Как посчитать общее сопротивление при параллельном соединении
Перейти к содержимому

Как посчитать общее сопротивление при параллельном соединении

  • автор:

Расчет последовательного и параллельного соединения резисторов — онлайн-калькулятор

Рассчитайте сопротивление при параллельном и последовательном подключении резисторов онлайн — расчет соединения резисторов при помощи калькулятора.

  • Другие варианты расчета
  • Расчёт
  • Сохранить
  • Справка
  • Партнерские скидки
  • Виджет на сайт
  • Комментарии

Соединение резисторов последовательным или параллельным способом позволяет получить проводник с определенным номинальным сопротивлением, необходимым для выполнения поставленной задачи. Резисторы, соединенные последовательно, приводят к увеличению общего сопротивления на сумму сопротивлений каждого элемента. Параллельное подключение, наоборот, приводит к уменьшению сопротивления на величину, пропорциональную сумме сопротивлений и количества элементов. Математически это можно представить следующим образом:

При помощи калькулятора соединение резисторов от КАЛК.ПРО можно выполнить расчет сопротивлений при последовательном и параллельном подключении неограниченного количества элементов. Для начала вычисления введите данные сопротивления каждого резистора и их количество, а затем нажмите кнопку «Рассчитать».

Последовательное и параллельное соединение резисторов.

Как я и обещал в статье про переменные резисторы (ссылка), сегодня речь пойдет о возможных способах соединения, в частности о последовательном соединении резисторов и о параллельном.

Последовательное соединение резисторов.

Давайте начнем с рассмотрения цепей, элементы которой соединены последовательно. И хоть мы и будем рассматривать только резисторы в качестве элементов цепи в данной статье, но правила, касающиеся напряжений и токов при разных соединениях, будут справедливы и для других элементов. Итак, первая цепь, которую мы будем разбирать выглядит следующим образом:

Последовательное соединение резисторов.

Здесь у нас классический случай последовательного соединения — два последовательно включенных резистора. Но не будем забегать вперед и рассчитывать общее сопротивление цепи, а для начала рассмотрим все напряжения и токи. Итак, первое правило заключается в том, что протекающие по всем проводникам токи при последовательном соединении равны между собой:

А для определения общего напряжения при последовательном соединении, напряжения на отдельных элементах необходимо просуммировать:

В то же время, по закону Ома для напряжений, сопротивлений и токов в данной цепи справедливы следующие соотношения:

Тогда для вычисления общего напряжения можно использовать следующее выражение:

Но для общего напряжения также справедлив закон Ома:

Здесь R_0 — это общее сопротивление цепи, которое исходя из двух формул для общего напряжения равно:

Таким образом, при последовательном соединении резисторов общее сопротивление цепи будет равно сумме сопротивлений всех проводников.

Например, для следующей цепи:

Пример цепи.

Общее сопротивление будет равно:

Количество элементов значения не имеет, правило, по которому мы определяем общее сопротивление, будет работать в любом случае. А если при последовательном соединении все сопротивления равны ( R_1 = R_2 = . = R ), то общее сопротивление цепи составит:

В данной формуле n равно количеству элементов. С последовательным соединением резисторов разобрались, логичным образом переходим к параллельному.

Параллельное соединение резисторов.

Параллельное соединение резисторов.

При параллельном соединении напряжения на проводниках равны:

А для токов справедливо следующее выражение:

То есть общий ток разветвляется на две составляющие, а его значение равно сумме всех составляющих. По закону Ома:

Подставим эти выражения в формулу общего тока:

А по закону Ома:

Приравниваем эти выражения и получаем формулу для общего сопротивления цепи:

Данную формулу можно записать и несколько иначе:

Таким образом, при параллельном соединении проводников величина, обратная общему сопротивлению цепи, равна сумме величин, обратных сопротивлениям параллельно включенных проводников.

Аналогичная ситуация будет наблюдаться и при большем количестве проводников, соединенных параллельно:

Пример цепи.

