Как проверить конденсатор мультиметром на работоспособность
Автор: Владимир Марков
П ри разработке новых схем или ремонте электроники может возникнуть необходимость проверки конденсатора на работоспособность.
Для этого предусмотрено много вариантов, но наиболее простой требует наличие мультиметра и нескольких минут свободного времени.
Применение приведенной пошаговой инструкции позволит сделать работу самостоятельно и с помощью подручных инструментов.
Принцип работы конденсатора
Работа конденсатора построена на способности устройства накапливать заряд и в дальнейшем передавать его для питания других электрических устройств.
Конструктивно деталь состоит из двух металлических электродов с расположенным между ними тонким диэлектриком.
Последний способен накапливать «плюсовой» и «минусовой» заряд и удерживать его в течение длительного времени.
При этом емкость устройства зависит от расстояния между обкладками, их площади и диэлектрической проницаемости.
Виды по способу применения
Конденсаторы нашли применение в 99,9% современных электронных устройствах. Последние делятся на общего бытового использования и специальные.
Именно специальные конденсаторы по функциональному применению делятся на:
- Пусковые. Обеспечивают надежный старт мощных электродвигателей и дальнейшую их бесперебойную работу. Насосы, компрессоры, станки и другие мощные потребители электроэнергии не могут обойтись без пусковых конденсаторов.
- Высоковольтные. Как правило, это вакуумные масляные, керамические и пленочные конденсаторы, применяемые в устройствах источником питания которых являются высоковольтные сети от 380В и выше. По этой причине доступ к ним ограничен и их проверкой и обслуживание занимаются специалисты с соответствующим допуском.
- Дозиметрические. Как правило, фторопластовые, имеют высокое сопротивление изоляции и не большой саморазряд. Используются в устройствах с небольшими токовыми нагрузками.
- Импульсные. Обеспечивают большие скачки напряжения. Применяются в цепях для тестирования различных электроприборов: электродвигателей, генераторов, источников питания, медицинского оборудования, предохранителей и даже импульсных лазеров.
- Помехоподавляющие. Само название говорит за себя. Обладают низкой индуктивностью и обеспечивают снижение общего электромагнитного фона. К примеру, в автомобилях они обеспечивают стабильный пуск мотора нивелируя кратковременный импульс в бортовой сети накапливая лишний заряд энергии и сглаживая напряжение. Как правило, подключаются в схему параллельно катушке зажигания.
Среди большого количества конденсаторов выделяется два типа устройств по полярности, в которых в качестве диэлектрика применяется воздух, стекло или бумага. Рассмотрим каждый из вариантов подробнее.
Полярные
Конденсатор полярный EEUFS2A470 47мкФ 100В
При их подключении важно четко соблюдать полярность — подпаивать «минус» и «плюс» четко на свои клеммы.
В качестве диэлектрика может выступать только бумага, которая пропитана в электролите.
Неполярные
В эту группу входят конденсаторы, где в роли диэлектрика выступает керамика, слюда, бумага, воздух или стекло.
Такие устройства имеют меньший ток утечки, благодаря большему сопротивлению диэлектрика.
Каждый из выше перечисленных типов конденсаторов имеет свои особенности проверки.
Основные неисправности конденсаторов
Выделяется несколько неисправностей, которые характерных для конденсаторов:
- Утечка выше положенной нормы. Происходит из-за изменения сопротивления диэлектрического материала. При такой поломке емкость снижается, и устройство не способно долгое время сохранять заряд.
- Обрыв. Суть повреждения состоит в электрическом разрыве проводников, которые больше не имеют электрической связи. Причиной может быть удар, сильная тряска или колебания. Нельзя исключать и брак конденсатора или нарушение правил его применения.
- Пробой. Возникает в случае превышения рабочего напряжения выше допустимой нормы. При такой поломке дальнейшее применение емкости невозможно из-за появления в схеме короткого замыкания.
В список неисправностей можно включить и другие — снижение емкости, высокое эквивалентное последовательное сопротивление и т. д.
Основные причины выхода из строя
Повышенное напряжение работы устройств, к примеру, в результате неисправности блока питания, является самой распространенной причиной выхода из строя конденсаторов.
К примеру, скачок напряжения приводит к резкому нагреву детали и, как следствие, это приводит к ее вздутию.
Расшифровка обозначений на конденсаторах
Прежде чем брать конденсатор для проверки важно уметь ориентироваться в надписях на нем.
При нанесении на поверхность только цифры и буквы первая показывает емкость, а вторая — тип конструкции.
Наличие трех цифр позволяет из первых двух узнать емкость, а из последней — множитель для нуля.
Дополнительно могут прописываться следующие параметры:
- полярность;
- год выпуска;
- отклонение емкости от номинального параметра;
- коэффициент емкости;
- рабочая частота и т. д.
При обозначении нужно учесть еще ряд моментов:
- Наличие буквы между и после цифр может показывать наличие запятой. К примеру, 3n3 — 3300 пкФ, 33n — 33 нФ, 330n — 0,33 мкФ.
- Цветовая маркировка позволяет узнать емкость (первые две полоски), допустимое отклонение от номинального значения (3-я полоса) и напряжение (4-я полоска).
- При обозначении зарубежных устройств может применяться IEC-стандарт, по которому на устройство наносится маркировка из 3-х чисел. Первые два позволяют узнать емкость конденсатора, а третья — количество нулей.
- СМД конденсаторы имеют небольшие размеры, поэтому на них применяется маркировка с применением букв (емкость в пкФ) и цифр (множитель в десятой степени). Наличие двух букв спереди позволяет узнать производителя и рабочее напряжение.
Меры безопасности при проверке
В случае игнорирования этого этапа можно самому попасть под остаточное напряжение или повредить измерительный прибор (как это делать читайте в следующем разделе).
Такая ситуация — частое явление при проверке конденсатора в импульсном блоке питания.
В процессе выполнения работы придерживайтесь следующих правил:
- Не прикасайтесь руками к выводу конденсатора / резистора.
- Держите отвертку, утконосы или пассатижи за ручки, имеющие хорошую изоляцию.
- Берегите глаза, ведь при снятии заряда может появиться сильная искра. Рекомендуется защитить все лицо.
Подготовка к проверке
Конденсаторы — неизменный элемент каждой схемы, а их повреждение чаще всего связано с завершением ресурса.
Чтобы выявить проблему на раннее стадии, проводится проверка элементов.
Как разрядить конденсатор перед проверкой
- Для конденсаторов емкостью до 100 мкФ — замыканием контактов на выходе отверткой, утконосами или другим инструментом.
- При большей емкости (от 100 мкФ) и более, а также при напряжении выше 63 В нужно использовать сопротивление от 5 до 20 кОм с мощностью от 1 до 2 Вт. Для разряда достаточно подключить выводы с резистора на выход емкости на несколько секунд.
Подбор мультиметра для проверки конденсатора
Важный шаг перед проведением проверки — подготовка необходимого инструмента.
Более простым вариантом является покупка универсального измерительного прибора.
На рынке можно найти большой выбор стрелочных и электронных мультиметров.
Первые считаются более понятными в интерпретации значений, а вторые — точными и удобными в применении.
Верхний предел небольшой, если учесть наличие конденсаторов на 10 000 мкФ и выше.
После выбора мультиметра его нужно подготовить:
- Переведите тумблер в позицию измерения или «сигнал».
- При использовании стрелочного прибора проверьте, чтобы стрелка находилось на 0-й отметке. Для регулировки используйте специальный регулятор в центре внизу устройства.
Пошаговая инструкция проверки конденсатора мультиметром
Неисправность можно определить с помощью внешнего осмотра на факт вздутия, потемнения или появления черных пятен, а также более глубокой проверки с помощью прибора.
Изучение конденсатора на факт исправности возможно после выпаивания или прямо на плате. Ниже приведем разные варианты выполнения этой работы.
Внешний осмотр
Во многих ситуациях достаточно одного взгляда, чтобы определить неисправность детали. В этом случае можно ускорить проверку и избежать применения мультиметра.
- вздутие;
- течь жидкости изнутри;
- вмятины или механические повреждения;
- сколы или трещины (характерно для керамических изделий).
При выявления любого из указанных выше повреждений использовать деталь запрещено, и ее нужно поменять.
Проверка мультиметра полярного конденсатора
Проверке подлежат конденсаторы емкостью больше 0,25 мкФ.
Во многих мультиметрах предельный диапазон равен 100 кОм, а у более мощных он может достигать 1 мОм.
Алгоритм действий, следующий:
- Снимите оставшийся заряд путем выкорачивания. Как это сделать правильно, рассмотрено выше.
- Установите подходящий предел измерений и подключите устройство к конденсатору с учетом «плюса» и «минуса» (руками к щупам касаться запрещено).
- Смотрите на параметр, указанный на экране. Он должен составлять более 100 кОм.
Это связано с тем, что конденсатор заряжается от мультиметра, а в конечном итоге достигает отметки «1».
Проверка мультиметром неполярного конденсатора
На контроль неполярного конденсатора необходимо еще меньше времени.
Сделайте следующие шаги:
- Снимите оставшийся заряд подручным инструментом, к примеру, отверткой.
- Установите на мультиметре предел измерения в мегаомах.
- Коснитесь щупами к выводам емкости.
- При наличии сопротивления меньше 2 Мом конденсатор можно выбросить.
Особенность неполярных устройств в том, что в них не требуется соблюдение полярности. Для сравнения можно взять два устройства, чтобы один гарантированно был целым.
Для проверки неполярного конденсатора напряжением более 400 В работа делается после зарядки от источника, который защищен от короткого замыкания.
Существует также метод проверки на искру. В таком случае устройство нужно зарядить до рабочей величины, а после закоротить выводы с помощью отвертки (ручка инструмента должна быть изолирована).
По интенсивности искрения можно приблизительно узнать о силе разряда (для конденсаторов с небольшой емкостью, смотрите меры безопасности).
Сразу после заряда можно изменить напряжение. Конденсатор исправен, если он длительное время сохраняет заряд.
Разрядка устройства происходит постепенно через резистор. По причине сильного искрения разрядить его, к примеру, отверткой не получится.
Использование аналоговых измерителей
Для проверки конденсатора не обязательно иметь новый и современный мультиметр. Можно использовать обычную Ц4313, если она осталась со времен СССР или YX-1000A.
Способ измерения такой же, но сами проверки более наглядны с визуальной точки зрения.
Здесь нужно смотреть не на цифры, а на движение стрелки прибора.
Для проверки сделайте следующее:
- Жмите на кнопку RX.
- Вставьте щупы в специальные разъемы.
- Берите конденсатор и разрядите его.
- Прикоснитесь щупами к конденсатору.
- Если деталь исправна, стрелка будет отклоняться, а потом плавно вернется в первоначальную позицию. Скорость движения зависит от емкости проверяемого конденсатора.
Если при проверке стрелка не отклоняется или зависла в конкретной позиции, это свидетельствует о неисправности детали.
Проверка конденсатора на исправность путем снятия нужных показаний
В случае поломки конденсатора необходимо знать, как проверить деталь на обрыв, определить точную емкость, убедиться в отсутствии короткого замыкания, измерить напряжение или выполнить другие работы.
Ниже приведем пошаговые инструкции для каждого из этапов.
Измеряем емкость
Если с контролем сопротивления трудностей не возникает, при измерении параметра емкости многие новички упираются в «стену».
Чтобы убедиться в работоспособности детали, необходимо сравнить данные, указанные производителем, с реальной ситуацией.
Он предусмотрен не во всех приборах, но, к примеру, в модели Mastech MY-64 он есть.
Знаки «плюс» и «минус» показывают на полярность подключения.
Для примера измерим емкость детали с обозначением 104К. Это означает, что емкость конденсатора составляет 104 000 пФ.
Сделайте следующие шаги:
- Установите тумблер на нужном положении –СХ+.
- Берите конденсатор и вставьте его ножки в этот разъем. Сторона установки не имеет значения, ведь конденсатор неполярный.
- Убедитесь, что полученное значение соответствует заявленным характеристикам.
На следующем шаге вставьте деталь в разъем прибора -СХ+ с учетом «плюса» и «минуса».
Для получения данных о полярности посмотрите на деталь, где черная полоска с «нулем» обозначает «минус». После проведения измерений сравните заявленный и полученный параметр.
Если измеренная емкость отличается от номинального параметра или равна нулю, это свидетельствует о неисправности конденсатора и необходимости его замены.
Проверка на обрыв
Сама неисправность возникает при отсоединении одной или двух обкладок. По сути, деталь превращается в обычный проводник.
Причиной неисправности может быть увеличение номинального напряжения, что актуально для электролитических и помехоподавляющих конденсаторов.
Внешне определить дефект не получится, поэтому для работы применяется мультиметр.
- Разрядите конденсатор напрямую (при небольшой емкости) или с помощь дополнительного резистора на 5-10 кОм). При выполнении работы помните о безопасности.
- Установите мультиметр в режим сопротивления.
- Измерьте этот параметр на выводах.
- Проанализируйте полученные данные.
Проверка на короткое замыкание
Существует три способа, позволяющих проверить конденсатор на КЗ.
- Включите прибор в режим измерения сопротивления / прозвонки.
- Коснитесь щупами к отпайкам конденсатора.
- Посмотрите на показания прибора.
Если деталь исправна, прибор показывает бесконечность, или это происходит через какой-то промежуток времени.
Появление писка свидетельствует о низком сопротивлении и КЗ в детали.
При проверке учтите следующие моменты:
- для полярного конденсатора обязательно придерживайтесь полярности;
- в неполярных конденсаторах можно подключаться к любому зажиму.
В качестве альтернативы можно использовать стрелочный прибор, по которому проще наблюдать повышение сопротивления и видеть процесс зарядки.
- Подключите светодиод / лампочку к батарейке через емкость.
- Обратите внимание на лампочку, которая при исправной детали не должна светиться.
- В случае постоянного свечения лампочки можно говорить о поломке конденсатора.
Если в процессе проверки сопротивление постоянно растет, а лампочка начинает свериться и тухнет, это свидетельствует о наличии какой-то емкости. В таком случае проверку на обрыв делать не имеет смысла.
- Подключите лампочку накаливания на 25-40 Вт к конденсатору.
- Посмотрите, светится она или нет.
Если лампочка не горит, значит, устройство исправно.
Измерение напряжения
Для проверки конденсатора мультиметром можно измерить напряжение и сравнить полученные данные с заводским параметром.
Алгоритм действий, следующий:
- Найдите источник питания с напряжением, которое меньше, чем у испытуемой детали.
- Подключите выводы к ножкам с учетом «плюса» и «минуса».
- Выждите некоторое время.
Далее сделайте следующее:
- Установите на мультиметре режим измерения напряжения.
- Проверьте интересующий параметр.
- Если на экране появляется значение равное номинальному напряжению, конденсатор можно использовать и далее. В ином случае деталь лучше поменять.
Измерение увеличения токов утечки
При неисправности диэлектрика, установленного между обкладками, возможно появление токов утечки.
Для проверки достаточно обычного мультиметра:
- Зарядите конденсатор от источника питания.
- Сделайте несколько измерений напряжения на выводах через фиксированные промежутки времени.
Измерение эквивалентного сопротивления (ESR)
Бывают ситуации, когда при первом осмотре конденсатор выглядит рабочим, но на практике он оказывается неисправны.
Последний позволяет измерить последовательный эквивалентный параметр сопротивления.
Увеличение этого показателя ведет к нагреву детали, а это искажает его параметры и уменьшает ресурс.
Удобство RLC-метра состоит в возможности выбирать проверяемую частоту. В качестве примера можно привести модель MASTECH 13-2039.
Такие измерения важны при контроле высокочастотных конденсаторов, установленных в импульсных блоках питания и при проверке деталей Low ESR-типа.
Анализ значения ESR проводится посредством сравнения с параметром аналогичной детали или с помощью специальной таблицы Боба Паркера.
Проверка конденсатор без выпаивания с платы
Один из наиболее удобных способов проверки конденсатора — сделать работу без выпаивания с платы.
Алгоритм действий, следующий:
- Изучите состояние деталей не схеме. К признакам неисправности относится изменение цвета, вздутие, расколы и иные симптомы. В процессе эксплуатации на поверхности конденсатор могут появиться признаки температурных воздействий (потемнение платы, токопроводящие дорожки и т. д).
- Проверьте качество контакта, осторожно покачав ее пальцем.
- Измерьте напряжение в контрольных точках по цепи разряда.
- Убедитесь в работоспособности конденсатора.
При выявлении визуальных проблем или отклонении по напряжению подключите параллельно неисправному элементу заведомо целую деталь.
После такого эксперимента можно делать вывод об исправности.
Второй способ проверки — снятие напряжения и измерение сопротивление прямо на схеме.
Сделайте следующие шаги:
- Установите на мультиметре тумблер в позицию измерения сопротивления.
- Вставьте щупы в специальные разъемы и прикоснитесь к выводам.
- Смотрите, как показатель сопротивления увеличивается за счет заряда от прибора. Если это так, значит, деталь исправна.
Третий метод — проверка конденсатора с помощью RLC-метра. Подключите его провода-щупы к выводам детали и посмотрите на экран.
Учтите, что при параллельном соединении параметры емкостей складываются, а при последовательном применяется особая формула (на этом вопросе мы остановимся ниже).
Как измерить емкость двух последовательно подключенных конденсаторов
Бывает ситуация, когда мультиметр с опцией измерения емкости не позволяет проверить конденсатор из-за отсутствия нужного предела.
В большинстве приборов максимальный порог составляет 20 или 200 мкФ. Но что делать, если нужно измерить емкость в 1400 мкФ или более.
Здесь можно использовать следующую формулу: 1/С = 1/С1+1/С2.
Иными словами, при проверке двух деталей при емкости одной из них 30 мкФ, суммарная емкость будет меньше 20 мкФ.
При наличии прибора с ограничением измерения на 20 мкФ нужно неизвестный конденсатор подключить последовательно с деталью емкостью до 20 мкФ.
Останется лишь измерить суммарную емкость двух конденсаторов и рассчитать параметры для неизвестной величины.
Что делать в случае пробоя
К наиболее распространенным неисправностям, характерным для конденсаторов, относится пробой.
Если конденсатор исправен, в нем возможна небольшая утечка тока сквозь изоляцию.
Причиной повреждения может быть скачок напряжения, а распознать проблему можно по вздутию, потемнению или появлению черных пятен. Единственное решение в таком случае — замена.
Как проверить конденсатор при помощи прибора ESR-METR
Простыми словами, ESR-METR — устройство, предназначенное для проверки конденсаторов, созданное на базе микропроцессора (к примеру, ATmega328). Имеет дисплей и контакты для подключения проводов.
Устройство продается без корпуса и питается от батарейки типа «Крона».
Для проверки конденсатора этим устройством сделайте следующие шаги:
- Выполните калибровку прибора. Для этого замкните контакты на 1-й и 4-й колонке, а после жмите на кнопку для автоматической калибровки. В случае успеха на экране должна появиться соответствующая надпись.
- Разрядите конденсатор.
- Подключите прибор к интересующим разъемам и выполните измерение.
Возможные сложности проверки
Во избежание погрешностей можно использовать специальный тестер с более низким напряжением на выводах. Он позволяет проводить измерения прямо на плате и следовать рассмотренной выше инструкции.
Наличие небольшого напряжения на выводах сводит к минимуму вероятность повреждения остальных деталей.
К примеру, можно привести модель Мультиметра цифрового STAYER 45320-T.
Применяем формулы
При отсутствии под рукой прибора без гнезд для измерения конденсатора можно вспомнить курс школьной физики и использовать ряд формул.
Но это уже для тех, кто хочет полностью погрузиться в тему и на практике данный метод применяется редко.
Отметим, что при заряде рассматриваемой детали от источника постоянного напряжения через сопротивление разность потенциалов на устройстве будет подходить к напряжению источника и в завершение будет выравнено.
Для экономии времени можно сделать проще. К примеру, за время 3*RC в процессе зарядки разность потенциалов на детали доходит до уровня 95% по отношению к RC-цепи.
Следовательно, временной параметр легко вычислить по параметру тока и напряжения.
Иными словами, если знать число Вольт в питающем блоке и параметр сопротивления, можно вычислить постоянную времени, а после и емкость.
Допустим, в качестве проверяемого устройства имеется электролитический конденсатор.
Для проверки его емкости достаточно глянуть на надпись. К примеру, там указано напряжение 50 Вольт и емкость 6800 мкФ.
Если деталь долгое время не использовалась, параметр может не соответствовать действительности.
Для получения точной информации нужно проверить емкость.
- Берите мультиметр и резистор в 10 000 Ом. Измерьте сопротивление последнего, к примеру, прибор выдал цифру 9800 Ом.
- Подключите блок питания, а прибор переведите на измерение напряжения.
- Подключите мультиметр к БП с помощью выводов.
- Установите на БП напряжение 12 В и обратите внимание, чтобы на экране прибора отобразилась эта цифра.
- Попробуйте отрегулировать напряжение и, если это не удалось, запишите получившиеся результаты.
- Соберите RC-цепочку с использованием резистора и конденсатора.
- Закоротите конденсатор и подайте на цепочку питание.
- Подключите мультиметр и еще раз проверьте напряжение, которое идет на цепь. Зафиксируйте этот параметр.
- Вычислите 95% от расчетного числа. Так, если измерение показало 12 В, в результате получится 11,4 В. Иными словами, за время 3RC конденсатор получает разность потенциалов в 11,4 В. Итоговая формула в этом случае имеет такой вид — 3*T=3*RC.
- Определите время, для чего раскорачивайте деталь, запустите секундомер и ждите, когда напряжение достигнет отметки 11,4 В. Полученный параметр и будет временем, которое будет использоваться в расчетах.
- Параметр времени (сек) разделите на сопротивления резистора и на тройку. Получается 210 с, которые разделите снова на тройку и 9800. Получается 0,00714 или 7140 мкФ. Разрешенное отклонение не может быть больше 20%. С учетом того, что на детали указано 6800, а расчет показал 7140 мкФ, параметр можно считать нормальным.
Сложней обстоит ситуация, когда необходимо вычислить емкость керамического конденсатора.
Для этого используйте сетевой трансформатор.
- Подключите RC-цепь к «вторичке» трансформатора.
- Подсоедините сам трансформатор к цепи.
- С помощью прибора измерьте напряжение на резисторе и конденсаторе.
- Рассчитайте ток, который идет через резистор, а после поделите напряжение на сопротивление. Результатом является Xc (емкостное сопротивление). Сама формула имеет следующий вид — Xc=1/2*π*f*С. При наличии частоты тока не возникает проблем с измерением самой емкости: С=1/2* π*f*Xc.
Для тех, кому метод с формулами показался очень сложным, просто забудьте про него. Но некоторым может пригодится.
Рекомендации по проверке конденсатора
Многие не знают, что конденсаторы имеют особенность — они после пайки, по причине воздействия на них высоких температур, редко восстанавливаются.
С другой стороны, возникает противоречие, чтобы проверить деталь, ее нужно выпаять, так как находясь в схеме на плате конденсатор будут выкорачивать другие элементы, а сами показания будут ошибочными.
Если все нормально, то старый конденсатор меняют на новый, это обеспечит стабильную работу устройства в будущем.
Во избежание оплошностей учтите следующие моменты:
- При выявлении проблем в работе схемы посмотрите на дату выпуска конденсатора. В среднем последний усыхает на 65 процентов уже после пяти лет работы. Такой элемент, даже если он пока работает, лучше выпаять и проверить, а при необходимости поменять.
- Для ускорения проверки не обязательно выпаивать оба контакта — достаточно только одного. Но есть нюанс. Для большей части электролитических элементов этот способ не подходит из-за конструкции корпуса.
- При проверке сложной схемы с множеством проверяемых деталей повреждение лучше определить путем проверки напряжения. При отклонении этого показателя от требований или наличии подозрений на исправность, нужно выпаять и проверить деталь.
- В новых версиях мультиметров максимальным параметром для измерения является 200 мкФ. Если проводить проверку большей емкости, устройство может поломаться, несмотря на наличие защиты.
- В наиболее новых устройствах предусмотрены SMD-электроконденсаторы, которые слишком маленькие, и их трудно выпаять. В таких деталях лучше ограничиться выпаиванием только одного вывода, приподнять его и изолировать от остальной схемы, а после отпаять второй вывод.
Исходя из изученного материала, можно сделать вывод, что конденсатор можно проверить на работоспособность на плате, но лучше это делать после выпаивания.
Для измерений стоит использовать обычный мультиметр, RLC-прибор и классические формулы расчета из курса физики (в редких случаях).
Как просто определить емкость конденсатора подручными средствами
Иногда, когда на конденсаторе отсутствует маркировка или нет доверия к указанным на его корпусе параметрам, требуется как-то узнать реальную емкость. Но как это сделать, не имея специального оборудования?
Безусловно, если под рукой есть мультиметр с возможностью измерения емкости или C-метр с подходящим диапазоном измерения емкостей, то проблема перестает быть таковой. Но что же делать, если в наличии только простой бытовой мультиметр и какой-нибудь блок питания, а измерить емкость конденсатора необходимо здесь и сейчас? На помощь в этом случае придут известные законы физики, которые позволят с достаточной степенью точности измерить емкость.
Рассмотрим сначала простой способ измерения емкости электролитического конденсатора подручными средствами. Как известно, при заряде конденсатора от источника постоянного напряжения через резистор, имеет место закономерность, по которой напряжение на конденсаторе станет экспоненциально приближаться к напряжению источника, и в пределе когда-нибудь, наконец, его достигнет.
Но чтобы долго не ждать, можно задачу себе упростить. Известно, что за время, равное 3*RC, напряжение на конденсаторе в процессе зарядки достигнет 95% напряжения, приложенного к RC-цепочке. Значит, зная напряжение блока питания, номинал резистора, и вооружившись секундомером, можно легко измерить постоянную времени, а точнее — троекратную постоянную времени для большей точности, и вычислить затем емкость конденсатора по известной формуле.
Для примера рассмотрим далее эксперимент. Допустим, есть у нас электролитический конденсатор, на котором присутствует какая-то маркировка, но мы ей не особо доверяем, так как конденсатор давно валялся в закромах, и мало ли высох, в общем нужно измерить его емкость. Например, на конденсаторе написано 6800мкф 50в, но нужно узнать точно.
Шаг №1. Берем резистор номиналом 10кОм, измеряем его сопротивление мультиметром, поскольку своему мультиметру в этом эксперименте мы будем изначально доверять. Например, получилось сопротивление 9840 Ом.
Шаг №2. Включаем блок питания. Поскольку мультиметру мы доверяем больше, чем калибровке шкалы (если таковая имеется) блока питания, переводим мультиметр в режим измерения постоянного напряжения, и подключаем его к выводам блока питания. Выставляем напряжение блока питания на 12 вольт, чтобы мультиметр точно показал 12,00 В. Если напряжение блока питания не регулируется, то просто замеряем его и записываем.
Шаг №3. Собираем RC-цепочку из резистора и конденсатора, емкость которого нужно измерить. Конденсатор закорачиваем на время так, чтобы его легко можно было раскоротить.
Шаг №4. Подключаем RC-цепочку к блоку питания. Конденсатор все еще закорочен. Измеряем мультиметром еще раз напряжение, подаваемое на RC-цепочку, и фиксируем это значение для верности на бумаге. К примеру, оно так и осталось 12,00 В, или таким же, каким было в начале.
Шаг №5. Вычисляем 95% от этого напряжения, например если 12 вольт, то 95% — это 11,4 вольта. Теперь мы знаем, что за время, равное 3*RC, конденсатор зарядится до 11,4 В.
Шаг №6. Берем в руки секундомер, и раскорачиваем конденсатор, начинаем одновременно отсчет времени. Фиксируем время, за которое напряжение на конденсаторе достигло 11,4 В, это и будет 3*RC.
Шаг №7. Производим вычисления. Получившееся время в секундах делим на сопротивление резистора в омах, и на 3. Получаем значение емкости конденсатора в фарадах.
Например: время получилось 220 секунд (3 минуты и 40 секунд). Делим 220 на 3 и на 9840, получаем емкость в фарадах. В нашем примере получилось 0,007452 Ф, то есть 7452 мкф, а на конденсаторе написано 6800 мкф. Таким образом, в допустимые 20% отклонение емкости уложилось, поскольку составило примерно 9,6%.
Но как быть с неполярными конденсаторами малых емкостей? Если конденсатор керамический или полипропиленовый, то здесь поможет переменный ток и знание о емкостном сопротивлении.
К примеру, есть конденсатор, емкость его предположительно несколько нанофарад, и известно, что в цепи переменного тока работать он может. Для выполнения измерений потребуется сетевой трансформатор со вторичной обмоткой, скажем, на 12 вольт, мультиметр, и все тот же резистор на 10 кОм.
Шаг №1. Собираем RC-цепь, и подключаем ее ко вторичной обмотке трансформатора. Затем включаем трансформатор в сеть.
Шаг №2. Измеряем мультиметром переменное напряжение на конденсаторе, затем — на резисторе.
Шаг №3. Производим вычисления. Сначала вычисляем ток через резистор, — делим напряжение на нем на значение его сопротивление. Поскольку цепь последовательная, то переменный ток через конденсатор точно такой же величины. Делим напряжение на конденсаторе на ток через резистор (ток через конденсатор такой же), получаем значение емкостного сопротивления Хс. Зная емкостное сопротивление и частоту тока (50 Гц), вычисляем емкость нашего конденсатора.
Например: на резисторе 7 вольт, а на конденсаторе 5 вольт. Мы посчитали, что ток через резистор в этом случае 700 мкА, следовательно и через конденсатор — такой же. Значит емкостное сопротивление конденсатора на частоте 50 Гц составляет 5/0,0007 = 7142,8 Ом. Емкостное сопротивление Xc = 1/6,28fC, следовательно C = 445 нф, то есть номинал 470 нф.
Описанные здесь способы являются весьма грубыми, поэтому применять их можно только тогда, когда других вариантов просто нет. В иных случаях лучше пользоваться специальными измерительными приборами.
Надеюсь, что эта статья была для вас полезной. Смотрите также другие статьи в категории Электрическая энергия в быту и на производстве » Делимся опытом
6 способов как проверить конденсатор мультиметром
Как проверить конденсатор мультиметром – инструкции для полярного и неполярного типов элементов. 3 способа поиска КЗ + 3 метода проверки конденсатора на внутренний обрыв.
Конденсатор – это базовый элемент у большинства промышленной и бытовой техники. В силу своей распространённости, основные причины мелких поломок кроются именно в нем. Для оперативного выявления причин и подбора метода решения проблемы уметь делать проверку конденсатора мультиметром должен каждый.
Сегодня мы рассмотрим особенности использования данного измерительного прибора + разберем альтернативные методы проверки конденсаторов.
Понятие конденсатора + его классификация
Машиностроение, радиотехника, электроника, приборостроение – это лишь малая часть направлений, где активно используется рассматриваемая деталь. Конденсатором называют хранилище, что делится энергией в ситуации возникновения краткосрочных сбоев подачи питания. О классификации конденсаторов расскажу в таблице ниже.
Вид | Описание |
---|---|
Высоковольтный | Редко встречаются в бытовом исполнении. По материалы чаще всего керамические, вакуумные и ВВ. Областью применения являются высоковольтные приборы. |
Пусковые | Обеспечение стартового толчка в двигателях. |
Импульсные | Используются для получения крупных скачков напряжения перед подачей на приборную панель. |
Дозиметрические | Конденсаторы с малым зарядом, используемые в цепях с низкими нагрузками. |
Помехоподавляющие | Для смягчения электромагнитного фона. |
Выше описаны конденсаторы специального назначения, но основной объем (порядка 90%) идет на детали общего назначения. В дополнение имеется основополагающее разделение конденсаторов на полярные и неполярные . На основании типа детали, меняется и способ его проверки мультиметром, но об этом чуть позже.
В отношении маркировки, на корпусе обязательно прописывается ёмкость и пиковое напряжение. Дополнительными параметрами некоторые производители указывают тип тока, конструктивное исполнение, рабочую частоты и порядок вывода «+» и «-». Последнее актуально для конденсаторов электролитического типа.
Инструкции и рекомендации, как проверить конденсатор мультиметром
К типичным поломкам конденсатора относится:
- короткие замыкания между обкладок;
- обрыв внутри конденсатора, сопровождающейся 100% потерей в емкости;
- частичная емкостная потеря;
- деталь не способна удерживать заряд по причине заниженной сопротивления;
- чрезмерно высокие показатели ЕПС. Более характерно для электролитических конденсаторов.
Большинство поломок возникает из-за механических повреждений, чрезмерного нагрева либо значительного увеличения напряжения. Если же производится проверка устаревшего оборудования, то 30% случаев приходится на износ конденсатора из-за «старости».
Любые исследования на сопротивление и емкость элемента производятся специальным оборудованием – мультиметром. Детальнее о методах как проверить конденсатор мультиметром на работоспособность будет сказано ниже.
1) Поверхностная проверка
В некоторых случаях обнаружить неисправные конденсаторы внутри оборудования проще некуда. Для понимания ситуации достаточно взглянуть на внешнее состояние детали. Использование мультиметра в таких ситуациях не имеет смысла.
Характерные визуальные повреждения конденсаторов:
- вздутие с верхней или боковых частей;
- подтеки;
- вмятины;
- трещина;
- скол.
Любое видимое физическое повреждение может привести к дальнейшему разрушению конденсатора, а потому его дальнейшая эксплуатация в оборудовании запрещена. Лучше заранее избавиться от слабого звена, нежели в последствии расхлебывать последствия.
2) Как на мультиметре проверить конденсаторы полярного и неполярного типов
А) Проверка полярных конденсаторов
Исходя из названия, для эксплуатации подобных конденсаторов необходимо соблюдать полярность в подключении. То есть к плюсу подключать плюс, а к минусу минус. Емкость полярных конденсаторов скачет в промежутке 0.1-100 000 мкФ.
Все современные детали на верхней части располагают вдавленным крестом, который после взрыва имеет направленный вектор извержения. Такое решение позволяет снизить опасность в процессе установки и нивелирует разрушительное влияние не близлежащие компоненты.
Как на мультиметре проверить конденсатор полярного типа:
- Ножки закорачивают пинцетом или любым другим металлическим элементом.
- Когда элемент разрядится, о данном факте просигнализирует искра.
- У мультиметра устанавливаются переключатели на желаемый режим – прозвонка либо сопротивление.
- При учете полярности соединяем щупальца с ножками.
- При коротком замыкании мультиметр зависнет на нуле.
- При обрыве значение сразу покажет «1».
Если же конденсатор набирает единицу плавно, то данный элемент можно считать исправным. Чтобы избежать неточностей в процессе измерений, старайтесь не касаться щупалец мультиметра руками.
Обратите внимание! Проведение разрядки конденсатора следует считать одним из ключевых шагов.
Данное действие требуется не только с целью обеспечения личной безопасности ремонтирующего, но и для исключения возможности возникновения поломки на стороне самого измерительного оборудования.
Б) Проверка неполярных конденсаторов
Проверка мультиметром неполярных конденсаторов протекает еще быстрее и с меньшим количеством заковырок. Придерживаться соответствия щупалец полярности к ножкам элемента не требуется.
Как проверить неполярный конденсатор на мультиметре:
- Устанавливаем на мультиметре предел по мегаомам.
- Касаемся щупами ножек.
- Изучаем показатели прибора.
- При значении менее 2 Мом, велика вероятность поломки.
Чтобы более точно получить информацию в отношении исправности конденсатора, советую делать проверку на основании сравнения рабочего и потенциального нерабочего элемента . Последний должен быть полностью идентичен первому, только тогда можно будет судить о показанных результатах со стороны измерительного прибора.
3) Поиск короткого замыкания
А) Определяем короткое замыкание прозвонкой
Практически на всех мультиметрах имеется отдельная функция прозвонки. Чтобы использовать прибор на конденсаторах, следует заранее выбрать минимальный диапазон измерения на шкале.
Инструкция проверки конденсатора прозвонкой:
- Замкнуть щупы между собой, чтобы прибор выдал нулевое сопротивление при контакте и бесконечное при разъединении.
- Извлекаем конденсатор из схемы.
- Прикладываем к ножкам щупы.
- Изучаем показатели. Если сопротивление крайне низкое, либо сам мультиметр безостановочно пищит, конденсатор неисправен.
При нормальном сценарии значения показателя мультиметра будут увеличиваться постепенно. По времени данное действие займет от 5 до 30 секунд.
Б) Поиск КЗ светодиодом и батарейкой
Иногда возникают ситуации, когда мультиметра пол рукой не имеется, либо человек не покупал его из-за ранней ненадобности в хозяйстве. Чтобы не бежать на рынок за прибором здесь и сейчас, для проверки конденсатора можно воспользоваться подручными материалами.
- Ищем светодиод и батарейку.
- Создаем цепь через исследуемый конденсатор.
- Если диод не горит, либо имеет редкие вспышки еле заметного света, то деталь целая.
- При постоянном свете диода на 90%-100% своего потенциала, конденсатор считается неисправным.
Иногда может наблюдаться эффект постоянного нарастания сопротивления, из-за чего лампочка диода зажигается на 30%-40% от своего потенциала и постепенно гаснет. В таком случае можно предположить, что исследуемый конденсатор имеет определенную емкость, а это исключает необходимость в проверке на обрыв.
В) Проверка лампой на 220
Еще один альтернативный метод исследования работоспособности конденсаторов, который имеет право быть использованным в случае работы с элементами неполярного типа. Последние часто используются в стиралках, насосах и прочем бытовом/промышленном оборудовании.
Алгоритм проверки состоит из нескольких шагов:
- Ищем лампу накаливания мощностью 20-40 Вт.
- Собираем схему с участием проверяемого конденсатора. Выбор полярности тут не важен.
- Если лампа горит в 20%-60% накала, то элемент исправен.
- Если лампа выдает 100% накала, то деталь неисправна.
- При несветящейся лампе конденсатор считается негодным и с обрывом.
Рассмотренная схема дает возможность произвести сразу 2 типа проверки конденсатора – на факт обрыва и короткое замыкание . При неимении в наличии мультиметра, такой подход считаю одним из лучших. Естественно, если вы собираетесь проверять неполярный конденсатор.
4) Проверка мультиметром конденсатора на внутренний обрыв
А) Проверка на обрыв в режиме прозвонки
Определить факт обрыва с использованием мультиметра крайне просто – необходимо щупами взяться за ножки конденсатора и внимательно прислушаться. При обнаружении короткого звукового сигнала по типу писка, можно считать элемент исправным . В обратном случае, следует заменить конденсатор на другой.
Совет! Для увеличения продолжительности писка, мультиметр можно предварительно зарядить отрицательным напряжением. Для этого щупы прибора прикладываются в обратном порядке.
За счет такого простого лайфхака, вы сможете услышать звуковой сигнал даже на миниатюрных конденсаторах с емкостью от 100 нФ.
Б) Проверка на растущее сопротивление
Алгоритм проверки мультиметром на сопротивление:
- Переключаем режим прибора в сопротивление.
- Выбираем пиково допустимый промежуток измерения (200 мОм).
- Прикладываемся щупами к ножкам.
- Если по мере повышения сопротивления, значение вышло за установленные рамки – обрыв отсутствует.
При тестировании конденсаторов с жидким электролитом значение сопротивления может удерживаться на отметке в пару десятков Ом, и такое поведение будет считаться вполне нормальным.
Важно! В процессе измерений не касайтесь кожей щупов, иначе показатели сопротивления прибора с высокой вероятностью исказятся.
Рассмотренный метод дает 100% результат даже на конденсаторах, емкость которых составляет от 1000 пФ.
В) Проверка остаточного напряжения
Алгоритм проверки исправности по остаточному напряжению:
- Устанавливаем прибор в режим сопротивления либо прозвонки.
- На 1-2 секунды контактируем щупами с ножками. Происходит зарядка на какой-либо вольтаж.
- Меняем режим на измерение напряжения. Ставим наиболее чувствительный диапазон.
- Снова контактируем щупами с ножками элемента.
- Ждем значения напряжения. При наличии хоть какой-либо емкости, показатель будет отличен от нуля.
Оговорённый метод хорош для конденсаторов абсолютно любых емкостей. Тип детали здесь также не отыгрывает роли. Хотя, если человек столкнется с мизерной емкостью до 500 пФ, то без специализированного прибора (LC-метра) будет не обойтись.
Быстрая проверка конденсатора на примере
Можно ли проверить конденсатор без выпаивания и схемы
Несколько примеров по схемам:
-
- параллельная установка керамического электролитического конденсатора;
- здесь будет всегда показываться КЗ, хотя по факту такового может и не быть;
- также покажет всегда КЗ. В трансформаторах такая схема из вторичной обмотки, диода + конденсатора выпрямительного типа встречаются довольно часто.
Если же ситуация стандартная, то при емкости детали от 1 мкФ можно попытать счастья на факт отсутствия КЗ и проверки самого факта наличия какой-нибудь емкости. Получить более точные значения прибором будет крайне проблематично.
На этом вопрос проверки конденсатора мультиметром считаю исчерпанным. Если имеются какие-либо вопросы или рекомендации, жду вас в комментариях. Удачи!
Как правильно проверить конденсатор мультиметром
При использовании конденсаторов важно точно знать, что они исправны. Наличие испорченной детали в электросхеме не позволит ей нормально функционировать. Поэтому если есть сомнения, следует знать, как проверить конденсатор мультиметром на работоспособность.
Как работает конденсатор
Классическая схема этого радиоэлемента включает в себя две плоские пластины, расположенные параллельно друг другу на очень близком расстоянии. Между ними находится слой диэлектрика. Пластины присоединяются к источнику тока.
Ток, как известно, представляет собой упорядоченное движение электронов. При отсутствии электрического поля они движутся хаотически, но как только к проводам, ведущим к пластинам конденсатора, будут подсоединены клеммы батареи, электроны начнут перемещаться от отрицательного потенциала к положительному.
Конденсатор не образует непрерывный проводник из-за слоя изолятора между пластинами, но упорядоченное движение частиц будет происходить независимо от этого обстоятельства.
Таким образом, с той стороны, которая подключена к отрицательной клемме, частицы будут накапливаться, а с противоположной они будут перемещаться к положительной клемме. В результате этого процесса на обкладках накапливаются положительный и отрицательный заряды, равные по величине.
Их накопление сначала будет идти сравнительно быстро, потом замедлится, а затем и вовсе прекратится, так как накопленный заряд будет равен потенциалу соответствующей клеммы. Если речь идёт о постоянном напряжении, то эта ситуация останется стабильной до отключения батарейки.
Если в качестве источника взять сеть электропитания, то в этом случае принцип действия будет аналогичным. Однако поскольку потенциал на обкладках будет меняться, то конденсатор будет заряжаться циклически: произойдёт увеличение заряда до предельного значения, затем он начнёт падать, После этого накопится противоположный заряд, затем он тоже начнёт падать, и так будет циклически повторяться до отключения от сети.
Каждый конденсатор способен накопить строго определённый заряд, величина которого определяется его ёмкостью. Некоторые их разновидности можно подключать с различной полярностью, а для других нужна только определённая. Если напряжение слишком большое, то будет происходить пробой — между пластинами проскочит искра.
По внешнему виду и устройству конденсаторы отличаются. Например, они могут иметь цилиндрическую форму, а в промежутке между обкладками иногда применяется жидкий электролит. Существуют устройства переменной ёмкости.
В качестве диэлектрика используются различные материалы: стекло, бумага, воздух, керамика и некоторые другие материалы. При измерении на омметрах сопротивление конденсатора может отображаться как бесконечность. Если произойдёт пробой, то оно упадёт до нескольких десятков Ом или станет ещё меньше.
Маркировка
При изготовлении емкостей на корпус наносится необходимая информация. Её объем в некоторых случаях зависит от величины детали. Это необходимо учитывать, так как на мелких деталях иногда хватает места только для указания ёмкости.
Иногда для обозначения используют три цифры. Две первых обозначают ёмкость, а последняя информирует о порядке величины. Если она находится в диапазоне 0–5, то речь идёт о количестве нулей, которые нужно дописать справа (554 означает, например, 550000). При наличии 8 результат умножают на 0.01, а если 9 — на 0.1.
Также применяется буквенно-цифровое обозначение. Принцип кодировки удобно пояснить на следующем примере. Обозначения Н25, 2Н5 и 25Н обозначают, соответственно 0.25 нФ, 2.5 нФ и 25 нФ. Положение буквенного символа при этом указывает место, куда нужно поставить запятую.
Если места на корпусе достаточно, могут быть указаны дополнительные данные:
- Частота электротока, при которой возможно использование емкости.
- Конструктивное исполнение.
- На какой ток рассчитан радиоэлемент: постоянный или переменный.
- Точность значения емкости: указывается, на сколько процентов она может отклоняться при проверке.
- Полярность. В большинстве случаев она не имеет значения, но иногда к ней предъявляются жёсткие требования.
Если уметь читать эти обозначения, то можно без проблем получить всю необходимую информацию для работы с радиоэлементом.
Виды мультиметров
Проверку удобно проводить с помощью мультиметра. Большинство таких приборов обеспечивает измерение трёх основных электрических величин: напряжения, силы тока и сопротивления. Обычно доступны и другие режимы работы, но они различаются в зависимости от используемой модели. С помощью некоторых из них, например, можно выполнить непосредственное измерение емкости конденсатора. Существуют следующие типы мультиметров:
- Аналоговые ещё недавно были очень распространены. Они отличаются наличием стрелки и шкалы измерения. Их достоинством является доступность и простота использования. Наличие небольшого входного сопротивления может приводить в некоторых случаях к значительной погрешности измерений. Некоторым людям неудобно пользоваться нелинейной шкалой.
- Цифровые устройства обладают более высокой точностью. Погрешность их измерений в большинстве случаев не превосходит 1%. Работа такого измерительного прибора строится на использовании электронных микросхем. Информация о результате измерений отображается на цифровом дисплее.
Распространены такие разновидности мультиметров:
- Портативные. Активно применяются не только специалистами, но и в быту. В них используются специальные щупы, которые подсоединяют к контактам измеряемых деталей.
- У некоторых приборов имеются встроенные токоизмерительные клещи. Они позволяют определять силу тока без необходимости выпаивания деталей. Для применения их сначала разводят в стороны, а затем охватывают нужный провод. Открывают и закрывают клещи при помощи специальной клавиши. Некоторые мультиметры позволяют работать и с токоизмерительными клещами, и с обычными щупами по выбору мастера.
- Стационарные мультиметры отличаются высокой надёжностью и точностью работы. Питаются они не от батарейки, а от электросети. Их часто используют для профессиональной работы с электронными устройствами.
- Существуют модели измерительных приборов, которые дополнительно обладают функциями осциллографов. Они имеют более высокую цену, но позволяют получать информацию о форме сигналов. Такие устройства обычно используются только в профессиональных целях.
Какие возможны неисправности конденсатора
При неправильной эксплуатации возможны следующие нарушения работы этой детали:
Пробой изолятора между обкладками. В этом случае часто конденсатор чернеет и вздувается. Это может, например, произойти в результате резкого скачка напряжения в сети электропитания.
- Уменьшение ёмкости до значения, которое ниже допустимого.
- Слишком большой ток утечки.
- Нарушение подключения проводника к обкладке.
- Физическое повреждение детали.
Именно эти признаки неисправности считаются наиболее вероятными. В большинстве случаев работоспособность конденсатора страдает из-за подачи слишком высокого электронапряжения на его контакты. Также распространена неисправность, связанная с потерей функциональности диэлектрика. Эта проблема особенно актуальна при использовании электролитических конденсаторов.
Как проверяются конденсаторы
Для этих радиоэлементов обычно выполняется:
- Проверка ёмкости.
- Определение сопротивления диэлектрического слоя.
Перед тем как проверить емкость конденсатора, надо произвести его разрядку. Для этого у слабых радиоэлементов достаточно на короткое время закоротить провода, которые ведут к обкладкам. После этого можно приступать к работе с деталью. Если это условие проигнорировать, то от остаточного напряжения пострадает измерительный прибор.
При необходимости разрядить конденсаторы, емкость которых превышает 100 мкФ, рекомендуется использовать сопротивление 5–20 кОм. Применение резистора гарантирует, что не возникнет мощной искры. Во время разрядки не стоит прикасаться к контактам руками.
Перед тем как проверить конденсатор тестером на исправность, следует провести внимательный осмотр детали. При этом надо искать следующие видимые признаки:
- Наличие даже небольшого вздутия.
- Сколы или трещины. Возникновение таких проблем особенно актуально для керамических конденсаторов.
- Наличие вмятин.
При обнаружении этих или других видимых повреждений радиодетали независимо от их состояния эксплуатировать нельзя.
