Как сделать из схема печатных плат
_________________
Если хотите, чтобы жизнь улыбалась вам, подарите ей своё хорошее настроение
Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет
Импульсные источники питания LM450/600-20Bxx производства компании MORNSUN представляют собой надежные ИП, подходящие для применения в суровых условиях эксплуатации. Особенностью источников питания этой серии является мощность, увеличенная до 450/600 Вт, что существенно расширяет спектр возможных применений. В ИП реализованы необходимые защитные функции, такие как защита от короткого замыкания выхода, перегрузки и превышения выходного напряжения. Изоляция «вход-выход» выдерживает напряжение до 4000 В и резкие перепады температур.
Обзор представленных в Компэл новых серий семейств DDRH и RSDH на DIN-рейку и на шасси для высоковольтных сетей постоянного тока с диапазоном входных напряжений от 150 до 1500 В. Могут применяться для станций зарядки электромобилей и электробусов, ж/д транспорта, систем хранения энергии, альтернативной энергетики, телекоммуникационных центров и центров обработки данных.
Можно воспользоваться способом описанным здесь:
Можно воспользоваться способом описанным здесь:
Посоветуйте ПО для отрисовски схемы по печатной плате.
Нужно склонировать одну платку, хочется отрисовать разводку в какой-либо программе с тем, чтобы на выходе (с небольшой доработкой) получить принципиальную схему.
Существет ли такой софт?
Имеется ввиду следующее:
По отрисованной печатке можно построить netlist (типа пин 6 элемента D5 идёт на пин 7 элемента D3).
Это уже легко позволяет нарисовать схему. После этого можно ручками указать что D5 это к155ла3, а D3 — это такая-то микросхема.
И получить вполне пригодную схему, улучшить читабельность которой можно ручками за пять минут.
В обратную-то сторону всё работает: по схеме составляется netlist, а дальше — автоматическая трассировка печатки.
Разработка своего устройства от А до Я. Часть 2: Создание устройства
В предыдущей статье мы рассказали о том, что такое электронное устройство и как начать разработку собственного девайса. Мы рассмотрели следующие этапы:
- проработка концепции устройства;
- разработка функциональной схемы;
- разработка принципиальной схемы;
- закупка компонентов;
- макетирование и симуляция устройства.
В этой статье вы узнаете, как и в чем можно начать разработку печатной платы и корпуса для своего устройства. Поговорим про верификацию своей работы перед отправкой на производство. Посмотрим, где можно заказать печатную плату и как изготовить корпус в домашних условиях. В конце концов мы поэтапно пройдемся по сборке и отладке реального устройства и посмотрим на финальный результат.
Разработка печатной платы
Давайте для начала вспомним, что такое печатная плата. Это пластина из диэлектрика, на поверхности или внутри которой располагаются электропроводящие цепи схемы. Металлизированные отверстия соединяют разные слои, а сама плата покрывается защитной паяльной маской. Поверх всего этого «пирога» обычно наносится маркировка.
Печатная плата в разрезе (изображение с сайта «Резонит»)
Существует множество различного софта для разработки печатных плат. Многие наверняка слышали про системы со сквозным проектированием. Такой же подход сейчас применяется практически в каждой более-менее серьезной среде для разработки печатных плат.
«Смысл сквозной технологии проектирования состоит в эффективной передаче данных и результатов текущего этапа проектирования сразу на все последующие этапы» – первая строка в гугле.
Системы со сквозным проектированием печатных плат
Основными преимуществами при работе с такими системами можно смело назвать:
- простоту внесения и контроля изменений;
- предотвращение самых нелепых ошибок;
- возможность сосредоточиться только на важных аспектах разработки.
К примеру, невозможно просто так соединить два разных проводника на плате, если предварительно не соединить их на схеме. А встроенный контроль правил проектирования не позволит провести дорожку толщиной, меньше заданной. Комплексная проверка этих правил (DRC) позволит определить и другие ошибки перед экспортом файлов на производство. Конечно, предварительно правила и ограничения в проекте надо настраивать.
Когда открыл любой видеоурок о проектировании печатных плат
В этой статье мы не будем подробно рассматривать, как правильно создавать и разводить платы, – хорошие публикации уже есть на Хабре, а уроки по конкретному софту можно легко найти на YouTube. Вместо этого я проведу небольшой обзор софта и дам пару советов, с чего начать разработку печатной платы.
Одна из самых мощных и популярных систем для разработки схем и проектирования печатных плат – это Altium Designer. Огромный инструментарий внутри, большое количество готовых компонентов в Интернете, отличная система контроля ошибок и поддержка множества скриптовых языков. Но в бочке меда есть и ложка дегтя – бесплатные лицензии и лицензии со скидками доступны только для студентов и преподавателей. Для некоммерческого использования можно воспользоваться разве что Altium Circuit Maker и Altium Viewer. В любом случае вы можете скачать бесплатную пробную версию.
Проектирование плат в Altium Designer
В качестве альтернативы я бы рекомендовал обратить внимание на Autodesk Eagle. Она также обладает широким спектром возможностей, наиболее значимая из которых – интеграция с Autodesk Fusion 360. Про эту программу мы поговорим, когда будем разрабатывать корпус. Для некоммерческого использования доступна лицензия Autodesk Eagle с ограничениями. Ее хватит для разработки небольших проектов — например, можно создать принципиальную схему не более чем на двух листах и подготовить разводку однослойной или двухслойной печатной платы площадью не более 80 см 2 .
Проектирование плат в Autodesk Eagle
Закончу свой обзор на Kicad EDA – это полностью бесплатная программа для разработки электрических схем и печатных плат. Инструментарий практически такой же, как и в предыдущих программах. Есть и контроль правил проектирования, и библиотеки компонентов, и инструменты для разводки высокочастотных проводников, и поддержка импорта-экспорта различных форматов – в общем все то, что так необходимо в современной системе сквозной разработки. А еще есть версия Kicad EDA для систем на Linux. Если вы только начинаете свой путь в проектировании печатных плат, то я рекомендовал бы начать именно с Kicad EDA.
Проектирование плат в Kicad EDA
Теперь, как и обещал, дам пару советов перед разработкой печатной платы. В первую очередь, обязательно изучите основные инструменты выбранной вами системы: как рисовать схемы и как переносить их на печатную плату; как работать с библиотеками и как создавать и редактировать компоненты. После чего обязательно уделите внимание настройке правил проектирования. Их нужно настроить в соответствии с возможностями выбранного производителя печатных плат. Навряд ли вы будете сходу разрабатывать восьмислойную плату с толщиной дорожек менее 0,1 мм, но так или иначе нужно понимать, как работать с этими инструментами. Бесплатные уроки и гайды, конечно же, можно найти на YouTube.
А еще обязательно подумайте о корпусе вашего устройства, ведь от этого могут зависеть габариты платы и расположение компонентов. Но перед тем, как перейти к разработке корпуса и оснасток, я покажу печатную плату, которая получилась у меня.
Печатная плата мультиэффекта shape mimic
Разработка корпуса и оснасток
Корпус для своего устройства можно сделать из готового типового корпуса, напечатать самому или заказать отливку по готовой модели.
Давайте сначала посмотрим, какие готовые решения есть на рынке. Возможно, некоторые из вас знакомы с корпусами фирмы Gainta. Для своих гитарных эффектов я использую алюминиевые корпуса G0124 и G0473, которые затем оформляю электрохимическим травлением. Но, к сожалению, пластиковые корпуса Gainta оставляют желать лучшего, а красивое оформление в домашних условиях на них не сделаешь.
Алюминиевые корпуса фирмы Gainta
В качестве альтернативы можно рассматривать корпуса фирмы OKW, они посимпатичнее: много разных форм и размеров, можно заказать индивидуальный дизайн. Работают ли они с физическими лицами – вопрос открытый, но какие-то корпуса можно было найти в «Чип и Дип».
Пластиковые корпуса фирмы OKW
Есть еще один крутой производитель корпусов – японская фирма Takachi. На сайте у них очень большой ассортимент готовых решений. Можно заказать фрезеровку или маркировку понравившегося корпуса. Цена за одну штуку выходит не такая уж и большая, куда больше придется заплатить за доставку. Можно заказать бесплатные пробники. Возможно, что напрямую как физическое лицо приобрести их продукцию не получится, но какие-то из их корпусов раньше тоже можно было купить у посредников.
Пластиковые и алюминиевые корпуса фирмы Takachi
Конечно же, есть еще и старый добрый AliExpress. Иногда там тоже попадаются интересные корпуса. Для гитарных эффектов там есть окрашенные корпуса Hammond (аналог Gainta), но заказывать надо крупные партии, иначе это крайне невыгодно.
Алюминиевые покрашенные корпуса фирмы Hammond с AliExpress
Если готовый корпус найти не удалось, то отличной альтернативой будет печать корпуса на 3D-принтере. Стоимость хорошего принтера в наши дни уже не такая заоблачная, и можно подобрать что-нибудь с хорошим соотношением цена/качество (к примеру, Ender 3). При должной сноровке и настройке принтера можно добиться вполне хорошего качества печати. Я же применяю 3D-печать для создания габаритных моделей и оснасток, о чем расскажу чуть позже.
Напечатанный на 3D-принтере корпус
Еще один способ создания хорошего корпуса – это разработка модели под литье. Такую модель можно сначала распечатать на 3D-принтере, затем получить форму для литья, после чего произвести отливку. Но в домашних условиях это сделать сложно, поэтому рекомендую воспользоваться услугами сторонних производителей. Мы, в частности, работали с компанией Siu System (3D-Store) и делали таким способом несколько корпусов и деталей.
У этих ребят можно заказать литье в силиконовые формы и профессиональную 3D-печать
Но в чем же начинать 3D-моделировать свой корпус? Лично я с университетских времен привык использовать Autodesk Fusion 360. Также пробовал Inventor, «Компас» и немножко Solidworks, но все равно остался на Fusion 360. Во-первых, есть бесплатная лицензия, хоть и с небольшими ограничениями. Во-вторых, очень простой интерфейс, быстрый и понятный доступ ко всему инструментарию. В-третьих, это встроенный контроль версий и интеграция с облаком. В общем, Autodesk Fusion 360 – это однозначно мой фаворит среди САПР для 3D-моделирования, поэтому рекомендую вам с ним познакомиться. Вот так выглядит сборка моего мультиэффекта в этой программе.
Сборка shape mimic в Autodesk Fusion 360
И в завершение разговора про разработку корпуса, коснемся темы оснасток и габаритных моделей. В принципе, 3D-модель уже показывает проблемы стыковки разных частей, если они есть. Но иногда бывает полезно получить какой-нибудь прототип и пощупать его руками.
Иногда я печатаю габаритную модель печатной платы на 3D-принтере, после чего примеряю ее в реальном корпусе. Если первый собранный образец уже у вас на руках, но к производству корпуса вы еще не приступили, то можно напечатать габаритную модель корпуса со всеми отверстиями и примерить плату в него. Но не стоит забывать и про усадку пластика.
Плата в напечатанном корпусе
Для сборки можно печатать разные оснастки. Все ограничивается лишь вашей фантазией. Приведу простой пример. Мне было необходимо ровно запаивать потенциометры, чтобы избежать перекосов. Для этого я сделал оснастку, в которую крепятся потенциометры с платой. Бортики контролируют высоту, после чего все встает достаточно ровно, и потенциометры можно запаивать. Оснастка не идеальная, ее можно улучшить бортиками для потенциометров и каким-нибудь фиксатором платы, но пока мне ее хватает.
Оснастка для запайки потенциометров
Также можно печатать и фурнитуру для вашего устройства. В домашних условиях у меня нет возможности провести фрезеровку отверстия под USB, поэтому в этом месте просто высверливается большое отверстие, в которое вставляется уже напечатанная заглушка под контур miniUSB.
Напечатанная заглушка miniUSB
Верификация и исправление ошибок
После того как мы закончили разрабатывать печатную плату и корпус для нашего устройства, необходимо провести верификацию проделанной работы и постараться отловить большую часть допущенных ошибок.
По этой теме на Хабре уже была отличная статья, после прочтения которой мы стали более системно подходить к проверке наших разработок. Очень рекомендую вам с ней ознакомиться. Я советую применять этот подход и во время работы над своими проектами.
Во время разработки можно допустить множество ошибок из-за невнимательности, которые легко устранить, если систематизировать проверку своей работы. Здесь бы не помешала и другая пара глаз, но вполне может хватить ревью самого себя.
Выдержка из чек-листа для проверки принципиальной схемы
Я просто составляю маркдаун-список или гугл-таблицу для проверки схемы и платы. После чего последовательно прохожусь по каждому из пунктов, отмечая проблемные места, а затем их исправляю. Такая проверка позволяет со спокойной душой отправлять плату на производство, но, конечно же, не страхует от всех возможных ошибок.
Отправка платы на производство
Печатную плату можно, конечно, изготовить и в домашних условиях, но, если честно, с появлением доступного производства в Китае, смысла в этом практически нет. Давайте рассмотрим самые популярные сервисы, у которых можно заказать производство.
На мой взгляд, фаворитом по части изготовления печатных плат можно смело назвать JLCPCB. За небольшой тираж из 10–15 двусторонних плат у меня в среднем выходит не больше 15 долларов, включая доставку. У них передовые возможности для производства, а качество плат можно оценить на отлично. Многослойные платы стоят немного дороже. Из минусов – доставка, конечно, быстрая, но никто не застрахован от задержек. Еще я слышал, что эти ребята на самом деле не любят возвращать деньги, даже если сами допустили ошибку на производстве, но с такими ситуациями я никогда не сталкивался.
Есть еще один китайский сервис – PCBWay. Он похож на JLCPCB, но лично я пользовался им только один раз. Само качество на хорошем уровне, но если заказывать больше 10 плат, то условия хуже, чем у JLCPCB.
В России тоже есть производитель печатных плат – компания «Резонит». Но для личных проектов стоимость производства колоссально отличается от китайских производителей. Надеюсь, когда-нибудь ситуация изменится. Из плюсов могу отметить качество и возможность срочного производства. То есть если вам нужно получить печатную плату за несколько дней, то «Резонит» – отличный выбор.
Эх ребята, не видать вам моих денег
Чтобы оформить заказ на производство почти в любом сервисе, вам потребуется подготовить набор Gerber-файлов и файл для сверловки. Обычно на сайте производителя есть раздел с требованиями к файлам и руководством, как их экспортировать. После чего производитель проверяет ваш проект на соответствие своим возможностям и выбранным параметрам, и если все нормально, то начинает производство.
Готовые платы shape mimic ревизии Б прямиком с JLCPCB
Создание корпуса
Давайте покажу, как можно сделать корпус для своего устройства. Я начинаю с того, что экспортирую чертеж получившегося корпуса из Autodesk Fusion 360 в графический редактор Paint.net. После чего оформляю. Когда все готово, печатаю получившийся шаблон на прозрачной пленке. Корпус предварительно шкурится наждачной бумагой и обезжиривается. Затем на корпус наклеивается фоторезист – специальный фоточувствительный материал, который применяют, в том числе и при производстве печатных плат.
Подготовка заготовки корпуса и фотошаблона с рисунком
Затем фотошаблон с оснасткой фиксируются на корпусе, и вся конструкция помещается под ультрафиолетовую лампу. Незащищенные участки засвечиваются. После этого незасвеченные участки легко проявляются в растворе с щелочью (к примеру, гидроксид натрия, который есть в составе всем известного средства «Крот»).
Экспонирование рисунка и проявление фоторезиста
Теперь корпус готов к электрохимическому травлению, в процессе которого получится своеобразная гравировка. Нам понадобится какой-нибудь блок питания, я использую USB-зарядку. После чего достаточно поместить заготовку и какой-нибудь металлический предмет в раствор с обычной солью. К заготовке подключаем плюс, а к металлическому предмету – минус. Начинаем процесс травления.
Процесс электрохимического травления
Не забываем периодически проверять и поворачивать заготовку. Лично у меня процесс занимает чуть больше часа. Когда все готово, корпус можно отмыть и перейти к сверловке и фрезеровке. Мне очень нравится, если в процессе возникли небольшие артефакты: перетравленные или наоборот слегка не протравившиеся участки. Это придает устройству больше индивидуальности.
В домашних условиях я использую шуруповерт, а на работе – фрезерный станок. Думаю, что не стоит подробно останавливаться на этом – задача заключается в ровной сверловке отверстий по заранее заданным точкам. Чтобы сверлить боковые стороны, можно использовать дополнительный шаблон, который можно изготовить из чертежа с полной разверткой всех сторон.
Готовый корпус одного из shape mimic
Сборка и отладка устройства
И вот мы подобрались к финальному этапу разработки своего устройства – сборка и отладка первого опытного образца! Предположим, что мы уже закупили все компоненты и получили на руки свою печатную плату. Более того, у нас есть минимальный набор инструментов:
- паяльник и/или паяльный фен;
- флюс;
- припой и/или паяльная паста;
- пинцет;
- кусачки и/или кримпер;
- мультиметр;
- осциллограф (необязательно, но иногда без него не обойтись);
- логический анализатор (если работаете с каким-нибудь интерфейсом передачи данных).
Сборку любого устройства лучше выполнять поэтапно, начиная со схемы питания. Особенно это касается первого опытного образца. Если что-то не заработает, то куда проще отладить небольшой кусочек схемы, чем остаться наедине с полностью собранной, но неработающей платой. А если где-то все-таки закралась какая-нибудь каверзная ошибка с питанием, то это убережет компоненты от выхода из строя.
Поэтапная сборка нескольких плат
Начинаю со схемы питания. После запайки прозваниваю питание на землю и между собой. Если возникают короткие замыкания, то устраняю их. После этого проверяю напряжение во всех ключевых точках. Если показания мультиметра правильные, то можно двигаться дальше.
Сборка схемы питания
Дальше я собираю небольшой кусочек схемы – отключаемый буфер. Нужно удостовериться, что сигнал не пропадает после DPDT-переключателя, а главное, что буфер действительно работает. Контакты реле, которые соединяют вход и выход, можно замкнуть проводком.
Сборка схемы буфера на операционных усилителях
После проверки буфера я готов к тому, чтобы полностью собрать всю схему переключения и прошить управляющий контроллер. Если контроллер определяется, то это уже половина успеха. Далее зашиваю код с макета, замыкаю контактные площадки кнопки пинцетом и ожидаю, что реле щелкнет. Желательно еще убедиться в том, что после реле сигнал никуда не пропадает. Это можно проверить, подключив щуп к сигнальному гнезду и ткнув в первую контактную площадку после реле.
Сборка схемы управления
Далее можно спаять схему с программатором. Когда все готово, вставляю микросхему флеш-памяти в сокет, подключаю miniUSB и пытаюсь записать hex-файл с эффектами. Если возникнут проблемы, то программа в теории должна об этом предупредить, например на этапе Verify. Но для надежности можно вытащить память и считать образ отдельным программатором, после чего сверить считанный и исходный файлы.
Сборка схемы программатора
И вот когда все отдельные кусочки устройства работают, можно переходить к запайке основной микросхемы и всех оставшихся компонентов. Перед финальным запуском не забываю проверить плату еще раз на короткое замыкание в питании. Если что-то не заработает, то гитарные эффекты можно отлаживать последовательно, проходясь по ним щупом, подключенным к выходу.
Сборка основной схемы с FV-1
После сборки плату необходимо отмыть от флюса. Сделать это можно вручную или воспользоваться ультразвуковой ванной. После чего я еще раз проверяю схему на короткое замыкание и проверяю напряжение в ключевых точках. Если все нормально, то включаю устройство и начинаю тестировать его в работе. Проверяю потребление тока, уровень собственного шума, работу всех ручек и переключателей. Давайте посмотрим на финальный результат.
Первый shape mimic, который уже успел отправиться в Волгоград
Самые внимательные могли заметить, что это вторая ревизия. Во время разработки первой ревизии было допущено несколько ошибок в схеме, подборе компонентов и дизайне. Я решил исправить и заказать новые печатные платы, а затем доработать дизайн. После изготовления второй ревизии я нашел еще пару незначительных ошибок и несколько мест, которые можно было бы улучшить. Так что разработка электроники – это все-таки итеративный процесс, но, мне кажется, в этом и заключается самое интересное.
Я надеюсь, что вам было интересно и вы сможете почерпнуть что-то полезное для себя. Эта статья не претендует на исчерпывающее руководство по разработке, но я надеюсь, что у меня получилось наглядно показать, как можно подходить к разработке электронных девайсов.
Если вы интересуетесь гитарными эффектами, то можете подписаться на мою группу «ВКонтакте» и страницу в «Инстаграм» (zaytechnika). Оставляйте ваши комментарии и вопросы, буду рад ответить!
Как создать плату из схемы в Altium Designer
Вы завершили разработку схемы и готовы передать ее на печатную плату. Но в этот раз ситуация несколько изменилась. Возможно, отдел конструирования недоступен, либо вы, возможно, решили создать плату самостоятельно. Как бы то ни было, вы готовы начать работать над проектом со стороны платы, но вы не уверены, каким должен быть следующий шаг.
К счастью, следующий шаг в Altium Designer вполне прост и эффективен. Мы рассмотрим процесс на примере очень простой схемы и увидим, что необходимо для синхронизации данных с совершенно новой платой. Возможно, эта небольшая простая схема не похожа на те, с которыми привыкли работать вы, но основные шаги по передаче данных будут теми же самыми. Создание конструкции платы из схемы не должно быть сложным. Возьмите чашечку кофе (или чего-нибудь еще), и посмотрим на весь этот процесс.
Чего ожидать от редактора плат?
По существу, главное, чего следует ожидать при переходе в редактор плат, это то, что вы можете взаимодействовать с компонентами, размещать их, а также проводить трассировку для создания проводящих областей. После того, как конструкция стала удовлетворять начальным требованиям, вам необходимо сформировать выходные документы, такие как файлы Gerber и 3D-модели.
В идеальном случае, вы сначала разрабатываете устройство, формируя его схему в соответствующем редакторе. Затем вы передаете данные из схемы в плату, где работаете с компонентами, настройками проводящих областей и требованиями к механической части для оптимизации файлов конструкции платы и их максимально простой передачи в производство. К счастью, это самое малое, что может предложить Altium Designer.
Подготовка к синхронизации проекта
Прежде всего, посмотрите на схему еще раз и убедитесь, что она готова к передаче на плату для конструирования. Конечно, это не значит, что на данном этапе схема должна быть полностью завершена – скорее всего, еще будет много изменений перед тем, как проект можно будет отправлять в производство. Но следует убедиться в том, что на плате не появится каких-либо сюрпризов – посмотрите на схему и удалите лишние дублирующиеся части схем, компоненты и т.п.
Теперь убедимся, что со схемой все хорошо, выполнив процесс проверки редактора схем Altium Designer. Для этого необходимо скомпилировать проект. В процессе компиляции будет сформирована вся внутренняя информация о проекте, такая как связи между компонентами и цепями, а также будет проведен ряд проверок схемы на предмет ее соответствия правилам. Поэтому перед компиляцией посмотрим на настройку этих правил, активируя команду Project » Project Options.
Настройки проекта в Altium Designer
На изображении выше показаны первые четыре вкладки диалогового окна настроек проекта. На первой из них, Error Reporting, вы можете управлять тем, какие нарушения в проекте следует находить и каким образом следует уведомлять о них. На второй вкладке, Connection Matrix, вы задаете, какие выводы могут соединяться между собой. На третьей вкладке, Class Generation, вы настраиваете формирование классов цепей и компонентов. На четвертой вкладке, Comparator, вы видите настройки модуля сравнения (компаратора), которые задают отчет о различиях между схемой и платой. В большинстве случаев, здесь не нужно производить много изменений этих настроек, но вы можете узнать подробнее о них в документации Altium.
Теперь вы готовы к компиляции схемы. Активируйте команду Project » Compile PCB Project, чтобы запустить компилятор. Если в проекте нет нарушений, схема не отобразит каких-либо сообщений.
Чтобы показать, что представляют собой ошибки, мы удалили часть цепи, соединяющей R1 и Q1, как показано ниже, и запустили компилятор. Как видите Altium Designer сообщил, что цепь NetC1_1 содержит только один вывод. После восстановления цепи компилятор больше не сообщает о каких-либо ошибках.
Передача данных из схемы на плату
Теперь вы готовы передать данные схемы в плату, но сначала необходимо создать плату, в которую эти данные будут переданы. Щелкните ПКМ по проекту и выберите команду Add New to Project » PCB, как показано на изображении ниже. В дереве проекта будет создан документ платы. Щелкните по нему ПКМ и сохраните его под каким-либо именем. В этом примере название документа платы совпадает с названием схемы.
Добавление новой платы в проект Altium Designer
Когда документ платы создан, может понадобиться настроить плату для работы с ней необходимым образом. Сначала задайте сетку и начало координат. Команды для этого находятся в меню View » Grids и Edit » Origin. Также может понадобиться изменить существующий или создать новый контур платы, чтобы у нее были необходимые размеры и форма. Для этого перейдите в режим планирования платы с помощью меню View (или горячей клавиши 1) и затем используйте подходящие команды меню Design.
Теперь вы готовы передать данные из схемы в плату. В редакторе плат выберите команду Design » Import Changes From…. Появится диалоговое окно Engineering Change Order, показанное ниже.
Добавление новой платы в проект Altium Designer
Сначала нажмите кнопку Validate Changes в левой нижней части этого диалогового окна. После того, как система закончит валидацию изменений, которые вы собираетесь применить для синхронизации схемы и платы, в столбце Check справа появятся зеленые галочки, указывающие, что проверка этих элементов и схемных символов прошла успешно. Элементы, не прошедшие проверку, необходимо изучить и исправить для того, чтобы добиться полной синхронизации проекта.
Затем нажмите кнопку Execute Changes. Применение изменений займет некоторое время, и этот процесс вы можете наблюдать в диалоговом окне. По завершении процесса в столбце Done появятся зеленые галочки, как показано ниже.
Диалоговое окно Engineering Change Order после валидации и применения изменений
Поздравляем, вы успешно передали данные из схемы на плату. Вы можете закрыть диалоговое окно и увидеть компоненты, размещенные рядом с платой, примерно как это показано на изображении ниже.
Данные со схемы были успешно переданы в плату, где компоненты готовы к размещению
Вы создали плату из схемы. Что дальше?
Перед тем, как начать конструирование, необходимо выполнить еще ряд задач. Необходимо настроить физическую структуру слоев платы, отображение этих слоев и правила проектирования.
Layer Stack Manager в Altium Designer
Выше изображен инструмент Layer Stack Manager для управления структурой слоев в Altium Designer. Его запуск осуществляется через меню Design. С его помощью вы можете добавлять, копировать, удалять и перемещать физические слои в структуре платы. Вы можете добавлять сигнальные, экранные и диэлектрические слои платы. Layer Stack Manager также позволяет рассчитывать импедансы.
Настройка правил проектирования осуществляется в диалоговом окне PCB Rules and Constraints Editor, доступного по команде Design » Rules. Настроить видимость слоев и объектов можно с помощью панели View Configuration. Ниже показана вкладка Layers & Colors этой панели.
Панель View Configuration в Altium Designer
Теперь данные из схемы переданы в плату, и вы готовы к завершению конструкции платы. Вы можете разместить компоненты, провести трассировку, изготовить плату и даже успеть выпить еще кофе до конца дня.
Altium Designer – это средство проектирования печатных плат, созданное на основе унифицированной среды проектирования, которая позволяет легко передавать данные из схемы на плату. Вы можете передать данные туда и обратно между этими инструментами, что делает процесс проектирования проще и эффективнее.
Простая передача данных из схемы на плату – это только малая часть преимуществ, обеспечиваемых Altium Designer. Если вы еще не начали использовать Altium Designer, узнайте больше, поговорив с экспертом Altium.
Печатная плата – изготовление в домашних условиях
Печатная плата – это диэлектрическое основание, на поверхности и в объеме которого нанесены токопроводящие дорожки в соответствии с электрической схемой. Печатная плата предназначена для механического крепления и электрического соединения между собой методом пайки выводов, установленных на нее электронных и электротехнических изделий.
Операции по вырезанию заготовки из стеклотекстолита, сверлению отверстий и травление печатной платы для получения токоведущих дорожек в независимости от способа нанесения рисунка на печатную плату выполняются по одинаковой технологии.
Технология ручного способа нанесения
дорожек печатной платы
Подготовка шаблона
Бумага, на которой рисуется разводка печатной платы обычно тонкая и для более точного сверления отверстий, особенно в случае использования ручной самодельной дрели, чтобы сверло не вело в сторону, требуется сделать ее более плотной. Для этого нужно приклеить рисунок печатной платы на более плотную бумагу или тонкий плотный картон с помощью любого клея, например ПВА или Момент.
Далее плотная бумага вырезается по контуру приклеенного рисунка и шаблон для сверления готов.
Вырезание заготовки
Подбирается заготовка фольгированного стеклотекстолита подходящего размера, шаблон печатной платы прикладывается к заготовке и обрисовывается по периметру маркером, мягким простым карандашом или нанесением риски острым предметом.
Далее стеклотекстолит режется по нанесенным линиям с помощью ножниц по металлу или выпиливается ножовкой по металлу. Ножницами отрезать быстрее, и нет пыли. Но надо учесть, что при резке ножницами стеклотекстолит сильно изгибается, что несколько ухудшает прочность приклейки медной фольги и если потребуется перепайка элементов, то дорожки могут отслоиться. Поэтому если плата большая и с очень тонкими дорожками, то лучше отрезать с помощью ножовки по металлу.
Приклеивается шаблон рисунка печатной платы на вырезанную заготовку с помощью клея Момент, четыре капли которого наносятся по углам заготовки.
Так как клей схватывается всего за несколько минут, то сразу можно приступать к сверлению отверстий под радиодетали.
Сверление отверстий
Сверлить отверстия лучше всего с помощью специального мини сверлильного станка твердосплавным сверлом диаметром 0,7-0,8 мм. Если мини сверлильного станка в наличии нет, то можно просверлить отверстия маломощной дрелью простым сверлом. Но при работе универсальной ручной дрелью количество переломанных сверл будет зависеть от твердости Вашей руки. Одним сверлом точно не обойдетесь.
Если сверло зажать не удается, то можно его хвостовик обернуть несколькими слоями бумаги или одним слоем наждачной шкурки. Можно на хвостовик намотать плотно виток к витку тонкой металлической проволочки.
После окончания сверления проверяется, все ли просверлены отверстия. Это хорошо видно, если посмотреть на печатную плату на просвет. Как видно, пропущенных отверстий нет.
Нанесение топографического рисунка
Для того, чтобы места фольги на стеклотекстолите, которые будут токопроводящими дорожками, защитить при травлении от разрушения, их необходимо покрыть маской, устойчивой к растворению в водном растворе. Для удобства рисования дорожек, их лучше предварительно наметить с помощью мягкого простого карандаша или маркера.
Перед нанесением разметки нужно обязательно удалить следы клея Момент, которым приклеивался шаблон печатной платы. Так как клей не сильно затвердел, то его легко можно удалить, скатав пальцем. Поверхность фольги также нужно обязательно обезжирить с помощью ветоши любым средством, например ацетоном или уайт-спиртом (так называется очищенный бензин), можно и любым моющим средством для мытья посуды, например Ферри.
После разметки дорожек печатной платы можно приступать к нанесению их рисунка. Для рисования дорожек хорошо подходит любая водостойкая эмаль, например алкидная эмаль серии ПФ, разведенная до подходящей консистенции растворителем уайт-спиртом. Рисовать дорожки можно разными инструментами – стеклянным или металлическим рейсфедером, медицинской иглой и даже зубочисткой. В этой статье я расскажу, как рисовать дорожки печатных плат с помощью чертежного рейсфедера и балеринки, которые предназначены для черчения на бумаге тушью.
Раньше компьютеров не было и все чертежи чертили простыми карандашами на ватмане и затем переводили тушью на кальку, с которой с помощью копировальных аппаратов делали копии.
Нанесение рисунка начинают с контактных площадок, которые рисуют балеринкой. Для этого нужно отрегулировать зазор раздвижных губок рейсфедера балеринки до требуемой ширины линии и для установки диаметра круга выполнить регулировку вторым винтом отодвинув рейсфедер от оси вращения.
Далее рейсфедер балеринки на длину 5-10 мм наполняется с помощью кисточки краской. Для нанесения защитного слоя на печатную плату лучше всего подходит краска марки ПФ или ГФ, так как она медленно высыхает и позволяет спокойно работать. Краску марки НЦ тоже можно применять, но работать с ней сложно, так как она быстро сохнет. Краска должна хорошо ложиться и не растекаться. Перед рисованием краску нужно развести до жидкой консистенции, добавляя в нее понемногу при интенсивном перемешивании подходящий растворитель и пробуя рисовать на обрезках стеклотекстолита. Для работы с краской удобнее всего ее налить во флакон от маникюрного лака, в закрутке которого установлена кисточка, устойчивая к растворителям.
После регулировки рейсфедера балеринки и получения требуемых параметров линий можно приступить к нанесению контактных площадок. Для этого острая часть оси вставляется в отверстие и основание балеринки проворачивается по кругу.
При правильной настройке рейсфедера и нужной консистенции краски вокруг отверстий на печатной плате получаются окружности идеально круглой формы. Когда балеринка начинает плохо рисовать, из зазора рейсфедера тканью удаляются остатки подсохшей краски и рейсфедер заполняется свежей. чтобы обрисовать все отверстия на этой печатной плате окружностями понадобилось всего две заправки рейсфедера и не более двух минут времени.
Когда круглые контактные площадки на плате нарисованы, можно приступать к рисованию токопроводящих дорожек с помощью ручного рейсфедера. Подготовка и регулировка ручного рейсфедера не отличается от подготовки балеринки.
Единственное, что дополнительно понадобится, так это плоская линейка, с приклеенными на одной из ее сторон по краям кусочками резины, толщиной 2,5-3 мм, чтобы линейка при работе не скользила и стеклотекстолит, не касаясь линейки, мог свободно проходить под ней. Лучше всего подходит в качестве линейки деревянный треугольник, он устойчив и одновременно может служить при рисовании печатной платы опорой для руки.
Чтобы печатная плата при рисовании дорожек не скользила, желательно ее разместить на лист наждачной бумаги, представляющий собой два склепных между собой бумажными сторонами наждачных листа.
Если при рисовании дорожек и окружностей они соприкоснулись, то не стоит принимать никаких мер. Нужно дать краске на печатной плате подсохнуть до состояния, когда она не будет пачкать при прикосновении и с помощью острия ножа удалить лишнюю часть рисунка. Чтобы краска быстрее высохла плату нужно расположить в теплом месте, например в зимнее время на батарею отопления. В летнее время года — под лучи солнца.
Когда рисунок на печатной плате полностью нанесен и исправлены все дефекты можно переходить к ее травлению.
Технология нанесения рисунка печатной платы
с помощью лазерного принтера
При печати на лазерном принтере происходит перенос за счет электростатики образованного тонером изображения с фото барабана, на котором лазерный луч нарисовал изображение, на бумажный носитель. Тонер удерживается на бумаге, сохраняя изображение, только за счет электростатики. Для закрепления тонера бумага прокатывается между валиками, один из которых является термопечкой, разогретой до температуры 180-220°C. Тонер расплавляется и проникает в текстуру бумаги. После остывания тонер отвердевает и прочно удерживается на бумаге. Если бумагу опять нагреть до 180-220°C, то тонер опять станет жидким. Это свойство тонера и используется для переноса изображения токоведущих дорожек на печатную плату в домашних условиях.
После того, как файл с рисунком печатной платы готов, необходимо его распечатать с помощью лазерного принтера на бумажный носитель. Обратите внимание, изображение рисунка печатной платы для данной технологии должно иметь вид со стороны установки деталей! Струйный принтер для этих целей не подходит, так как работает на другом принципе.
Подготовка бумажного шаблона для переноса рисунка на печатную плату
Если напечатать рисунок печатной платы на обыкновенной бумаге для офисной техники, то из-за пористой ее структуры, тонер глубоко проникнет в тело бумаги и при переносе тонера на печатную плату, большая часть его останется в бумаге. В дополнение будут сложности с удалением бумаги с печатной платы. Придется ее долго размачивать в воде. Поэтому для подготовки фотошаблона необходима бумага, не имеющая пористую структуру, например фотобумага, подложка от самоклеящихся пленок и этикеток, калька, страницы от глянцевых журналов.
В качестве бумаги для печати рисунка печатной платы я использую кальку из старых запасов. Калька очень тонкая и печатать шаблон непосредственно на ней невозможно, она в принтере заминается. Для решения этой проблемы, нужно перед печатью на кусок кальки требуемого размера по углам нанести по капельке любого клея и приклеить на лист офисной бумаги А4.
Такой прием позволяет распечатывать рисунок печатной платы даже на самой тонкой бумаге или пленке. Для того, чтобы толщина тонера рисунка была максимальной, перед печатью, нужно выполнить настройку «Свойств принтера», отключив режим экономной печати, а если такая функция не доступна, то выбрать самый грубый тип бумаги, например картон или что то подобное. Вполне возможно с первого раза хороший отпечаток не получится, и придется немного поэкспериментировать, подобрав наилучший режим печати лазерного принтера. В полученном отпечатке рисунка дорожки и контактные площадки печатной платы должны быть плотными без пропусков и смазывания, так как ретушь на данном технологическом этапе бесполезна.
Осталось обрезать кальку по контуру и шаблон для изготовления печатной платы будет готов и можно приступать к следующему шагу, переносу изображения на стеклотекстолит.
Перенос рисунка с бумаги на стеклотекстолит
Перенос рисунка печатной платы является самым ответственным этапом. Суть технологии проста, бумага, стороной напечатанного рисунка дорожек печатной платы прикладывается к медной фольге стеклотекстолита и с большим усилием прижимается. Далее этот бутерброд разогревается до температуры 180-220°C и затем охлаждается до комнатной. Бумага отдирается, а рисунок остается на печатной плате.
Некоторые умельцы предлагают переносить рисунок с бумаги на печатную плату, используя электроутюг. Я пробовал такой способ, но результат получался нестабильным. Сложно обеспечить одновременно нагрев тонера до нужной температуры и равномерный прижим бумаги ко всей поверхности печатной платы при затвердевании тонера. В результате рисунок переносится не полностью и остаются пробелы в рисунке дорожек печатной платы. Возможно, утюг недостаточно нагревался, хотя регулятор был выставлен на максимальный нагрев утюга. Вскрывать утюг и перенастраивать терморегулятор не хотелось. Поэтому я воспользовался другой технологией, менее трудоемкой и обеспечивающей стопроцентный результат.
На вырезанную в размер печатной платы и обезжиренную ацетоном заготовку фольгированного стеклотекстолита приклеил по углам кальку с напечатанным на ней рисунком. На кальку сверху положил, для более равномерного прижима, пяток листиков офисной бумаги. Полученный пакет положил на лист фанеры и сверху накрыл листом такого же размера. Весь этот бутерброд зажал с максимальной силой в струбцинах.
Осталось нагреть сделанный бутерброд до температуры 200°C и остудить. Для нагрева идеально подходит электродуховка с регулятором температуры. Достаточно поместить сотворенную конструкцию в шкаф, дождаться набора заданной температуры и через полчаса извлечь плату для остывания.
Если электродуховки в распоряжении нет, то можно воспользоваться и газовой духовкой, отрегулировав температуру ручкой подачи газа по встроенному термометру. Если термометра нет или он неисправен, то могут помочь женщины, подойдет положение ручки регулятора, при котором пекут пироги.
Так как концы фанеры покоробило, на всякий случай зажал их дополнительными струбцинами. чтобы избежать подобного явления, лучше печатную плату зажимать между металлическими листами толщиной 5-6 мм. Можно просверлить в их углах отверстия и зажимать печатные платы, стягивать пластины с помощью винтов с гайками. М10 будет достаточно.
Через полчаса конструкция остыла достаточно, чтобы тонер затвердел, плату можно извлекать. При первом же взгляде на извлеченную печатную плату становится понятно, что тонер перешел с кальки на плату отлично. Калька плотно и равномерно прилегала по линиям печатных дорожек, кольцам контактных площадок и буквам маркировки.
Калька легко оторвалась практически от всех дорожек печатной платы, остатки кальки были удалены с помощью влажной ткани. Но все, же не обошлось без пробелов в нескольких местах на печатных дорожках. Такое может случиться в результате неравномерности печати принтера или оставшейся грязи или коррозии на фольге стеклотекстолита. Пробелы можно закрасить любой водостойкой краской, маникюрным лаком или заретушировать маркером.
Для проверки пригодности маркера для ретуши печатной платы, нужно нарисовать ним на бумаге линии и бумагу смочить водой. Если линии не расплывутся, значит, маркер для ретуши подходит.
Травить печатную плату в домашних условиях лучше всего в растворе хлорного железа или перекиси водорода с лимонной кислотой. После травления тонер с печатных дорожек легко удаляется тампоном, смоченным в ацетоне.
Затем сверлятся отверстия, лудятся токопроводящие дорожки и контактные площадки, запаиваются радиоэлементы.
Такой вид приняла печатная плата с установленными на ней радиодеталями. Получился блок питания и коммутации для электронной системы, дополняющий обыкновенный унитаз функцией биде.
Травление печатной платы
Для удаления медной фольги с незащищенных участков фольгированного стеклотекстолита при изготовлении печатных плат в домашних условиях радиолюбители обычно используют химический способ. Печатная плата помещается в травильный раствор и за счет химической реакции медь, незащищенная маской, растворяется.
Рецепты травильных растворов
В зависимости от доступности компонентов радиолюбители применяют один из растворов, приведенных в таблице ниже. Травильные растворы расположены в порядке популярности их применения радиолюбителями в домашних условиях.
Травить печатные платы в металлической посуде не допускается. Для этого нужно использовать емкость из стекла, керамики или пластика. Утилизировать отработанный травильный раствор допускается в канализацию.
Травильный раствор из перекиси водорода и лимонной кислоты
Раствор на основе перекиси водорода с растворенной в ней лимонной кислотой является самым безопасным, доступным и быстро работающим. Из всех перечисленных растворов по всем критериям это лучший.
Перекись водорода можно приобрести в любой аптеке. Продается в виде жидкого 3% раствора или таблеток под названием гидроперит. Для получения жидкого 3% раствора перекиси водорода из гидроперита нужно в 100 мл воды растворить 6 таблеток весом 1,5 грамма.
Лимонная кислота в виде кристаллов продается в любом продуктовом магазине, расфасованная в пакетиках весом 30 или 50 грамм. Поваренная соль найдется в любом доме. 100 мл травильного раствора хватит на удаление медной фольги толщиной 35 мкм с печатной платы площадью 100 см 2 . Отработанный раствор не хранится и повторному использованию не подлежит. Кстати, лимонную кислоту можно заменить уксусной, но из-за ее едкого запаха травить печатную плату придется на открытом воздухе.
Травильный раствор на основе хлорного железа
Вторым по популярности травильным раствором является водный раствор хлорного железа. Ранее он был самым популярным, так как на любом промышленном предприятии хлорное железо было легко достать.
Травильный раствор не требователен к температуре, травит достаточно быстро, но скорость травления снижается по мере расходования хлорного железа в растворе.
Хлорное железо очень гигроскопично и поэтому из воздуха быстро впитывает воду. В результате на дне банки появляется желтая жидкость. Это не влияет на качество компонента и такое хлорное железо пригодно для приготовления травильного раствора.
Если использованный раствор хлорного железа хранить в герметичной таре, то его можно использовать многократно. Подлежит регенерации, достаточно в раствор насыпать железных гвоздей (они сразу покроются рыхлым слоем меди). При попадании на любые поверхности оставляет трудноудаляемые желтые пятна. В настоящее время раствор хлорного железа для изготовления печатных плат применяют реже в связи с его дороговизной.
Травильный раствор на основе перекиси водорода и соляной кислоты
Отличный травильный раствор, обеспечивает высокую скорость травления. Соляную кислоту при интенсивном помешивании вливают в 3% водный раствор перекиси водорода тоненькой струйкой. Вливать перекись водорода в кислоту недопустимо! Но из-за наличия в травильном растворе соляной кислоты при травлении платы нужно соблюдать большую осторожность, так как раствор разъедает кожу рук и портит все, на что попадает. По этой причине травильный раствор с соляной кислотой в домашних условиях использовать не рекомендуется.
Травильный раствор на основе медного купороса
Метод изготовления печатных плат с применение медного купороса обычно используют в случае невозможности изготовления травильного раствора на основе других компонентов из-за их недоступности. Медный купорос является ядохимикатом и широко применяется для борьбы с вредителями в сельском хозяйстве. В дополнение время травления печатной платы составляет до 4 часов, при этом необходимо поддерживать температуру раствора 50-80 °С и обеспечить постоянную смену раствора у стравливаемой поверхности.
Технология травления печатных плат
Для травления платы в любом из вышеперечисленных травильных растворов подойдет стеклянная, керамическая или пластиковая посуда, например от молочных продуктов питания. Если под рукой подходящего размера емкости не оказалось, то можно взять любую коробку из плотной бумаги или картона подходящего размера и выстелить ее внутренность полиэтиленовой пленкой. В емкость наливается травильный раствор и на его поверхность аккуратно рисунком вниз кладется печатная плата. За счет сил поверхностного натяжения жидкости и небольшого веса плата будет плавать.
Для удобства к центру платы клеем момент можно приклеить пробку от пластиковой бутылки. Пробка одновременно будет служить ручкой и поплавком. Но тут есть опасность, что на плате образуются пузырьки воздуха и в этих местах медь не вытравится.
Чтобы обеспечить равномерное вытравливание меди можно положить печатную плату на дно емкости вверх рисунком и периодически покачивать ванночку рукой. Через некоторое время, в зависимости от травильного раствора, начнут появляться участки без меди, а затем медь растворится полностью на всей поверхности печатной платы.
После окончательного растворения меди в травильном растворе печатную плату извлекают из ванночки и тщательно промывают под струей проточной воды. Тонер удаляется с дорожек ветошью, смоченной в ацетоне, а краска хорошо удаляется ветошью, смоченной в растворителе, который добавлялся в краску для получения нужной ее консистенции.
Подготовка печатной платы к монтажу радиодеталей
Следующий шаг, это подготовка печатной платы к монтажу радиоэлементов. После снятия с платы краски, дорожки нужно обработать круговыми движениями мелкой наждачной бумагой. Увлекаться не нужно, потому что медные дорожки тонкие и можно легко их сточить. Достаточно всего нескольких проходов абразивом со слабым прижимом.
Далее токоведущие дорожки и контактные площадки печатной платы покрываются спирто-канифольным флюсом и лудятся мягким припоем эклектрическим паяльником. чтобы отверстия на печатной плате, не затягивались припоем, его на жало паяльника нужно брать немного.
После завершения изготовления печатной платы, останется только вставить в предназначенные позиции радиодетали и запаять их выводы к площадкам. Перед пайкой ножки деталей нужно обязательно смочить спирто-канифольным флюсом. Если ножки радиодеталей длинные, то их нужно перед пайкой обрезать бокорезами до длины выступания над поверхностью печатной платы 1-1,5 мм. После окончания монтажа деталей нужно удалить остатки канифоли с помощью любого растворителя — спирта, уайт-спирта или ацетона. Они все успешно растворяют канифоль.
Подробно о технологии пайки на примерах пайки деталей, о марках припоев и флюсов, устройстве и ремонте паяльников Вы можете узнать из цикла статей раздела «Как паять паяльником».
На воплощение этой простой схемы емкостного реле от разводки дорожек для изготовления печатной платы до создания действующего образца ушло не более пяти часов, гораздо меньше, чем на верстку этой страницы.