Смешанное соединение резисторов.

Помимо параллельного и последовательного соединений резисторов существует еще смешанное соединение. Из названия уже понятно, что при таком соединении в цепи присутствуют резисторы, соединенные как параллельно, так и последовательно. Вот пример такой цепи:

Смешанное соединение резисторов.

Давайте рассчитаем общее сопротивление. Начнем с резисторов R_1 и R_2 — они соединены параллельно. Мы можем рассчитать общее сопротивление для этих резисторов и заменить их в схеме одним единственным резистором R_ <1-2>:

Теперь у нас образовались две группы последовательно соединенных резисторов:

Упрощенная схема.

  • R_ <1-2>и R_3
  • R_4 и R_5

Заменим эти две группы двумя резисторами, сопротивление которых равно:

Упрощенная схема 2.

Как видите, схема стала уже совсем простой. Заменим группу параллельно соединенных резисторов R_ <1-2-3>и R_ <4-5>одним резистором R_ <1-2-3-4-5>:

И в итоге у нас на схеме осталось только два резистора соединенных последовательно:

Финальная цепь.

Общее сопротивление цепи получилось равным:

Таким вот образом достаточно большая схема свелась к банальнейшему последовательному соединению двух резисторов. Тут стоит отметить, что некоторые схемы невозможно так просто преобразовать и определить общее сопротивление — для таких схем нужно использовать правила Кирхгофа, о которых мы обязательно поговорим в будущих статьях. А сегодняшняя статья на этом подошла к концу, до скорых встреч на нашем сайте 🤝

Параллельное и последовательное соединение

Параллельное и последовательное соединение

Почему в елочной гирлянде могут не гореть лампочки одного цвета? Почему все электроприборы в доме рассчитаны на 220 В? Спойлер: все дело в видах соединения проводников — о них мы и поговорим в этой статье.

· Обновлено 23 июня 2023

Как после перегорания одной лампочки в гирлянде можно определить способ соединения и починить ее? Попробуем разобраться.

Анфиса обнаружила на балконе старую гирлянду. Включив ее в розетку, девочка заметила, что горят все лампочки, кроме зеленых. Внимательно изучив провода, Анфиса увидела, что все зеленые лампочки соединены последовательно друг за другом.

Устройте ребёнку лучшее лето

Последовательное соединение проводников

При последовательном соединении конец первого проводника соединяют с началом второго, конец второго — с началом третьего и т. д.

Последовательное соединение проводников

Последовательное подключение обычно используется в тех случаях, когда необходимо целенаправленно включать или выключать определенный электроприбор. Например, для работы школьного электрического звонка требуется соединить его последовательно с источником тока и ключом.

Вот некоторые примеры использования схемы последовательного соединения:

  • освещение в вагонах поезда или трамвая;
  • простейшие елочные гирлянды;
  • карманный фонарик;
  • амперметр для измерения силы тока в цепи.

Законы последовательного соединения проводников

Схема последовательного соединения проводников

При последовательном соединении сила тока в любых частях цепи одна и та же:

Если в цепи с последовательным способом соединения одна из ламп выйдет из строя и через нее не будет протекать электрический ток, то и через оставшиеся лампы ток проходить не будет. Вспомним Анфису и ее гирлянду: когда одна из зеленых лампочек перегорела, то ток, проходящий через нее, стал равен нулю. Следовательно, и другие зеленые лампочки, включенные последовательно, не загорелись. Чтобы починить гирлянду, нужно определить перегоревшую лампочку и заменить ее.

При последовательном соединении общее сопротивление цепи равно сумме сопротивлений отдельных проводников:

При последовательном соединении общее напряжение цепи равно сумме напряжений на отдельных участках:

Пример решения задачи

В цепь с напряжением 220 В включена лампа, через нее протекает ток силой 20 А. Когда к лампе последовательно подключили реостат, сила тока в цепи уменьшилась до 11 А. Чему равно сопротивление реостата?

Решение.

По закону Ома определим сопротивление лампы:

R1 = U / I1 = 220 / 20 = 11 Ом.

Также по закону Ома определим общее сопротивление цепи при включенном реостате:

R = U / I2 = 220 / 11 = 22 Ом.

При последовательном соединении сопротивления лампы и реостата складываются:

Зная общее сопротивление цепи и сопротивление лампы, определим искомое сопротивление реостата:

R2 = R − R1 = 22 − 11 = 11 Ом.

Ответ: сопротивление реостата равно 11 Ом.

К сожалению, последовательное соединение не всегда оказывается удобным. Например, в торговом центре «Ашан» работает с 9:00 до 23:00, кинотеатр — с 10:00 до 02:30, а магазины — с 10:00 до 22:00. При последовательном соединении цепи свет должен будет гореть во всем ТЦ с 9:00 до 02:30. Согласитесь, что такой режим работы экономически невыгоден даже при минимальном тарифе на электроэнергию. В этом случае удачным решением будет использование параллельного соединения.

Домашний лицей для 5–11 классов

Параллельное соединение проводников

При параллельном соединении начала всех проводников соединяются в одной общей точке электрической цепи, а их концы — в другой.

Параллельное соединение проводников

Параллельное соединение используют в тех случаях, когда необходимо подключать электроприборы независимо друг от друга. Например, если отключить чайник, то холодильник будет продолжать работать. А когда в люстре перегорает одна лампочка, остальные все так же освещают комнату.

Приведем еще несколько примеров применения параллельного способа соединения:

  • освещение в больших торговых залах;
  • бытовые электроприборы в квартире;
  • компьютеры в кабинете информатики;
  • вольтметр для измерения напряжения на участке цепи.

Параллельное соединение проводников: формулы

Схема параллельном соединения проводников

Напряжение при параллельном соединении в любых частях цепи одинаково:

Как вы помните, все бытовые электроприборы рассчитаны на одинаковое номинальное напряжение 220 В. Да и согласитесь, куда проще делать все розетки одинаковыми, а не рассчитывать напряжение для каждого прибора при их последовательном соединении.

Сила тока при параллельном соединении (в неразветвленной части цепи) равна сумме сил тока в отдельных параллельно соединенных проводниках:

Электрический ток растекается по ветвям обратно пропорционально их сопротивлениям. Если сопротивления в ветвях равны, то и ток при параллельном соединении делится между ними поровну.

Общее сопротивление цепи определяется по формуле:

Для двух параллельно соединенных проводников формулу можно записать иначе:

Если n одинаковых проводников, каждый из которых имеет сопротивление R1, соединены параллельно, то общее сопротивление участка цепи можно найти, разделив сопротивление одного из проводников на их количество:

Вернемся к Анфисе и ее гирлянде. Мы уже разобрались, почему перестали гореть все зеленые лампочки. Пришло время узнать, почему продолжили гореть все остальные. В современных гирляндах используют параллельное и последовательное соединение одновременно. Например, лампочки одного цвета соединяют последовательно, а с другими цветами — параллельно. Таким образом, отключение ветви с зелеными лампочками не повлияло на работу остальной части цепи.

Пример решения задачи

Два резистора с сопротивлениями 10 Ом и 11 Ом соответственно соединены параллельно и подключены к напряжению 220 В. Чему равна сила тока в неразветвленной части цепи?

Решение.

Определим общее сопротивление при параллельном соединении проводников:

R = (R1 · R2) / (R1 + R2) = (10 · 11) / (10 + 11) = 110 / 21 Ом ≈ 5,24 Ом.

По закону Ома определим силу тока в цепи:

I = U / R = 220 / (110 / 21) = 42 А.

Ответ: сила тока в неразветвленной части цепи равна 42 А.

Выберите идеального репетитора по физике

Смешанное соединение проводников

Зачастую реальные электрические схемы оказываются сложнее, поэтому используют различные комбинации последовательного и параллельного способов соединения. Такой способ соединения называется смешанным. Смешанное соединение проводников предполагает использование последовательного и параллельного способов соединения в одной цепи.

Алгоритм решения задач со смешанным соединением проводников:

Прочитать условие задачи, начертить схему электрической цепи, при необходимости пронумеровать проводники.

Проанализировать схему, т. е. найти участки, где используется только последовательное или только параллельное соединение проводников. Определить сопротивление на этих участках.

Выяснить вид соединения участков между собой. Найти общее сопротивление всей цепи.

С помощью закона Ома и законов последовательного и параллельного соединения проводников найти распределения токов и напряжений в цепи.

Пример решения задачи

Решение задачи на смешанное соединение проводников

На рисунке показана схема электрической цепи. Сопротивления резисторов одинаковы и равны 12 Ом. Напряжение источника — 100 В. Какова сила тока, протекающего через резистор R4?

Решение.

Проанализируем данную схему. Резисторы R2 и R3 соединены между собой последовательно, а с резистором R4 — параллельно. Весь этот участок соединен последовательно с источником тока и резистором R1.

Определим сопротивление последовательно соединенных резисторов R2 и R3:

Найдем общее сопротивление резистора R4 и участка 2–3, соединенных параллельно:

Определим общее сопротивление всей цепи как сумму включенных последовательно резистора R1 и участка 2–3–4:

По закону Ома найдем силу тока в неразветвленной части цепи:

I = U / Rэкв = 200 / 20 = 5 А.

По закону Ома определим напряжение на участке, состоящем из резисторов R2, R3, R4:

Uэкв1 = I · R234 = 5 · 8 = 40 В.

Поскольку при параллельном соединении напряжение одинаково, то напряжение на резисторе R4 также равно 40 В. По закону Ома найдем силу тока, протекающего через резистор R4:

Ответ: через резистор R4 протекает ток силой приблизительно 3,3 А.

Мы разобрали довольно много формул последовательного и параллельного подключения проводников. А запомнить их можно с помощью вот таких схем:

Последовательное соединение проводников: шпаргалка

Параллельное соединение проводников: шпаргалка

Онлайн-курсы физики в Skysmart не менее увлекательны, чем наши статьи. На уроках вы научитесь составлять самые разнообразные электрические цепи и решать задачи с ними, а также узнаете об их применении в жизни. Ждем вас!

Параллельное соединение резисторов

Группы из нескольких пассивных элементов создают для решения разных практических задач. С помощью такого приема подбирают оптимальное электрическое сопротивление, делят напряжение, корректируют токи в отдельных цепях. Формула общего сопротивления поможет сделать точный расчет. Для вычислений применяют специальные ручные и автоматизированные методики.

Смешанное соединение

Особенности включения

Для упрощения темы смешанного соединения резисторов решение задач следует ограничить схемами с подключением к источнику постоянного тока без реактивных компонентов. В этом случае можно исключить сложные колебательные процессы, сопряженные с циклами изменения потребления энергии в нагрузке. Для определения базовых зависимостей достаточно использовать классическую формулу закона Ома:

I (ток) = U (напряжение) / R (сопротивление).

Основные виды соединений

Основные виды соединений

На первой части рисунка показан последовательный проводник. Одинаковый ток можно измерить в любом разрыве с помощью мультиметра. Но даже без экспериментов понятно, что такой результат обеспечен единством пути его прохождения, который создан без разветвлений. Однако при установке разных резисторов (R1≠R2≠R3) напряжение на отдельных элементах отличается (U1≠U2≠U3). Суммарная величина будет равна потенциалу на клеммах источника питания (Uип = U1 + U2 + U3). Аналогичным образом вычисляют суммарное сопротивление:

Rобщ = R1 + R2 + R3.

Следующий пример – параллельное подключение. Здесь каждый ток проходит после разветвления по своему пути (ветке). По предыдущему алгоритму рассуждений несложно установить соответствующие зависимости:

  • если R1≠R2≠R3, то I1≠I2≠I3;
  • Iип = I1 + I2 + I3;

Если использовано параллельное соединение, формула для напряжений трансформируется в равенство:

Uип = U1 = U2 = U3.

К сведению. Другие виды соединений – это комбинации представленных вариантов. На отдельных участках цепи действительны рассмотренные выше правила.

Формула параллельного соединения резисторов

Для этого варианта суммирование номиналов не подходит. При параллельной установке можно складывать только проводимости, которые по величине обратны соответствующим электрическим сопротивлениям. Если применяют параллельное соединение резисторов, формула расчета преобразуется следующим образом:

  • 1/Rобщ = 1/R1 + 1/R2;
  • Rобщ = 1/(1/R1 + 1/R2);
  • Rобщ = R1*R2/R1 + R2.

По аналогичным принципам несложно вывести расчетную формулу для трех, четырех или большего количества пассивных элементов, установленных параллельно.

Расчёт

До изучения технологий вычислений необходимо уточнить основные определения:

  • ветвями называют цепи с одним током;
  • узлы – это места их соединения;
  • контуры – замкнутые пути прохождения токов по нескольким ветвям.

Следует отдельно отметить два постулата. Они получили специфическое название «правила (законы) Кирхгофа» по фамилии ученого, сформулировавшего базовые принципы.

Первый закон (I1 + I2 + … + In = 0) определяет равным нулю суммарное значение всех токов, которые входят и выходят из одной точки в месте соединения нескольких ветвей.

Надо подчеркнуть! Данное выражение является точным для любых комбинаций компонентов, включенных в соответствующие цепи (резисторов, источников тока и других). Для удобства и наглядности расчетов учитывают входящие в узел токи с положительным знаком, выходящие – с отрицательным.

Второе правило упомянуто в качестве промежуточного вывода при рассмотрении последовательно включенных резисторов (Uип = U1 + U2 + U3). В классической формулировке закон утверждает равенство суммарных ЭДС источников питания и потенциалов на пассивных элементах, объединенных в одном расчетном контуре.

Последовательное соединение резисторов

С учетом сделанных определений можно составить формулу для любого количества резисторов, установленных в единой цепи без разветвлений:

Rобщ = R1 + R2 + … + Rn.

Вне зависимости от иных внешних компонентов, токи на входе и выходе в соответствии с первым правилом Кирхгофа будут одинаковыми.

Пример:

  • Uип = 6,5B;
  • R1= 8 Ом;
  • R2 = 12 Ом;
  • R3 = 4 Ом;
  • Rобщ = 8 + 12 + 4 = 24 Ом;
  • I = 6,5/24 = 0,27 А;
  • U1 = I * R1 = 0,27 * 8 = 2,16 В;
  • U2 = 0,27 * 12 = 3,24 В;
  • U3 = 0,27 * 4 = 1,08 В.

Чтобы проверить последовательное соединение, формула на основе второго правила Кирхгофа пригодится:

Uип = 2,16 + 3,24 +1,08 ≈ 6,5 В.

Расчет подтвердил отсутствие ошибок.

Параллельное соединение резисторов

В этом варианте токи разделяются на входе и соединяются на выходе (первый закон Кирхгофа). Направление движения устанавливают от положительной клеммы с отрицательной подключенного источника питания. В соответствии с рассмотренными выше правилами при равенстве напряжений на отдельных резисторах токи в соответствующих цепях будут разными.

Для примера можно использовать предыдущие исходные данные:

  • общее сопротивление при параллельном соединении формула для трех компонентов:

Rобщ = R1*R2*R3/(R1*R2 + R2*R3 + R1*R3

  • вставив номиналы, делают расчет Rобщ = 8 * 12 * 4 / (8*12 + 12*4 +8*4) = 2,182 Ом;
  • I = 6,5/ 2,182 ≈ 2,98 А;
  • I1 = 6,5/ 8 = 0,8125 А;
  • I2 = 6,5/12 ≈ 0,5417 А;
  • I3 = 6,5/4 = 1,625.

Как и в предыдущем случае, расчет проверяют. Если применяют параллельное сопротивление, формула вычислений должна подтвердить равенство токов:

I = 0,8125 + 0,5417 + 1,6225 = 2,9767 ≈ 2,98 А.

Соблюдено суммарное равенство входных и выходных значений для отдельного узла, поэтому ошибки отсутствуют.

Смешанное соединение резисторов

Если в схеме присутствует комбинация последовательных и параллельных соединений, выполняют последовательно упрощение, пользуясь представленными методиками расчетов.

Последовательное преобразование схемы для упрощения вычислений

Последовательное преобразование схемы для упрощения вычислений

На следующем рисунке показана последовательность преобразований:

  • по значениям установленных R3 и R4 определяют общее значение для участка цепи Rэ;
  • далее вычисляют сопротивление последовательных компонентов Rэ и R6;
  • на следующем этапе делают расчет для группы R2, Rэк и R5;
  • завершающее действие – суммирование R1, Rэ и R7 (рис. ниже).

Итоговый результат (Rэк) будет определять общее (эквивалентное) электрическое сопротивление группы резисторов. При необходимости вычисляют значения токов и напряжений в отдельных ветвях.

Типичные подключения

Любой вариант соединений можно разделить на элементарные составляющие по рассмотренной выше методике. На следующем рисунке представлены типичные подключения вместе с основными формулами для расчетов.

Последовательное, параллельное и смешанное соединения

Последовательное, параллельное и смешанное соединения

Расчёт комбинированных схем

Принцип упрощения и вычисления эквивалентного сопротивления можно изучить подробно на конкретном примере. Исходные данные (кОм):

  • R1 = 1;
  • R2 = 3;
  • R3 = 3;
  • R4 = 3.

Пояснение к технологии вычислений

Пояснение к технологии вычислений

Алгоритм действий:

  • суммируют номиналы в последовательной цепи: 3 + 3 = 6;
  • вычисляют сопротивление параллельного участка: 3*6/ (3 + 6) = 2;
  • завершают вычисление: 2 + 1 = 3.

Как рассчитать сложные схемы соединения резисторов

Решение трудной задачи демонстрирует пример преобразования «звезды» в «треугольник». Этот способ поможет рассчитать эквивалентное сопротивление типичной мостовой схемы соединения резистивных компонентов.

Преобразование сложной схемы

Преобразование сложной схемы

Трансформация «звезды» показана на примере одного «луча»:

R2 = (R23 * R24)/ R23 + R24 + R34.

Другую часть рассчитывают по формуле:

R23 =R2 + R3 + (R2 * R3)/R4.

Эквивалентное сопротивление вычисляют следующим образом:

Rэкв = ((R12 + R2) * (R13 + R3))/((R12 + R2) + (R13 + R3)) + R4.

Ток, протекающий в цепи параллельно соединенных резисторов

Для защиты по току светодиода необходима повышенная корректность при выборе подходящих пассивных элементов питающей цепи. Однако в ряду резисторов представлены только определенные номиналы.

Не решает проблему увеличение бюджета. Прецизионные изделия выпускают с минимальными допусками (0,5% и менее). Но и в этом случае речь идет о точности значений. Номиналы предлагают в соответствии с действующими международными стандартами.

Что делать, если необходимо создать цепь с Rобщ = 11,2 Ом, при наличии серийных резисторов 11 и 12 Ом? Для получения обозначенного результата создают параллельное соединение. Расчет можно сделать с применением онлайн калькулятора на специализированном сайте. Вычисления выполняются автоматически после заполнения простой формы. Такие услуги предлагают бесплатно без регистрации.

Таблица для выбора резисторов

Таблица для выбора резисторов

Представленный на рисунке справочный материал поможет подобрать подходящие изделия быстро и точно. Для рассматриваемого примера подойдут резисторы 13 и 82 Ом. При параллельной установке они создадут сопротивление участка цепи 11,2 Ом.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *