состоянии прямого подключения

В течение второй половины цикла переменного тока верхний конец вторичной обмотки отрицателен, а нижний конец вторичной обмотки положителен. Диод D1 находится в состоянии обратного подключения, а диод D2 находится в состоянии прямого подключения. Как изображено на рисунке 3-7, ток протекает от средней точки через сопротивление нагрузки, через D2 к положительной стороне вторичной обмотки. Падение напряжения на сопротивлении RL снова представляет собой положительную полуволну.

Путь тока в двухполупериодном выпрямителе: D2 находится в состоянии прямого подключенияПуть тока в двухполупериодном выпрямителе: D2 находится в состоянии прямого подключения

Поскольку ток протекает через сопротивление RL в одном и том же направлении в течение обеих половин цикла входного напряжения, через RL проходят две полуволны в течение каждого полного цикла. Тем не менее, поскольку у этого трансформатора есть средняя точка, падение напряжения на сопротивлении нагрузки представляет собой лишь

половину того, что могло бы быть, если бы нагрузка была соединена ко всей вторичной обмотке. Форма кривой выходного сигнала двухполупериодного выпрямителя

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *