как работает дифференциал при движении автомобиля по прямой и на повороте
Что такое дифференциал, для чего он нужен, и как устроен
Дифференциал как автомобильный механизм скоро отметит двухвековой юбилей, однако его конструкция за эти долгие годы хоть и совершенствовалась, но сохранила ключевые особенности. Что же такое дифференциал, и какую роль он выполняет в автомобиле?
1. ЧТО ТАКОЕ ДИФФЕРЕНЦИАЛ?
Дифференциал в автомобиле – это механизм, который позволяет передавать мощность и, следовательно, вращение от коробки передач к колесам, разделяя поток этой мощности на два, для каждого из колес одной оси, с возможностью изменять соотношение передаваемой к ним мощности, и, следовательно, позволяя колесам вращаться с разной скоростью. Проще говоря, дифференциал разделяет 100% мощности, передаваемой коробкой передач, на два потока для каждого из колес на одной оси, и эти потоки могут перераспределяться в зависимости от условий движений от 50:50 до 100:0.
2. ДЛЯ ЧЕГО НУЖЕН ДИФФЕРЕНЦИАЛ?
Основное предназначение дифференциала – обеспечить возможность вращения колес на одной оси с разной скоростью с сохранением неразрывного потока крутящего момента. Для автомобиля это важно прежде всего в поворотах: ведь при движении по дуге колеса на внешней стороне поворота проходят больший путь, чем колеса на внутренней, а значит, должны вращаться с большей скоростью для сохранения стабильности машины.
Если же колеса на оси будут соединены жестко, то внутреннее колесо в повороте будет пробуксовывать. Для заднеприводного автомобиля это повышает риск заноса, а для переднеприводного радикально ухудшает управляемость и контроль автомобиля в повороте. Таким образом, обеспечение свободного и независимого вращения колес на одной оси с сохранением постоянства передачи на них крутящего момента от двигателя было одной из принципиальных задач с момента создания автомобиля – и это задача была успешно решена.
3. КАК УСТРОЕН ДИФФЕРЕНЦИАЛ?
Дифференциал являет собой частный случай планетарной передачи. Физически он обычно представляет собой набор из четырех шестерней, вращение к которым передается пятой – ведомой шестерней главной передачи, объединенной с корпусом дифференциала, выполняющим роль водила. Главная передача – это набор из двух шестерней: ведущая получает вращение от КПП и передает его ведомой. Ведомая же шестерня главной передачи передает вращение через корпус на шестерни-сателлиты, а они, в свою очередь, находятся в зацеплении с солнечными шестернями, жестко закрепленными на приводных полуосях колес.
Когда автомобиль движется по прямой, шестерни-сателлиты неподвижны, и скорость вращения шестерни главной передачи равна скоростям вращения солнечных шестерней: колеса вращаются с одинаковой скоростью. В повороте же шестерни-сателлиты начинают вращаться, обеспечивая разницу скоростей солнечных шестерней и, следовательно, колес на внешней и внутренней стороне поворота.
4. КАКОВЫ НЕДОСТАТКИ ДИФФЕРЕНЦИАЛА?
Главным недостатком дифференциала одновременно является его главное преимущество – возможность передавать до 100% мощности на одно из колес. Исходя из этого, в условиях, когда одно колесо имеет недостаточное сцепление с поверхностью, основная часть мощности будет передаваться именно на него. Таким образом, порой даже имея одно колесо на поверхности с достаточным сцеплением, автомобиль не может тронуться с места.
Для устранения этой проблемы были разработаны разнообразные конструкции – дифференциалы с повышенным внутренним сопротивлением (так называемые самоблоки) и дифференциалы с принудительной блокировкой, ручной или автоматизированной. В зависимости от конструкции и назначения они могут как изменять перераспределение потока мощности в пользу колеса с хорошим сцеплением с поверхностью, так и полностью замыкать дифференциал, заставляя колеса на оси вращаться с одинаковой скоростью. Разные типы таких дифференциалов мы рассмотрим в отдельных материалах.
Виды, устройство и принцип работы дифференциала
Дифференциал – это механизм трансмиссии, распределяющий подводимый к нему крутящий момент между приводными валами и позволяющий колесам вращаться с разными угловыми скоростями. Особенно это заметно, когда машина проходит поворот. Дифференциал обеспечивает безопасное и комфортное вождение на сухой дороге с твердым покрытием. Однако если автомобиль покинет ее пределы и продолжит двигаться по пересеченной местности, а также в случае гололеда (и других тяжелых погодных условий) этот механизм может лишить автомобиль возможности передвигаться. О том, что такое дифференциал, как он устроен, в чем его вред для внедорожников и как с этим бороться – пойдет речь ниже.
Дифференциал как часть трансмиссии
Дифференциал в автомобиле — это механизм, распределяющий крутящий момент карданного вала трансмиссии между ведущими колесами передней или задней оси (в зависимости от типа привода), позволяя каждому из них вращаться без пробуксовки. В этом заключается основное назначение дифференциала.
При прямолинейном движении, когда колеса нагружены одинаково и имеют равную угловую скорость вращения – механизм работает в качестве передаточного звена. Если условия движения изменяются (поворот, пробуксовка) – нагрузка становится неравномерной. У полуосей появляется необходимость вращаться с разными скоростями, и, как следствие, становится необходимым распределить полученный крутящий момент между ними в определенном соотношении. Тогда узел выполняет вторую важную функцию: обеспечение безопасного маневрирования автомобиля.
Схема расположения дифференциала зависит от типа привода автомобиля:
Дифференциал на автомобилях появился не сразу. Конструкторы первых «самодвижущихся экипажей» были очень озадачены плохой маневренностью своих изобретений. Вращение колёс с одинаковой угловой скоростью во время прохождения поворота приводило к тому, что одно из них начинало буксовать или, наоборот, полностью теряло контакт с дорогой. Инженеры вспомнили, что на ранних прототипах первых автомобилей, снабжаемых паровыми двигателями, было устройство, позволявшее избежать потери управляемости.
Механизм распределения вращающего момента изобрёл француз Онесифор Пеккёр. В устройстве Пеккёра присутствовали валы и шестерни. Через них крутящий момент от мотора поступал к ведущим колёсам. Но даже после применения изобретения Пёккера проблема пробуксовки колёс на поворотах не решилась полностью. Выявились недостатки системы. Например, одно из колес в какой-то момент терял сцепление с дорогой. Сильнее всего это проявлялось на обледенелых участках.
Пробуксовка в таких условиях часто приводила к авариям, поэтому конструкторы надолго задумались над тем, как предотвратить занос машины. Решение было найдено Фердинандом Порше. Он стал изобретателем кулачкового механизма, который ограничивал проскальзывание колёс ведущего моста. Немецкое устройство дифференциала нашло применение в автомобилях Volkswagen.
Как устроен дифференциал
Узел работает как планетарный редуктор. Принципиальное устройство дифференциала: шестерни полуосей (5) и сателлитов (4) размещены в чашке (3). Чашка (корпус) жестко соединена с ведомой шестерней (2), которая принимает крутящий момент от ведущей шестерни главной передачи (1). Корпус передает вращение посредством сателлитов полуосям, вращающим ведущие колеса. Разные угловые скорости обеспечиваются благодаря работе сателлитов. Величина крутящего момента остается неизменной.
Применение дифференциалов в зависимости от их видов
Грузовики и легковые автомобили всех типов приводов имеют межколесный дифференциал, передающий вращение колесам. Межосевой дифференциал, распределяющий крутящий момент между мостами, применяют исключительно в полноприводных машинах.
По типу применяемой зубчатой передачи различают следующие виды механизмов:
По количеству зубьев шестерен полуосей:
Благодаря его свойству пропорционально распределять крутящий момент несимметричный дифференциал с цилиндрической передачей устанавливают между мостами полноприводных автомобилей.
Заднеприводные и переднеприводные автомобили оснащают коническим симметричным дифференциалом.
Червячная передача, являясь самой универсальной, используется во всех типах устройств со всеми приводами.
Схема работы дифференциала
Рассмотрим принцип, по которому работает симметричный межколесный конический дифференциал, распределяющий крутящий момент между колесами в трех различных условиях:
При прямолинейном движении
Прямолинейное движение характеризуется равномерным распределением нагрузки между колесами автомобиля. Они имеют одинаковую угловую скорость. Сателлиты, размещенные в корпусе, не вращаются вокруг своих осей. Они передают крутящий момент от ведомой шестерни главной передачи к полуосям через неподвижное зубчатое зацепление.
При повороте
Когда транспортное средство поворачивает, силы сопротивления и нагрузки распределяются следующим образом:
Таким образом, колеса должны иметь разные угловые скорости. Замедление вращения полуоси внутреннего колеса приводит сателлиты в движение. Они, в свою очередь, посредством конической зубчатой передачи увеличивают скорость вращения полуоси наружного колеса. Крутящий момент, получаемый от главной передачи, остается неизменным.
При пробуксовке
Колеса автомобиля, движущегося даже прямолинейно по скользкой дороге или бездорожью, могут испытывать различную нагрузку: одно из них пробуксовывает, теряя сцепление с дорогой; другое, становясь более нагруженным, замедляется. Повторяется схема поворота. Только теперь она приносит вред: буксующее колесо может получить 100% принятого дифференциалом крутящего момента, а нагруженное вообще перестанет вращаться. Движение автомобиля прекратится.
Эти недостатки работы узла решаются различными способами:
Блокировка дифференциала и система курсовой устойчивости
Чтобы крутящий момент полуосей снова стал одинаковым, нужно блокировать действие сателлитов или обеспечить его передачу от чашки на нагруженную полуось.
Это особенно актуально для машин повышенной проходимости, имеющих полный привод 4Х4. Не только потому что они предназначены для езды по местности с тяжелыми дорожными условиями. Стоит машине, оснащенной тремя дифференциалами (два межколесных, один межосевой), хотя бы в одной из четырех точек потерять сцепление – величина крутящего момента остальных колес устремится к нулевому значению, и машина откажется ехать.
Избежать неприятностей помогает блокировка, которая может быть либо частичной, либо полной (зависит от степени перераспределения усилий между полуосями), а также либо ручной, либо автоматической (зависит от степени контроля со стороны водителя).
Хорошо себя зарекомендовали самоблокирующиеся дифференциалы, распределяющие крутящий момент, учитывая его разность на полуосях или исходя из значений угловых скоростей.
Наиболее сложным совершенным способом устранить недостатки узла является электронная блокировка, реализуемая на базе системы курсовой устойчивости, датчики которой контролирует все необходимые параметры во время движения автомобиля. На основе полученных данных работа автомобиля корректируется автоматически.
Безопасность прежде всего
Дифференциал создан для обеспечения безопасного комфортного маневрирования на трассе. Описанные выше недостатки касаются езды в экстремальных условиях, а также по пересеченной местности. Поэтому если на автомобиле установлен привод ручной блокировки, использовать его нужно исключительно в соответствующих дорожных условиях. А шоссейные автомобили, которые сложно «уговорить» ехать медленнее 100 км/час, эксплуатировать без дифференциала вообще невозможно и даже опасно. Такой вот нехитрый, но бесконечно важный механизм в трансмиссии.
Дифференциал
Главная передача предназначена для увеличения крутящего момента, передаваемого к ведущим колесам. Устройство ее, на первый взгляд, весьма просто — две шестерни. Одна, размером поменьше, является ведущей, вторая, побольше — ведомой. Но от конструкции главной передачи во многом зависят тягово-скоростные характеристики автомобиля и расход топлива.
На заднеприводных автомобилях применяется гипоидная главная передача, так как крутящий момент нужно передать на ведущие колеса под углом 90 градусов. Почему применяется более сложная в изготовлении гипоидная передача, а не простая коническая? Да потому что у конической передачи ее простота является единственным преимуществом. А недостатков больше: шумность, низкая несущая способность, высокое расположение карданного вала (а, следовательно, и трансмиссионного туннеля в кузове автомобиля). В гипоидной передаче ось ведущей шестерни смещена относительно оси ведомой на величину гипоидного смещения. Поэтому карданный вал располагается ниже, что позволяет уменьшить высоту трансмиссионного туннеля. При этом снижается центр тяжести автомобиля, тем самым улучшая его устойчивость.
Зубья шестерен выполняются косыми или криволинейными. Благодаря тому, что в гипоидной передаче одновременно находится в зацеплении больше зубьев, чем в конической, обеспечивается ее плавная и бесшумная работа, повышается нагрузочная способность. Однако, из-за более плотного прилегания зубьев увеличивается опасность заклинивания, особенно при изменении направления вращения. Поэтому гипоидные передачи требуют высокой точности регулировки и применения специального трансмиссионного масла. В масла для гипоидных передач добавляются противоизносные и противозадирные присадки.
В переднеприводных автомобилях, где нет необходимости изменять направление передаваемого момента, в главной передаче применяются простые цилиндрические шестерни. Конструктивно главная передача устанавливается в общем картере с коробкой передач. Цилиндрические передачи просты в изготовлении, недороги, опасность задиров низка. Поэтому для их смазки в большинстве случаев применяется не специальное трансмиссионное масло, а моторное.
Как влияет передаточное число главной пары на тягово-динамические характеристики? Чем оно выше, тем быстрее происходит разгон, но максимальная скорость ниже. И, наоборот, с уменьшением передаточного числа автомобиль разгоняется медленнее, но достигает большей максимальной скорости. Значение передаточного числа для конкретной модели автомобиля подбирается с учетом характеристик двигателя, размера колес, возможностей тормозной системы.
Дифференциал — это механизм, позволяющий (при необходимости) ведущим колесам автомобиля вращаться с разными скоростями. Для чего это нужно? При движении по прямой колеса проходят одинаковый путь, в повороте же внешнее колесо проходит путь больший, чем внутреннее колесо. Поэтому, чтобы «успеть» за автомобилем, внешнее колесо должно вращаться быстрее.
Устройство дифференциала несложное — корпус, ось сателлитов и два сателлита (шестерни). Корпус крепится к ведомой шестерне главной пары и вращается вместе с ней. Сателлиты входят в зацепление с шестернями полуосей, которые непосредственно вращают колеса.
В такой конструкции сателлиты передают больший крутящий момент на ту полуось, которая оказывает меньшее сопротивление вращению. То есть, с большей скоростью будет вращаться колесо, которое дифференциалу легче раскрутить. При движение по прямой колеса нагружены одинаково, дифференциал делит крутящий момент поровну, сателлиты не вращаются вокруг своей оси. В повороте внутреннее колесо нагружено больше, внешнее — разгружается. Поэтому сателлиты начинают вращаться вокруг оси, подкручивая менее нагруженное колесо, увеличивая тем самым скорость его вращения.
Но такая особенность дифференциала иногда приводит к весьма неприятным последствиям. Если, например, одно из колес попадет на скользкую поверхность, дифференциал будет вращать только его, полностью игнорируя колесо, имеющее нормальный контакт с дорогой. То есть, автомобиль будет «буксовать».
Для борьбы с этим явлением применяются блокировки дифференциала. Способов блокировок придумано множество — от простых механических до изощренных электронных.
Дифференциал с полной блокировкой
Применяется во внедорожниках. В такой конструкции валы полуосей жестко соединяются между собой, вращаясь, таким образом, с равными скоростями. Блокировка включается водителем вручную перед преодолением труднопроходимого участка, после чего ее необходимо выключать во избежание перегрузок трансмиссии, повышенного износа шин и снижения управляемости автомобиля. При движении в обычных дорожных условиях полную блокировку применять, естественно, нельзя.
Дифференциал с частичной блокировкой
В таких дифференциалах блокировка включается автоматически, поэтому их еще называют самоблокирующимися. При этом усилие блокировки нарастает постепенно, пропорционально разнице в скорости вращения или величине крутящего момента. По конструкции самоблокирующиеся дифференциалы можно разделить на четыре вида: вязкостные, дисковые, винтовые, электронноуправляемые.
Вискомуфта (вязкостная муфта) представляет собой герметичный корпус, в котором размещены два пакета фрикционов. Пространство внутри корпуса заполнено силиконовой жидкостью, вязкость которой зависит от температуры. Один пакет фрикционов соединяется с корпусом дифференциала, второй — с одной из полуосей. В обычных условиях, когда полуоси вращаются с одинаковой скоростью, или с небольшой разницей, вискомуфта себя никак не проявляет. При пробуксовке одного из колес скорость вращения полуоси резко возрастает, жидкость при этом интенсивно нагревается, а ее вязкость повышается. В результате пакеты фрикционов «слипаются» — скорости валов выравниваются. При остывании вязкость снижается — валы снова вращаются независимо. Вискомуфта способна обеспечить лишь небольшой коэффициент блокировки, при длительной пробуксовке перегревается, срабатывает с запаздываниями (пока нагреется жидкость). Поэтому область ее применения — обычные городские автомобили, для преодоления бездорожья она не подходит.
Дисковые дифференциалы — это обычные дифференциалы, в которые дополнительно встраиваются один или два пакета фрикционов и распорная пружина, создающая преднатяг (сжатие пакетов). В пакете фрикционов часть дисков крепится к полуоси, вторая — к корпусу дифференциала. Когда колеса вращаются с одинаковыми скоростями, диски в пакете вращаются как одно целое. При разнице в скорости вращения между ними возникают силы трения, стремящиеся выровнять скорости. Таким образом осуществляется частичная блокировка дифференциала. Очевидны недостатки дисковой блокировки — постоянный, пусть даже и небольшой, момент трения, создаваемый преднатягом, ухудшает управляемость, быстрее изнашиваются шины, увеличивается расход топлива. Да и срок службы фрикционов сравнительно небольшой. По мере их износа снижается и степень блокировки, а после полного износа дифференциал работает уже как свободный. Отсюда вывод — чем чаще «буксуешь», тем быстрее «умирает» дифференциал. Дисковые дифференциалы требуют применения специального трансмиссионного масла.
Усилием преднатяга определяется степень блокировки и минимальный крутящий момент, передаваемый на колесо в любых дорожных условиях. Регулируя степень преднатяга подбирают нужный компромисс между проходимостью и управляемостью. Дисковые дифференциалы с малым преднатягом используются на обычных, дорожных автомобилях, с большим — на спортивных.
Более «продвинутой» версией дискового дифференциал является героторный дифференциал. В нем шестеренчатый масляный насос приводит в действие поршень, который сжимает пакет фрикционов. А производительность насоса зависит от разницы в скорости вращения полуосей. Чем больше эта разница — тем сильнее усилие сжатия, а, соответственно, и степень блокировки.
Червячные дифференциалы — используют для блокировки свойства червячных передач. Самыми распространенными являются дифференциалы Торсен и Квайф. Червячная передача состоит из червяка и червячного колеса. Червяк (сателлит) является ведущим звеном, колесо (шестерня полуоси) — ведомым. КПД передачи при прямом вращении намного больше, чем при обратном, и зависит от угла наклона витков червяка. Говоря проще, червяк легко вращает колесо, колесо же с трудом вращает червяк. При определенном угле витка червяка обратная передача становится вообще невозможной — то есть, колесо не сможет вращать червяк (происходит самоторможение). Таким образом, подбирая угол наклона витков червяка, регулируют степень блокировки дифференциала Торсен. Блокирующие свойства Торсена зависят также и от величины передаваемого крутящего момента. Существует три типа дифференциала Торсен. Типы Т1 и Т2 отличаются формой сателлитов и используются в качестве межколесных. Торсен Т3 используется в полноприводных автомобилях в качестве межосевого дифференциала.
В дифференциале «Квайф» сателлиты не посажены на оси, а свободно расположены в гнездах корпуса. При возникновении разницы в скорости вращения полуосей сателлиты, блокируясь, сдвигаются в гнездах и прижимаются к корпусу. Возникающая при этом сила трения пропорциональна разнице скоростей вращения. Степень блокировки регулируют, подбирая сателлиты с различным углом наклона витков.
Червячные дифференциалы по сравнению с дисковыми отличаются большей надежностью и коэффициентом блокировки, меньше боятся пробуксовки (но длительные и частые пробуксовки все равно не рекомендуются). Однако такие дифференциалы, в отличие от дисковых и вискомуфты, совершенно беспомощны против диагонального вывешивания.
Электронноуправляемые дифференциалы. Электроника, активно внедряемая во все узлы и системы автомобиля, не обошла стороной и дифференциал. Типовая конструкция электронноуправляемого дифференциала напоминает устройство обычного дискового дифференциала, но сжатие фрикционов осуществляется гидро- либо электроприводом по команде блока управления. Таким образом можно регулировать степень блокировки в самых широких пределах — от 0 до 100%. Все зависит от заложенной в блок программы.
Казалось бы, идеал достигнут! Но, нет пытливые японцы пошли дальше и сконструировали активный дифференциал — самый совершенный на данный момент. Обычный электронноуправляемый дифференциал при пробуксовке только выравнивает скорости вращения полуосей. Активный же дифференциал может вращать полуоси с разными скоростями, в зависимости от дорожной ситуации. Например, в повороте добавить момент на внешнее разгруженное колесо, помогая автомобилю «довернуться».
Что такой дифференциал представляет собой конструктивно? Обычный свободный дифференциал дополнен двумя передачами — повышающей и понижающей. Включает передачи при помощи мокрых сцеплений блок управления. Величина передаваемого крутящего момента регулируется степенью сжатия сцеплений. Таким образом автомобиль с активным дифференциалом может и мастерски проходить крутые виражи, и на бездорожье не спасует. Другой вопрос, стоит ли овчинка выделки: цена дифференциала немаленькая. Поэтому и ограничивается его применение только мощными спортивными автомобилями.
Имитация блокировок. В последнее время большое распространение получили электронные системы, которые при возникновении пробуксовки подтормаживают буксующее колесо с помощью штатной тормозной системы, имитируя блокировку дифференциала. Для обычного городского автомобиля, не выезжающего на бездорожье — самое практичное решение. И на скользкой дороге поможет, и даже диагонального вывешивания не боится.
Преимущества и недостатки. Автомобиль с самоблокирующимся дифференциалом увеличивает тягу на колесах, тем самым повышая проходимость на бездорожье и на скользкой дороге (еще бы, а ради чего тогда было огород городить?). Также улучшается динамика разгона. Широко используются такие дифференциалы на мощных спортивных автомобилях и в тюнинге для более полной реализации мощности, прохождения поворотов в скольжении.
Но то, что хорошо для спортивного автомобиля, не всегда благо для обычного. Ведь самоблокирующийся дифференциал, повышая проходимость, ухудшает управляемость. Например, при разгоне на скользкой дороге автомобиль сложнее удержать на прямой. Если блокировки нет, автомобиль, проскальзывая, просто теряет ускорение. Если же срабатывает блокировка, небуксующее колесо (или колеса) продолжают толкать автомобиль вперед, тем самым уводя его с прямолинейной траектории.
Блокировки, установленные на передней оси, увеличивают недостаточную поворачиваемость (траектория в повороте стремится распрямиться), установленные в задней оси — повышают избыточную поворачиваемость (в повороте увеличивается склонность к заносу).
Самоблокирующиеся дифференциалы еще называют дифференциалами повышенного трения. А повышенное трение приводит к увеличенному расходу топлива, снижению срока службы шин и деталей трансмиссии.
Дифференциал
Механизм трансмиссии, распределяющий крутящий момент двигателя между ведущими колесами и ведущими мостами автомобиля, называется дифференциалом. Дифференциал служит для обеспечения ведущим мостам разной скорости вращения при движении автомобиля по неровным дорогам и на поворотах.
Разная скорость вращения ведущим колесам, проходящим разный путь на поворотах и неровных дорогах, необходима для их качения без скольжения и буксования. В противном случае повысится сопротивление движению автомобиля, увеличатся расход топлива и износ шин. В зависимости от типа и назначения автомобилей на них применяются различные типы дифференциалов (рисунок 1).
Рисунок 1 — Типы дифференциалов, классифицированных по различным признакам
Дифференциал, распределяющий крутящий момент двигателя между ведущими колесами автомобиля, называется межколесным.
Дифференциал, который распределяет крутящий момент двигателя между ведущими мостами автомобиля, называется межосевым.
На большинстве автомобилей применяют конические дифференциалы, симметричные и малого трения.
Симметричный дифференциал распределяет поровну крутящий момент. Его передаточное число равно единице (uД = 1), т.е. полуосевые шестерни 3 и 4 (рисунок 2, а, б) имеют одинаковые диаметры и равное число зубьев. Симметричные дифференциалы применяются на автомобилях обычно в качестве межколесных и реже — межосевых, когда необходимо распределять крутящий момент поровну между ведущими мостами.
Рисунок 2 — Кинематические схемы шестеренных дифференциалов
а, б — симметричных; в, г — несимметричных; 1 — корпус, 2 — сателлит; 3, 4 — шестерни
Несимметричный дифференциал распределяет не поровну крутящий момент. Его передаточное число не равно единице, но постоянно (uД ≠ 1 = const), т.е. полуосевые шестерни 3 и 4 имеют неодинаковые диаметры и разное число зубьев. Несимметричные дифференциалы применяют, как правило, в качестве межосевых, когда необходимо распределять крутящий момент пропорционально нагрузкам, приходящимся на ведущие мосты.
Межколесный конический симметричный дифференциал (см. рисунок 2, а) состоит из корпуса 1, сателлитов 2, полуосевых шестерен 3 и 4, которые соединены полуосями с ведущими колесами автомобиля. Дифференциал легкового автомобиля имеет два свободно вращающихся сателлита, установленных на оси, закрепленной в корпусе дифференциала, а у грузового автомобиля — четыре сателлита, размещенных на шипах крестовины, также закрепленной в корпусе дифференциала.
Принцип работы дифференциала
Работу дифференциала при движении автомобиля поясняет рисунок 3.
При прямолинейном движении автомобиля по ровной дороге (рисунок 3, а) ведущие колеса одного моста проходят одинаковые пути, встречают одинаковое сопротивление движению и вращаются с одной и той же скоростью. При этом корпус дифференциала, сателлиты и полуосевые шестерни вращаются как одно целое. В этом случае сателлиты 3 не вращаются вокруг своих осей, заклинивают полуосевые шестерни 4 и на оба ведущих колеса передаются одинаковые крутящие моменты.
Рисунок 3 — Работа дифференциала при движении автомобиля
а — по прямой; б — на повороте; 1, 4 — шестерни; 2 — корпус; 3 — сателлит; 5 — полуось
При повороте автомобиля (рисунок 3, б) внутреннее по отношению к центру поворота колесо встречает большее сопротивление движению, чем наружное колеса, вращается медленнее, и вместе с ним замедляет свое вращение полуосевая шестерня внутреннего колеса. При этом сателлиты 3 начинают вращаться вокруг своих осей и ускоряют вращение полуосевой шестерни наружного колеса. В результате ведущие колеса вращаются с разными скоростями, что и необходимо при движении на повороте.
При движении автомобиля по неровной дороге ведущие колеса также встречают различные сопротивления и проходят разные пути. В соответствии с этим дифференциал обеспечивает им разную скорость вращения и качения без проскальзывания и буксования.
Одновременно с изменением скоростей вращения происходит изменение крутящего момента на ведущих колесах. При этом крутящий момент уменьшается на колесе, вращающемся с большей скоростью. Так как симметричный дифференциал распределяет крутящий момент на ведущих колесах поровну, то в этом случае на колесе с меньшей скоростью вращения момент тоже уменьшается и становится равным моменту на колесе с большей скоростью вращения. В результате суммарный крутящий момент и тяговая сила на ведущих колесах падают, а тяговые свойства и проходимость автомобиля ухудшаются.
Для устранения этого недостатка применяют принудительную блокировку (выключение) дифференциала, жестко соединяя одну из полуосей с корпусом дифференциала. При заблокированном дифференциале крутящий момент, подводимый к колесу с лучшим сцеплением, увеличивается. В результате создается большая суммарная тяговая сила на обоих ведущих колесах автомобиля. При этом суммарная тяговая сила увеличивается на 20. 25% во время движения в реальных дорожных условиях.
Конический симметричный дифференциал является дифференциалом малого трения, так как имеет небольшое внутреннее трение.
Трение в дифференциале повышает проходимость автомобиля, так как оно позволяет передавать больший крутящий момент на небуксующее колесо и меньший — на буксующее, что может предотвратить буксование. При этом суммарная тяговая сила на ведущих колесах достигает максимального значения.
Однако в дифференциале малого трения увеличение суммарной тяговой силы на ведущих колесах составляет всего 4. 6%, что также не способствует повышению тяговых свойств и проходимости автомобиля.
Конический симметричный дифференциал малого трения прост по конструкции, имеет небольшие размеры и массу, высокие КПД и надежность. Он обеспечивает хорошие управляемость и устойчивость, уменьшает изнашивание шин и расход топлива. Этот дифференциал также называется простым дифференциалом.
Межосевой дифференциал распределяет крутящий момент между главными передачами ведущих мостов многоприводных автомобилей. Дифференциал устанавливается в раздаточной коробке или в приводе главных передач. Межосевой дифференциал исключает циркуляцию мощности в трансмиссии автомобиля, которая очень сильно нагружает трансмиссию, особенно при движении по ровной дороге. В качестве межосевых на автомобилях применяются и конические, и цилиндрически дифференциалы.
Кулачковые дифференциалы
Кулачковые (сухарные) дифференциалы могут быть с горизонтальным (рисунок 4, а) или радиальным (рисунок 4, б) расположением сухарей. Сухари 3 размещаются в один или два ряда в отверстиях обоймы 2 корпуса 1 дифференциала между полуосевыми звездочками 4 и 5, которые установлены на шлицах полуосей. Сухари в дифференциале выполняют роль сателлитов.
Рисунок 4 — Кинематические схемы кулачковых (а, б) и червячных (в, г) дифференциалов
1 — корпус, 2 — обойма, 3 — сухарь; 4, 5 — звездочки; 6, 8 — червяки; 7 — сателлит; 9, 10 — шестерни
При прямолинейном движении автомобиля по ровной дороге сухари неподвижны относительно обоймы и полуосевых звездочек. Своими концами они упираются в профилированные кулачки полуосевых звездочек и расклинивают их. Все детали дифференциала вращаются как одно целое, и оба ведущих колеса автомобиля вращаются с одинаковыми скоростями.
При движении автомобиля на повороте или по неровной дороге сухари перемещаются в отверстиях обоймы и обеспечивают ведущим колесам автомобиля разную скорость вращения без проскальзывания и буксования.
Кулачковые дифференциалы являются дифференциалами повышенного трения, так как имеют значительное внутреннее трение, которое позволяет передавать больший крутящий момент на небуксующее колесо и меньший на буксующее колесо. При этом суммарная тяговая сила на ведущих колесах автомобиля достигает максимального значения. Так, за счет повышенного внутреннего трения суммарная тяговая сила на ведущих колесах увеличивается на 10. 15%, что способствует повышению тяговых свойств и проходимость автомобиля. Кулачковые дифференциалы относительно просты по конструкции и имеют небольшую массу. Они широко применяются на автомобилях повышенной и высокой проходимости.
Червячные дифференциалы
Червячные дифференциалы могут быть с сателлитами или без сателлитов. В червячном дифференциале с сателлитами (рисунок 4, в) крутящий момент от корпуса 1 дифференциала через червячные сателлиты 7 и червяки 6 и 8 передается полуосевым червячным шестерням 9 и 10, которые установлены на шлицах полуосей, связанных с ведущими колесами автомобиля.
При прямолинейном движении автомобиля по ровной дороге корпус, сателлиты, червяки и полуосевые шестерни вращаются как одно целое. При движении автомобиля на повороте или по неровностям дороги разная скорость вращения ведущих колес обеспечивается за счет относительного вращения сателлитов, червяков и полуосевых шестерен.
В червячном дифференциале без сателлитов (рисунок 4, г) полуосевые червячные шестерни 9 и 10 находятся в зацеплении с червяками 6 и 8, которые находятся также в зацеплении между собой. Крутящий момент от корпуса 1 дифференциала передается полуосевым шестерням 9 и 10 через червяки.
Червячные дифференциалы обладают повышенным внутренним трением, которое увеличивает суммарную тяговую силу на ведущих колесах автомобиля на 10. 15%. Это способствует повышению тяговых свойств и проходимости автомобиля. Однако червячные дифференциалы наиболее сложные по конструкции. Они самые дорогостоящие из всех дифференциалов, так как их сателлиты и полуосевые шестерни изготавливают из оловянистой бронзы. В связи с этим в настоящее время червячные дифференциалы на автомобилях применяются очень редко.
Как работает дифференциал
Статья для тех, кто вдруг (внезапно:)) заинтересовался тем, как работает дифференциал. Эта штуковина есть в любом современном автомобиле (да и в несовременных, наверное, тоже). Дело в том, что данное устройство необходимо для нормальной езды при прохождении поворотов.
Итак, начнём с того, что во время поворота колёса на одной оси проходят неодинаковое
расстояние. Внешнее от центра поворота колесо проходит большее расстояние, так как радиус описываемого им круга больше.
Если колёса не ведущие и находятся каждое на своей полуоси проблем нет. Они просто крутятся с разной скоростью, будучи никак не связаны между собой. Но с ведущими колёсами так не получается, ведь они связаны между собой трансмиссией (от лат. transmissio — пересылка, передача). То есть оба колеса на одной оси должны принимать крутящий момент от двигателя через трансмиссию, в которую обычно входит сцепление, коробка передач, главная передача с дифференциалом, ведущие полуоси и ШРУСы. В случае с задним приводом перед главной передачей добавляется кардан и убирается ШРУС.
На прямой оба (или сколько их там есть, неважно) ведущих колеса вращаются с одинаковой скоростью и друг дружке не мешают. Но если они продолжат вращаться с одинаковой скоростью в повороте, то внутреннее колесо всё время будет пробуксовывать, что очень плохо для управляемости и устойчивости машины. К тому же износ резины будет бешеный.
Теоретически возможно что и внешнее колесо будет как бы «тащиться» за внутренним, не успевая проворачиваться с нужной для нормального качения скоростью, но на практике во время поворота на него ложится больше «условной половины» веса автомобиля за счёт действия центробежной силы, поэтому внутреннему колесу провернуться легче.
Столкнулись с этой проблемой давно (изобретён дифференциал аж в 1825 году), но животрепещущей она стала с расцветом автомобилестроения , увеличения скорости движения и, соответственно, критичности проскальзывания колеса. Поначалу пытались делать привод на одно колесо, но это, конечно, не вариант для нормальной езды. Любой ребёнок катаясь на машинке с электроприводом может в этом убедиться, там как раз одно колесо ведущее:).
В общем, дифференциал нужен для того, чтобы ведущие колёса имели возможность вращаться с разной скоростью при этом оставаясь связанными с двигателем.
2. Принцип работы дифференциала.
За счёт чего же дифференциал может передавать разную скорость вращения на колёса? Признаюсь, в своё время в школе на Автоделе я, наверное, половину урока потратил, допытываясь у преподавателя, как же всё-таки он работает, пока наконец не понял:).
В общем, смотрим на рисунок (для простоты я взял задний привод, на переднем функционально то же самое, просто дифференциал спрятан внутри КПП):
- Полуось с шестернёй.
- Ведомая шестерня.
- Сателлит.
- Ведущая шестерня.
От двигателя усилие передаётся через ведущую шестерню на ведомую шестерню. Та жёстко соединена с крестовиком водила дифференциала, на котором находится сателлит. Сателлит может свободно вращаться в обе стороны вокруг своей оси, при этом находится в зацеплении с шестернями обеих полуосей, от которых вращение идёт на колёса.
При езде по прямой обе полуоси крутятся с одинаковой скоростью и сателлит вращается вместе с ведомой шестернёй, не вращаясь при этом вокруг своей оси. Вернее, если следовать последовательности действия силы, то ведомая шестерня вращается вместе с сателлитом, а он передаёт вращение на полуоси, распределяя крутящий момент пополам.
Но если возникает необходимость увеличения скорости одного из колёс (как при повороте), то сателлит начинает вращаться вокруг своей оси, добавляя ему скорости, и убавляя на то же значение скорость вращения другого колеса. Вот, в общем-то, и всё нехитрое, но гениальное в своей простоте решение. Для меня, помню, самым сложным было представить мысленно, как сателлит одновременно крутится по оси ведомой шестерни и своей собственной. Ниже есть видео, наглядно демонстрирующее весь процесс в движении. И да, сателлитов может быть не два, а четыре, расположенных крестом.
3. Межосевой и межколёсный дифференциал.
В полноприводном автомобиле усилие передаётся на все четыре колеса. Поэтому и решать проблему с разностью скоростей вращения приходится относительно всех четырёх колёс. В этом случае ставят межколёсные дифференциалы на каждую ось (т. е. дифференциал «разрешающий» разноскоростное вращение на одной оси, располагается между колёс этой самой одной оси) и ещё один дифференциал — межосевой, как явствует из названия, ставят между осями, обычно в раздаточной коробке («раздаёт» мощность с двигателя на две оси, если говорить о 4×4).
Выглядит примерно так:
В центре раздаточная коробка с межосевым дифференциалом.
Да, не всегда полный привод означает наличие межосевого дифференциала. В так называемых part-time (т. е. непостоянно, подключаемо) полноприводных машинах дифференциала может и не быть, поскольку в этом случае предусматривается, что полный привод будет подключаться там, где возможны проскальзывания колёс (грязь, снег, лёд). Преодолевая такие участки пути автомобиль будет двигаться недолго и небыстро, а значит, можно не усложнять конструкцию и смириться с некоторым проскальзыванием. Поэтому в таких машинах чётко прописано ограничение по подключению полного привода (скорость, время работы).
В случае, если полный привод постоянный (full time), там стопроцентно стоит межосевой дифференциал той или иной конструкции.
4. Зачем нужна блокировка дифференциала.
Наличие дифференциала не только решает одни проблемы, но и создаёт другие. Особенность его такова, что крутящий момент всегда будет передаваться по более лёгкому пути, т.е. на колесо, которое прокрутить легче. На практике это означает, что если вы одним ведущим колесом стоите на асфальте, а другим — на льду, то тронуться вам если и удастся, то с большим трудом, поскольку из-за наличия дифференциала всё усилие уйдёт на проскальзывающее на льду колесо. Оно будет вращаться с бешеной скоростью в то время как другое колесо будет стоять без движения. Думаю, каждый автоводитель сталкивался с такой ситуацией.
Помню мне как-то пришлось помогать вытолкнуть RangeRover Vogue (или Evoque, уже не помню), вставший во дворе одним колесом в ямку со льдом. За рулём сидела девушка, а её муж, матерясь на «очередное говно за два миллиона», вместе со мной враскачку выталкивал машину из ямки. Дело было давно, тогда такие машины ещё стоили два миллиона:)).
Чтобы решить эту проблему придумали блокировку дифференциала. То есть при определённых условиях работа дифференциала (условно, вращение сателлитов вокруг своей оси) может быть заблокировано. Иногда это можно сделать вручную. Например, на Ниве межосевой дифференциал блокируется специальным рычагом с места водителя. Есть машины, на которых все дифференциалы можно заблокировать с кнопки в салоне.
Удобно, однако:).
Схематически блокировка дифференциала выглядит таким образом: На одной из полуосей стоит кулачковый механизм, при включении блокировки входящий в жёсткое зацепление с ответной частью на ведомой шестерне/водиле. Таким образом блокируется возможность сателлита прокручиваться вокруг своей оси, так как усилие идёт уже не через него, а непосредственно с ведомой шестерни на полуось. А раз шестерня полуоси не даёт крутиться сателлиту, то и вторая полуось является как бы жёстко подключенной через неподвижный сателлит.
Кулачковая блокировка дифференциала.
5. Дифференциал повышенного трения (самоблокирующийся дифференциал).
Помимо принудительной блокировки дифференциала на машины могут устанавливать самоблокирующиеся дифференциалы, или LSD (limited slip differential). Такие агрегаты могут блокироваться самостоятельно при достижении определённого условия, как правило, определённой разницы в скорости вращения полуосей. В принципе это оптимальный выбор для среднестатистического полноприводника, поскольку на хорошей дороге они ведут себя как обычные «открытые» дифференциалы, а в случае проскальзывания постепенно («мягко») блокируются и передают момент на колесо с более лучшим сцеплением.
Существует достаточно много разновидностей устройства таких дифференциалов, общим для всех является то, что работают (включаются) они за счёт повышения трения при пробуксовке одного из колёс.
6. Масло для дифференциала (заднего моста).
Поскольку дифференциал — это устройство с вращающимися и трущимися между собой деталями, в нём необходимо использовать смазочный материал. Как правило это специальное масло для мостов.
Специальность, впрочем, условная. В обычные задние мосты (где и стоит межколёсный дифференциал у обычных заднеприводных авто типа «классики») заливается трансмиссионное масло с допуском GL-5. По-другому его ещё называются маслом для гипоидных передач. Гипоидная (червячные) передача — самый тяжелонагруженный тип шестерёнчатой передачи в автомобиле, поэтому масло нужно наиболее износостойкое.
Дифференциалы переднеприводных авто смазываются маслом, заливаемым в КПП (поскольку конструктивно являются её частью). Это либо GL-4, либо универсальное GL-4/GL-5.
Для дифференциалов повышенного трения требуется особое масло с маркировкой LSD (т.е. для limited slip differential). Это объясняется тем, что принцип работы на трении учитывает в том числе свойства масла, которые должны отличаться от обычной трансмиссионки.
Когда автомобиль проходит поворот сателлиты дифференциала вращаются
Главная передача предназначена для увеличения крутящего момента, передаваемого к ведущим колесам. Устройство ее, на первый взгляд, весьма просто — две шестерни. Одна, размером поменьше, является ведущей, вторая, побольше — ведомой. Но от конструкции главной передачи во многом зависят тягово-скоростные характеристики автомобиля и расход топлива.
На заднеприводных автомобилях применяется гипоидная главная передача, так как крутящий момент нужно передать на ведущие колеса под углом 90 градусов. Почему применяется более сложная в изготовлении гипоидная передача, а не простая коническая? Да потому что у конической передачи ее простота является единственным преимуществом. А недостатков больше: шумность, низкая несущая способность, высокое расположение карданного вала (а, следовательно, и трансмиссионного туннеля в кузове автомобиля). В гипоидной передаче ось ведущей шестерни смещена относительно оси ведомой на величину гипоидного смещения. Поэтому карданный вал располагается ниже, что позволяет уменьшить высоту трансмиссионного туннеля. При этом снижается центр тяжести автомобиля, тем самым улучшая его устойчивость.
Зубья шестерен выполняются косыми или криволинейными. Благодаря тому, что в гипоидной передаче одновременно находится в зацеплении больше зубьев, чем в конической, обеспечивается ее плавная и бесшумная работа, повышается нагрузочная способность. Однако, из-за более плотного прилегания зубьев увеличивается опасность заклинивания, особенно при изменении направления вращения. Поэтому гипоидные передачи требуют высокой точности регулировки и применения специального трансмиссионного масла. В масла для гипоидных передач добавляются противоизносные и противозадирные присадки.
В переднеприводных автомобилях, где нет необходимости изменять направление передаваемого момента, в главной передаче применяются простые цилиндрические шестерни. Конструктивно главная передача устанавливается в общем картере с коробкой передач. Цилиндрические передачи просты в изготовлении, недороги, опасность задиров низка. Поэтому для их смазки в большинстве случаев применяется не специальное трансмиссионное масло, а моторное.
Как влияет передаточное число главной пары на тягово-динамические характеристики? Чем оно выше, тем быстрее происходит разгон, но максимальная скорость ниже. И, наоборот, с уменьшением передаточного числа автомобиль разгоняется медленнее, но достигает большей максимальной скорости. Значение передаточного числа для конкретной модели автомобиля подбирается с учетом характеристик двигателя, размера колес, возможностей тормозной системы.
Дифференциал — это механизм, позволяющий (при необходимости) ведущим колесам автомобиля вращаться с разными скоростями. Для чего это нужно? При движении по прямой колеса проходят одинаковый путь, в повороте же внешнее колесо проходит путь больший, чем внутреннее колесо. Поэтому, чтобы «успеть» за автомобилем, внешнее колесо должно вращаться быстрее.
Устройство дифференциала несложное — корпус, ось сателлитов и два сателлита (шестерни). Корпус крепится к ведомой шестерне главной пары и вращается вместе с ней. Сателлиты входят в зацепление с шестернями полуосей, которые непосредственно вращают колеса.
В такой конструкции сателлиты передают больший крутящий момент на ту полуось, которая оказывает меньшее сопротивление вращению. То есть, с большей скоростью будет вращаться колесо, которое дифференциалу легче раскрутить. При движение по прямой колеса нагружены одинаково, дифференциал делит крутящий момент поровну, сателлиты не вращаются вокруг своей оси. В повороте внутреннее колесо нагружено больше, внешнее — разгружается. Поэтому сателлиты начинают вращаться вокруг оси, подкручивая менее нагруженное колесо, увеличивая тем самым скорость его вращения.
Но такая особенность дифференциала иногда приводит к весьма неприятным последствиям. Если, например, одно из колес попадет на скользкую поверхность, дифференциал будет вращать только его, полностью игнорируя колесо, имеющее нормальный контакт с дорогой. То есть, автомобиль будет «буксовать».
Для борьбы с этим явлением применяются блокировки дифференциала. Способов блокировок придумано множество — от простых механических до изощренных электронных.
Дифференциал с полной блокировкой
Применяется во внедорожниках. В такой конструкции валы полуосей жестко соединяются между собой, вращаясь, таким образом, с равными скоростями. Блокировка включается водителем вручную перед преодолением труднопроходимого участка, после чего ее необходимо выключать во избежание перегрузок трансмиссии, повышенного износа шин и снижения управляемости автомобиля. При движении в обычных дорожных условиях полную блокировку применять, естественно, нельзя.
Дифференциал с частичной блокировкой
В таких дифференциалах блокировка включается автоматически, поэтому их еще называют самоблокирующимися. При этом усилие блокировки нарастает постепенно, пропорционально разнице в скорости вращения или величине крутящего момента. По конструкции самоблокирующиеся дифференциалы можно разделить на четыре вида: вязкостные, дисковые, винтовые, электронноуправляемые.
Вискомуфта (вязкостная муфта) представляет собой герметичный корпус, в котором размещены два пакета фрикционов. Пространство внутри корпуса заполнено силиконовой жидкостью, вязкость которой зависит от температуры. Один пакет фрикционов соединяется с корпусом дифференциала, второй — с одной из полуосей. В обычных условиях, когда полуоси вращаются с одинаковой скоростью, или с небольшой разницей, вискомуфта себя никак не проявляет. При пробуксовке одного из колес скорость вращения полуоси резко возрастает, жидкость при этом интенсивно нагревается, а ее вязкость повышается. В результате пакеты фрикционов «слипаются» — скорости валов выравниваются. При остывании вязкость снижается — валы снова вращаются независимо. Вискомуфта способна обеспечить лишь небольшой коэффициент блокировки, при длительной пробуксовке перегревается, срабатывает с запаздываниями (пока нагреется жидкость). Поэтому область ее применения — обычные городские автомобили, для преодоления бездорожья она не подходит.
Дисковые дифференциалы — это обычные дифференциалы, в которые дополнительно встраиваются один или два пакета фрикционов и распорная пружина, создающая преднатяг (сжатие пакетов). В пакете фрикционов часть дисков крепится к полуоси, вторая — к корпусу дифференциала. Когда колеса вращаются с одинаковыми скоростями, диски в пакете вращаются как одно целое. При разнице в скорости вращения между ними возникают силы трения, стремящиеся выровнять скорости. Таким образом осуществляется частичная блокировка дифференциала. Очевидны недостатки дисковой блокировки — постоянный, пусть даже и небольшой, момент трения, создаваемый преднатягом, ухудшает управляемость, быстрее изнашиваются шины, увеличивается расход топлива. Да и срок службы фрикционов сравнительно небольшой. По мере их износа снижается и степень блокировки, а после полного износа дифференциал работает уже как свободный. Отсюда вывод — чем чаще «буксуешь», тем быстрее «умирает» дифференциал. Дисковые дифференциалы требуют применения специального трансмиссионного масла.
Усилием преднатяга определяется степень блокировки и минимальный крутящий момент, передаваемый на колесо в любых дорожных условиях. Регулируя степень преднатяга подбирают нужный компромисс между проходимостью и управляемостью. Дисковые дифференциалы с малым преднатягом используются на обычных, дорожных автомобилях, с большим — на спортивных.
Более «продвинутой» версией дискового дифференциал является героторный дифференциал. В нем шестеренчатый масляный насос приводит в действие поршень, который сжимает пакет фрикционов. А производительность насоса зависит от разницы в скорости вращения полуосей. Чем больше эта разница — тем сильнее усилие сжатия, а, соответственно, и степень блокировки.
Червячные дифференциалы — используют для блокировки свойства червячных передач. Самыми распространенными являются дифференциалы Торсен и Квайф. Червячная передача состоит из червяка и червячного колеса. Червяк (сателлит) является ведущим звеном, колесо (шестерня полуоси) — ведомым. КПД передачи при прямом вращении намного больше, чем при обратном, и зависит от угла наклона витков червяка. Говоря проще, червяк легко вращает колесо, колесо же с трудом вращает червяк. При определенном угле витка червяка обратная передача становится вообще невозможной — то есть, колесо не сможет вращать червяк (происходит самоторможение). Таким образом, подбирая угол наклона витков червяка, регулируют степень блокировки дифференциала Торсен. Блокирующие свойства Торсена зависят также и от величины передаваемого крутящего момента. Существует три типа дифференциала Торсен. Типы Т1 и Т2 отличаются формой сателлитов и используются в качестве межколесных. Торсен Т3 используется в полноприводных автомобилях в качестве межосевого дифференциала.
В дифференциале «Квайф» сателлиты не посажены на оси, а свободно расположены в гнездах корпуса. При возникновении разницы в скорости вращения полуосей сателлиты, блокируясь, сдвигаются в гнездах и прижимаются к корпусу. Возникающая при этом сила трения пропорциональна разнице скоростей вращения. Степень блокировки регулируют, подбирая сателлиты с различным углом наклона витков.
Червячные дифференциалы по сравнению с дисковыми отличаются большей надежностью и коэффициентом блокировки, меньше боятся пробуксовки (но длительные и частые пробуксовки все равно не рекомендуются). Однако такие дифференциалы, в отличие от дисковых и вискомуфты, совершенно беспомощны против диагонального вывешивания.
Электронноуправляемые дифференциалы. Электроника, активно внедряемая во все узлы и системы автомобиля, не обошла стороной и дифференциал. Типовая конструкция электронноуправляемого дифференциала напоминает устройство обычного дискового дифференциала, но сжатие фрикционов осуществляется гидро- либо электроприводом по команде блока управления. Таким образом можно регулировать степень блокировки в самых широких пределах — от 0 до 100%. Все зависит от заложенной в блок программы.
Казалось бы, идеал достигнут! Но, нет пытливые японцы пошли дальше и сконструировали активный дифференциал — самый совершенный на данный момент. Обычный электронноуправляемый дифференциал при пробуксовке только выравнивает скорости вращения полуосей. Активный же дифференциал может вращать полуоси с разными скоростями, в зависимости от дорожной ситуации. Например, в повороте добавить момент на внешнее разгруженное колесо, помогая автомобилю «довернуться».
Что такой дифференциал представляет собой конструктивно? Обычный свободный дифференциал дополнен двумя передачами — повышающей и понижающей. Включает передачи при помощи мокрых сцеплений блок управления. Величина передаваемого крутящего момента регулируется степенью сжатия сцеплений. Таким образом автомобиль с активным дифференциалом может и мастерски проходить крутые виражи, и на бездорожье не спасует. Другой вопрос, стоит ли овчинка выделки: цена дифференциала немаленькая. Поэтому и ограничивается его применение только мощными спортивными автомобилями.
Имитация блокировок. В последнее время большое распространение получили электронные системы, которые при возникновении пробуксовки подтормаживают буксующее колесо с помощью штатной тормозной системы, имитируя блокировку дифференциала. Для обычного городского автомобиля, не выезжающего на бездорожье — самое практичное решение. И на скользкой дороге поможет, и даже диагонального вывешивания не боится.
Преимущества и недостатки. Автомобиль с самоблокирующимся дифференциалом увеличивает тягу на колесах, тем самым повышая проходимость на бездорожье и на скользкой дороге (еще бы, а ради чего тогда было огород городить?). Также улучшается динамика разгона. Широко используются такие дифференциалы на мощных спортивных автомобилях и в тюнинге для более полной реализации мощности, прохождения поворотов в скольжении.
Но то, что хорошо для спортивного автомобиля, не всегда благо для обычного. Ведь самоблокирующийся дифференциал, повышая проходимость, ухудшает управляемость. Например, при разгоне на скользкой дороге автомобиль сложнее удержать на прямой. Если блокировки нет, автомобиль, проскальзывая, просто теряет ускорение. Если же срабатывает блокировка, небуксующее колесо (или колеса) продолжают толкать автомобиль вперед, тем самым уводя его с прямолинейной траектории.
Блокировки, установленные на передней оси, увеличивают недостаточную поворачиваемость (траектория в повороте стремится распрямиться), установленные в задней оси — повышают избыточную поворачиваемость (в повороте увеличивается склонность к заносу).
Самоблокирующиеся дифференциалы еще называют дифференциалами повышенного трения. А повышенное трение приводит к увеличенному расходу топлива, снижению срока службы шин и деталей трансмиссии.
Что такое дифференциал, для чего он нужен, и как устроен
Дифференциал как автомобильный механизм скоро отметит двухвековой юбилей, однако его конструкция за эти долгие годы хоть и совершенствовалась, но сохранила ключевые особенности. Что же такое дифференциал, и какую роль он выполняет в автомобиле?
Д ифференциал в автомобиле – это механизм, который позволяет передавать мощность и, следовательно, вращение от коробки передач к колесам, разделяя поток этой мощности на два, для каждого из колес одной оси, с возможностью изменять соотношение передаваемой к ним мощности, и, следовательно, позволяя колесам вращаться с разной скоростью. Проще говоря, дифференциал разделяет 100% мощности, передаваемой коробкой передач, на два потока для каждого из колес на одной оси, и эти потоки могут перераспределяться в зависимости от условий движений от 50:50 до 100:0.
Основное предназначение дифференциала – обеспечить возможность вращения колес на одной оси с разной скоростью с сохранением неразрывного потока крутящего момента. Для автомобиля это важно прежде всего в поворотах: ведь при движении по дуге колеса на внешней стороне поворота проходят больший путь, чем колеса на внутренней, а значит, должны вращаться с большей скоростью для сохранения стабильности машины.
Если же колеса на оси будут соединены жестко, то внутреннее колесо в повороте будет пробуксовывать. Для заднеприводного автомобиля это повышает риск заноса, а для переднеприводного радикально ухудшает управляемость и контроль автомобиля в повороте. Таким образом, обеспечение свободного и независимого вращения колес на одной оси с сохранением постоянства передачи на них крутящего момента от двигателя было одной из принципиальных задач с момента создания автомобиля – и это задача была успешно решена.
Дифференциал являет собой частный случай планетарной передачи. Физически он обычно представляет собой набор из четырех шестерней, вращение к которым передается пятой – ведомой шестерней главной передачи, объединенной с корпусом дифференциала, выполняющим роль водила. Главная передача – это набор из двух шестерней: ведущая получает вращение от КПП и передает его ведомой. Ведомая же шестерня главной передачи передает вращение через корпус на шестерни-сателлиты, а они, в свою очередь, находятся в зацеплении с солнечными шестернями, жестко закрепленными на приводных полуосях колес.
Когда автомобиль движется по прямой, шестерни-сателлиты неподвижны, и скорость вращения шестерни главной передачи равна скоростям вращения солнечных шестерней: колеса вращаются с одинаковой скоростью. В повороте же шестерни-сателлиты начинают вращаться, обеспечивая разницу скоростей солнечных шестерней и, следовательно, колес на внешней и внутренней стороне поворота.
Главным недостатком дифференциала одновременно является его главное преимущество – возможность передавать до 100% мощности на одно из колес. Исходя из этого, в условиях, когда одно колесо имеет недостаточное сцепление с поверхностью, основная часть мощности будет передаваться именно на него. Таким образом, порой даже имея одно колесо на поверхности с достаточным сцеплением, автомобиль не может тронуться с места.
Для устранения этой проблемы были разработаны разнообразные конструкции – дифференциалы с повышенным внутренним сопротивлением (так называемые самоблоки) и дифференциалы с принудительной блокировкой, ручной или автоматизированной. В зависимости от конструкции и назначения они могут как изменять перераспределение потока мощности в пользу колеса с хорошим сцеплением с поверхностью, так и полностью замыкать дифференциал, заставляя колеса на оси вращаться с одинаковой скоростью. Разные типы таких дифференциалов мы рассмотрим в отдельных материалах.
Что такое дифференциал и как он работает
Основная задача трансмиссии в конструкции любого автомобиля – изменение передаточного числа, полученного от силовой установки и передача вращения на ведущие колеса.
Если рассматривать конструкцию заднеприводного автомобиля, то в состав его трансмиссии входит коробка передач (она меняет передаточное число), карданная передача (посредством ее осуществляется передача вращения на заднюю ведущую ось) и редуктор (передает вращение на полуоси, к которым крепятся колеса). Но в этой конструкции есть одна особенность – колеса в определенных случаях должны вращаться с различной скоростью. И чтобы это осуществить, в редуктор добавили еще один узел – дифференциал автомобиля.
Конический симметричный дифференциал:
1 — коробка сателлитов дифференциала правая;
2 — болт коробки сателлитов;
3 — опорная шайба шестерни;
4, 8 — полуосевые шестерни;
5 — опорная шайба сателлита;
6 — сателлиты;
7 — ось сателлитов;
9 — левая коробка сателлитов дифференциала.
Для чего нужен дифференциал
Схема полноприводного авто с раздаткой и межосевым дифференциалом.
При прямолинейном передвижении дифференциал, в принципе и не нужен, поскольку ведущие колеса крутятся с одной скоростью. Но ведь часто возникает надобность проходить и повороты. При этом колеса идут по различным радиусам, то есть пройденное расстояние при повороте у колес одной оси отличаются. Движущееся по внутреннему радиусу колесо проходит значительно меньший путь, чем идущее по внешнему.
Если при этом обеспечить равную передачу вращения на каждое из колес, то одно из них начнет пробуксовывать, при этом и возникает большая нагрузка на элементы трансмиссии. В результате происходит повышенный износ шин и высока вероятность повреждения приводных элементов.
Чтобы этого не произошло, требуется перераспределение вращения на колеса в соответствии с условиями движения. Другими словами нужно, чтобы при прохождении поворота движущееся по внутреннему радиусу колесо – замедлилось, а идущее по внешнему – ускорилось. Именно это и обеспечивает добавленный в конструкцию трансмиссии авто дифференциал.
Виды и их особенности дифференциалов
Видео: GPS Навигатор — описание и тест
Видов дифференциалов по месту установки – два:
- Межколесный.
- Межосевой.
Дифференциал заднеприводного автомобиля
Первый используется на всех легковых авто с одной ведущей осью, и в его задачу входит только выполнение своей функции. На заднеприводных авто он располагается в заднем мосту и устанавливается на редуктор. То есть редуктор передает вращение на полуоси не напрямую, а через дифференциал.
Дифференциал переднеприводного авто с приводным валом
Что касается переднеприводных авто, то из-за отсутствия карданной передачи и моста с редуктором, вращение от коробки передач передается напрямую на дифференциал (они размещены в одном корпусе), а от него уже оно поступает на приводные валы.
Межосевой дифференциал используется на полноприводных авто, у которых обе оси являются ведущими. Там он нужен для того, чтобы правильно распределять получаемое вращение по осям при движении по неровностям. К примеру, авто движется на подъем, в результате чего задняя ось находится в низком положении относительно передней. В результате происходит перераспределение массы авто, она начинает больше давить на задок, и установленный узел в этом случае повышает крутящий момент на задних ведущих колесах. И все выполняется с точностью до наоборот на спусках.
При этом на полноприводных авто также требуется распределение вращения и на колесах, поэтому у них в общей сложности используется 3 дифференциала (1 – межосевой и 2 – межколесных).
Конструкция, принцип работы дифференциала
Дифференциалы, используемые на авто, делаются на основе обычного редуктора планетарного типа. Основными его составными компонентами являются:
- корпус, он же — чашка (выполняет роль ведущего элемента);
- сателлиты;
- ведомые шестеренки;
Видео: Как работает дифференциал / How Differential Steering Works (на русском)
Эта конструкция может использовать разные виды зубчатых передач:
- Цилиндрические.
- Конические.
- Червячные;
Видео: Дифференциал, обзор конструкции, принцип действия
Редуктор состоит из двух шестерён (малой ведущей и большой ведомой). Часто ведомую из-за ее размера называют еще зубчатым колесом. Вот к ней и крепиться чашка при помощи болтового соединения. Внутри чашки сделаны оси для крепления сателлитов. Количество их может варьироваться в зависимости от значения крутящего момента. На легковых авто, где усилия не особо высокие, устанавливается по два сателлита, на внедорожниках же их количество может составлять 4 штуки.
Сателлиты находятся в постоянном зацеплении с правой и левой ведомыми шестернями (вторые получаются зажатыми между первыми). Ведомые шестеренки закрепляются посредством шлицевого соединения на полуосях (в переднеприводных авто они соединены с приводными валами).
Количество зубьев на ведомых шестернях может быть как одинаковым (симметричный дифференциал), так и разным (ассиметричный). Первый тип обеспечивает распределение вращения по полуосям (приводным валам) в равном соотношении, а у второго это выполняется в строго определенных значениях.
Из-за этих особенностей симметричный тип используется в качестве межколесного, а ассиметричный – межосевого дифференциалов.
Работает планетарный узел так: во время прямолинейного движения оба колеса ведущей оси получают одинаковое сопротивление от дорожного полотна. Вращение, получаемое от коробки передач передается на ведомое зубчатое колесо редуктора, а вместе с ним и крутиться чашка дифференциала с размещенными в ней сателлитными осями. Поскольку сопротивление одинаково, то сателлиты осуществляют передачу крутящего момента на ведомые шестеренки в одинаковых соотношениях, то есть скорость вращения их, а вместе с ними и полуосей, равна. При этом сателлиты лишь передают вращение, сами же они остаются неподвижными относительно своих осей.
При вхождении в поворот, колеса начинают двигаться по разным радиусам. При этом, идущее по внутреннему радиусу получает большее сопротивление, чем внешнее. Это сопротивление обеспечивает замедление вращения ведомой шестеренки, из-за чего сателлиты начинают крутиться на осях. В результате начала движения сателлитов, скорость вращения полуоси наружного колеса возрастает, то есть происходит изменение угловых скоростей полуосей (приводных валов). Примечательно, что общая скорость вращения обеих полуосей соответствует скорости вращение зубчатого колеса редуктора, но увеличенной вдвое. При этом крутящий момент от разницы угловых скоростей не меняется, и он разделяется на ведущие колеса равномерно.
В результате такой работы узла при прохождении поворотов удается избежать появления пробуксовки и увеличения нагрузки на элементы трансмиссии.
Блокировка дифференциала
Блокировка дифферециала с гидроприводом включения
Но у автомобильного дифференциала есть существенный недостаток, который проявляется в случае, когда сопротивление вращению на одном из колес полностью пропадает (к примеру, оно попало на скользкий участок дороги). В результате особенностей работы, у колеса, потерявшего сопротивление дороги, максимально возрастает угловая скорость. То есть, по сути, все вращение передается только на него, в то время как второе колесо из-за сопротивления останавливается.
В результате автомобиль обездвиживается, поскольку из-за низкого сопротивления на одном колесе падает и крутящий момент на нем. А поскольку дифференциал работает симметрично, то на втором колесе момент тоже очень мал, и его явно недостаточно, чтобы заставить его вращаться. Чтобы решить такую проблему, достаточно лишь замедлить вращение буксующего колеса, тем самым повысив крутящий момент на нем, и соответственно, на втором колесе. И для этого применяются блокировки дифференциала.
Видео: GБлокировки дифференциала для УАЗа, разновидность и принцип работы
Все просто – если обеспечить жесткое соединение одной полуоси с чашкой дифференциала, то она просто не сможет вращаться быстрее, чем шестерня редуктора. Из-за этого не будет происходить перераспределение вращения, крутящий момент на обеих полуосях будет одинаковым, и его хватит, чтобы обеспечить вращение и колеса, на котором имеется сопротивление, то есть автомобиль сможет двигаться даже в случае потери сопротивления на одном из колес.
Блокировки дифференциала различаются по степени блокирования и бывают они с:
- Полной.
- Частичной блокировкой.
Полная описана выше и указывает она на то, что происходит жесткое соединение элементов дифференциала машины, по сути, он просто прекращает выполнять свои функции и крутящий момент подается равно на обе полуоси.
В частичной же блокировке передача усилия между составными элементами узла ограничена определенной величиной, что обеспечивает повышение крутящего момента на колесе, получающем повышенное сопротивление.
Управление блокировкой
Блокировка может устанавливаться на любой автомобильный дифференциал, как межколесный, так и межосевой. При этом в полноприводных авто передний межколесный дифференциал обычно не оснащают блокировкой, чтобы не оказывать влияние на управляемость авто. Задействование же блокировки, если она имеется, может осуществляться в ручном и автоматическом режиме.
Ручное включение подразумевает принудительное блокирование дифференциала, то есть оно задействуется только когда нужно. При этом водитель задействует привод, в результате чего происходит жесткое соединение составных элементов дифференциала между собой.
Привод блокировки может быть:
- механический;
- гидравлический;
- пневматический;
- электромеханический;
Основной недостаток ручного управления крыт в надобности соблюдения условий эксплуатации. Так, заблокированный дифференциал может повредить трансмиссию в случае, когда оба колеса окажутся на дороге с хорошими сцепными свойствами. Такое может произойти, к примеру, когда водитель забыл разблокировать дифференциал в авто после преодоления бездорожья.
Виды самоблокирующихся дифференциалов
Дифференциалы, у которых блокирование происходит в автоматическом режиме, называются самоблокирующимися. В них, при определенных условиях происходит самостоятельная блокировка, без какого-либо участия водителя. Точно также он и разблокируется.
Видео: Кардан Главная передача Дифференциал
Самый простой самоблокирующийся дифференциал – дисковый, имеющий в своей конструкции дополнительный элемент – пакет фрикционных дисков, одна часть которого жестко соединена с чашкой дифференциала, а вторая – с одной из осей. При этом диски прижаты друг к другу.
Действует такая блокировка очень просто: при прямолинейном движении машины чашка и полуось вращаются с одной скоростью, а вместе с ними и фрикционный пакет.
В случае повышения угловой скорости на одной из полуосей, она начинает вращаться быстрее чашки. При этом одна часть фрикционного пакета (закрепленная на оси) ускоряется относительно второй. А поскольку они прижаты, то между ними возникает сила трения, которая и препятствует повышению угловой скорости, соответственно крутящий момент на колесе с большим сопротивлением повышается.
Вискомуфта в качестве межосевого дифференциала
Примерно так же действует и вязкостная муфта, она же вискомуфта, которая сейчас является достаточно распространенным способом заблокировать дифференциал в автоматическом режиме. Но из-за больших габаритных размеров ее в качестве межколесной блокировки не используют. Муфта устанавливается только на межосном дифференциале, как вспомогательное устройство, а в некоторых случаях она полностью его заменяет.
Конструкция этой муфты такая: имеется герметичный корпус, с помещенным в нее пакетом дисков, одна половина которого жестко связана с ведущим валом (от которого подается вращения) а вторая – с ведомым.
Вискомуфта в разобраном состоянии
Все пространство между дисками заполнено дилатантной жидкостью, особенность которой заключается в повышаемой вязкости при перемешивании.
Действует вискомуфта примерно также же, как и дисковая блокировка. Пока валы вращаются с одной скоростью, перемешивание жидкости, расположенной между дисками, не происходит. Но как только появляется разница в скоростях вращения, диски начинают мешать жидкость из-за чего она становиться более вязкой. В результате повышения вязкости жидкости, которая при большой разнице скоростей может стать практически твердой, выравнивается угловая скорость на валах.
Существует также электронная блокировка дифференциала, которая используется на межколесном дифференциале автомобиля. Причем в качестве основного рабочего элемента в ней выступает антиблокировочная система тормозов.
Такая блокировка имеет свое обозначение – противопробуксовочная система, суть работы которой сводится к тому, что в случае увеличения угловой скорости на одном ведущем колесе, тормозная система притормаживает его, тем самым повышая крутящий момент на другом колесе.