Дальнейшая проверка конденсаторов должна помочь определить сопротивление изоляционного слоя между обкладками. Это удобно делать мультиметром. Пошаговая инструкция выглядит так:
- Включить прибор.
- Перед тем как проверить керамический конденсатор, электролитический или любой другой, нужно установить мультиметр в режим проверки сопротивления.
- Красным и чёрным щупами нужно прикоснуться к контактам детали.
- Исправность конденсатора подтверждается показателем на дисплее, соответствующим бесконечности. Если появилось небольшое значение, то это свидетельствует о пробое.
У нормально работающей детали целостность изолятора не должна быть нарушена. В процессе проверки необходимо соблюдать правила техники безопасности. Сопротивление человеческого тела ниже, чем у тестируемого изолятора, поэтому человек может получить удар электротоком.
Проверка ёмкости
В некоторых моделях мультиметров имеется режим, позволяющий определить емкость конденсатора. На лицевой панели его обозначают при помощи двух вертикально расположенных параллельных линий. Чтобы замерить емкость нужно предпринять такие действия:
- Включить мультиметр.
- Установить режим проверки ёмкости.
- Подсоединить красный и чёрный щупы в соответствующие разъёмы. Для первого предназначено гнездо, рядом с которым имеются обозначения напряжения, сопротивления и, возможно, другие. Чёрный вставляют в то, рядом с которым находится надпись COM.
- Щупы необходимо подсоединить к выводам конденсатора.
- На дисплее обычно отображается значение ёмкости в микрофарадах. Используемые единицы указываются на лицевой панели прибора.
Чтобы сделать вывод о результате, который показала проверка конденсатора мультиметром, следует еще учесть значение допустимого отклонения ёмкости конденсатора. Оно может быть указано на корпусе, его также можно найти в соответствующем справочнике. Если отклонение полученного значения не превышает заданной величины, значит, деталь исправна. В противном случае можно сказать, что она проверку не прошла.
Аналогично проверяется пусковой конденсатор, обеспечивающий стабильность работы электродвигателя. Перед тестированием нужно обесточить электроустройство, разрядить конденсатор, отсоединить клемму, а на мультиметре выбрать режим измерения емкости и соответствующий диапазон значений этого параметра. Если полученное в ходе проверки значение емкости будет отличаться от того, что указано на корпусе, то радиодеталь неисправна и ее следует заменить.
Особенности проверки полярного конденсатора
Радиолюбителю нужно также знать, как можно проверить конденсатор мультиметром, который подключается только в определенной полярности. У такой радиодетали вывод «плюс» несколько длиннее, чем «минус». Кроме того, на корпусе есть метка «–».
Сопротивление изолятора у неполярного радиоэлемента от 100 кОм до 1 МОм (мегаома). Поэтому перед тем как проверить конденсаторы мультиметром, их обязательно надо разрядить. Для этого достаточно прикоснуться отвёрткой к выводам.
Чтобы проверить работоспособность радиодетали, нужно сделать следующее:
- Включить прибор.
- Установить режим проверки сопротивления.
- Перед тем, как измерить нужную величину, нужно правильно выбрать диапазон измерений. Он должен соответствовать параметрам проверяемого конденсатора.
- Присоединить красный щуп к выводу со знаком плюс, а чёрный — со знаком минус. Перед проверкой детали, нужно помнить, что должна использоваться определённая полярность.
- У исправного конденсатора сопротивление будет соответствовать расчётной величине.
Важно учитывать, что при проверке мультиметром начнётся зарядка конденсатора. При этом величина проверяемого сопротивления будет постепенно расти и это отобразится на дисплее мультиметра.
Что делать, если конденсатор впаян в схему
Проводить проверку удобно, когда детали отсоединены от платы, но это не всегда возможно. Поэтому и возникает вопрос, как проверить конденсатор мультиметром, не выпаивая. В этом случае удастся только проверить наличие емкости и отсутствие КЗ, а вот измерить значение емкости не получится.
Если возникла необходимость проверить электролитический конденсатор на плате или пленочный без выпаивания, нужно сначала провести тщательный осмотр детали. При обнаружении явных следов повреждений, можно сразу же делать вывод о неисправности конденсатора. Если таких признаков найти не получилось, то мастер должен перейти к последующим этапам проверки.
Далее проводят измерения в цепи разряда конденсатора. Также для получения нужной информации можно подключить заведомо исправную деталь параллельно проверяемой и замерить сопротивление. Более точное значение можно получить, если выпаять одну из его ножек.
Выполнение прозвонки
Чтобы прозвонить конденсатор мультиметром, нужно сделать следующее:
- Включить мультиметр и перевести его в режим прозвонки.
- Чёрный и красный щупы подсоединить к контактам детали.
- Если прибор издаёт звуковой сигнал или показывает низкое сопротивление, речь идёт о неисправном конденсаторе. Когда сопротивление стремительно возрастает и показывает бесконечность, то изоляция не пробита, деталь можно считать исправной.
Вместо того, чтобы прозванивать конденсатор, можно воспользоваться батарейкой и лампочкой. Собрав цепь, в которой к клеммам батарейки последовательно подключены лампочка и проверяемый конденсатор, можно будет точно установить наличие пробоя. Если лампочка светится на протяжении длительного времени, то конденсатор неисправен. Если же она не загорается, или несколько секунд светится, когда на нее воздействует пусковой ток зарядки, а потом перестает, то пробой отсутствует.
Определение внутреннего обрыва
Одним из возможных повреждений может быть отсоединение проводника от обкладки. Поэтому следует проверить неполярный конденсатор на отсутствие внутреннего обрыва. Наиболее частой причиной такой неисправности является резкое повышение напряжения.
При обрыве значение емкости фактически становится нулевой. Используя этот факт, можно проверить работоспособность детали. Если ёмкость имеет реальное значение, соответствующее характеристикам детали, то обрыва нет, следовательно, конденсатор исправен.
Проверка с помощью формулы
Емкость можно определить с помощью формул. В этом случае, чтобы проверить конденсатор, необходимо собрать схему, как на рисунке ниже.
В схеме используется конденсатор с номинальным значением 6880 мкФ, блок питания и резистор с точно известным сопротивлением 9880 Ом. Питающее наряжение составляет 12 В.
После подключения питания узнаем подаваемое напряжение, и записываем его. Далее нужно определить 95% от полученной величины. Это будет 11.4 В.
Теперь нужно позволить конденсатору заряжаться и засечь время, которое потребуется для этого. Следует периодически проверять разность потенциалов на обкладках конденсатора. Требуется подождать до тех пор, пока эта величина не возрастёт до 11.4 В. Это время также необходимо записать. Например, оно может быть равно 210 секунд.
Согласно законам электротехники время в секундах определяется по следующей формуле.
В ней все величины, кроме ёмкости, известны. При помощи несложных вычислений можно получить её значение. Оно будет равно С = 210 / (3 × 9880) = 0.007085 Ф = 7085 мкФ.
Нужно, чтобы полученное значение отличалось от номинала не более, чем на 20%. Поскольку номинальное значение составляет 6880 мкФ, то это условие выполняется. Следовательно, проверяемый конденсатор исправен.
- параллельная установка керамического электролитического конденсатора;