Что такое кренка в электронике
Перейти к содержимому

Что такое кренка в электронике

  • автор:

Что такое кренка в электронике

Текущее время: Чт авг 10, 2023 06:09:22

Часовой пояс: UTC + 3 часа

Работа кренки

Страница 1 из 1 [ Сообщений: 5 ]

* Была выпущена опытная партия с цоколевкой, соответствующей рис. 1,а.
** Выпускают также разновидности на ток нагрузки до 1 А.

Некоторые типы отечественных стабилизаторов имеют оригинальную устоявшуюся цифровую нумерацию выводов (она показана на рис. 1 в скобках). Это произошло оттого, что первоначально микросхемы этих серий выпускали в "микросхемных" корпусах со стандартизированной нумерацией выводов. После того, как было налажено производство в "транзисторных" корпусах, нумерация выводов сохранилась.

Типовая схема включения микросхемных стабилизаторов на фиксированное выходное напряжение показана на рис. 2,а и б. Для всех микросхем емкость входного конденсатора C1 должна быть не менее 2,2 мкф для керамических или оксидных танталовых и не менее 10 мкф — для алюминиевых оксидных конденсаторов, а выходного конденсатора C2 — не менее 1 и 10 икф соответственно. Некоторые микросхемы допускают и меньшую емкость, но указанные значения гарантируют устойчивую работу любых стабилизаторов. Роль входного может исполнять конденсатор сглаживающего фильтра, если он расположен не далее 70 мм от микросхемы. В [6] опубликовано множество схем различных вариантов включения микросхемных стабилизаторов для обеспечения большего выходного тока, изменения выходного напряжения, реализации других вариантов защиты, использования стабилизаторов напряжения в качестве генераторов тока.

Если требуется нестандартное значение стабилизированного выходного напряжения или плавное его регулирование, удобно использовать специализированные регулируемые микросхемные стабилизаторы, поддерживающие напряжение 1,25 В между выходом и управляющим выводом. Их перечень представлен в табл. 2, а типовая схема включения для стабилизаторов с регулирующим элементом в плюсовом проводе — на рис. 3. Резисторы R1 и R2 образуют внешний регулируемый делитель напряжения, который входит в цепь установки уровня выходного напряжения Uвых, равного Uвых=1,25(1+R2/R1)+Iпот*R2, где Iпот=50. 100 мкА — собственный потребляемый ток микросхемы. Число 1,25 в этой формуле — это упомянутое выше напряжение между выходом и управляющим выводом, которое поддерживает стабилизатор в рабочем режиме.

Обратим внимание на то, что, в отличие от стабилизаторов на фиксированное выходное напряжение, регулируемые без нагрузки не работают. Минимальное значение выходного тока маломощных регулируемых стабилизаторов равно 2,5. 5 мА и 5. 10мА — мощных. В большинстве случаев применения нагрузкой служит резистивный делитель напряжения R1 R2 на рис. 3.

По этой схеме можно включать и стабилизаторыс фиксированным выходным напряжением. Однако, во-первых, потребляемый ими ток значительно больше (2. 4 мА) и, во-вторых, он менее стабилен при изменении выходного тока и входного напряжения. По этим причинам максимально возможного коэффициента стабилизации устройства достичь не удастся.

Для снижения уровня пульсаций на выходе, особенно при большем выходном напряжении, рекомендуется включать сглаживающий конденсатор C3 емкостью 10 мкФ и более. К конденсаторам C1 и C2 требования такие же, как и к соответствующим конденсаторам фиксированных стабилизаторов.

Если стабилизатор работает при максимальном выходном напряжении, то при случайном замыкании входной цепи или отключении источника питания микросхема оказывается под большим обратным напряжением со стороны нагрузки и может быть выведена из строя. Для защиты микросхемы по выходу в таких ситуациях параллельно ей включают защитный диод VD1.

Другой защитный диод — VD2 — защищает микросхему со стороны заряженного конденсатора C3. Диод быстро разряжает этот конденсатор при аварийном замыкании выходной или входной цепи стабилизатора.

Все сказанное служит только для предварительного выбора стабилизатора, перед проектированием блока питания следует ознакомиться м полными справочными характеристиками, хотя бы для того, чтобы точно знать, каково максимально допустимое входное напряжение, достаточна ли стабильность выходного напряжения при изменении входного напряжения, тока нагрузки или температуры. Можно выразить уверенность, что перечисленные в статье микросхемы находятся на техническом уровне, достаточном для решения подавляющего числа задач радиолюбительской практики.

Заметный недостаток у описанных стабилизаторов один — довольно большое минимально необходимое напряжение между входом и выходом — 2. 3 В, однако он с лихвой окупается простотой применения и низкой ценой микросхем.

Кренка (стабилизатор напряжения) на панели приборов

Нежданно-негаданно решил умереть стабилизатор (триногой, кренкой еще называют) на приборке. В итоге получил завышенные показания приборов (температура двигателя, уровень в баке). Как-то не хотелось рисковать с перегревом двигателя, или остаться с пустым баком на полпути где-то. Вчера работоспособность была успешно восстановлена. Виной длительного простоя было отсутствие необходимого стабилизатора в магазинах нашего города. Пришлось ждать, пока доставят заказ из интернет-магазина.
Теперь немного по делу. У нас в приборках установлен стабилизатор TCA700Y на 10 В. Вот так он выглядит (фото из сети):

Найти такой же мне не удалось. После поиска аналогов было принято решение заказать 7810CV. Цена вопроса — 7,5 грн. Внешне отличаются только надписями на корпусе. Но при установке 7810 необходимо ставить развернутым (подкладкой вверх), поскольку его схема зеркальная относительно TCA700Y, что изображено ниже.

Для фиксации и организации теплоотвода от нового стабилизатора пришлось дополнительно при инсталляции задействовать гаечку М5 и термопасту. Гайку под крепежное ухо положил, термопастой прошелся между смежным поверхностями. Сорри, но фото не успевал сделать. Думаю, итак все интуитивно понятно.

Как проверить стабилизатор (триногу, кренку) не снимая панели приборов. Достаточно включить зажигание и проверить напряжение между клеммой датчика температуры на впускном коллекторе и "массой" (двигателем). Должно быть 10 В.

Opel Kadett 1988, 60 л. с. — электроника

Машины в продаже

Opel Kadett, 1986

Opel Kadett, 1986

Opel Kadett, 1986

Opel Kadett, 1988
Комментарии 9

9.89 в это норм напряжение или нет? обе стрелки врут занижая. теипература 80 топливо тоже привирает литров на 20

У меня было четко 10,0 В. Думаю, что в вашем варианте 9.9 вольта это без нагрузки, а в работе будет ещё ниже, потому и показания так "врут". Я бы попробовал поменять эту микросхему в таком случае. Дополнительно проверить балансировочный резистор, состояние дорожек и чистоту контактов.

Скинь сайт где можно заказать эту треногу очень надо!

Должно быть только 10 вольт не больше не меньше? У меня этот стабилизатор выдает напряжение скачками, то есть 10 в — 9,9 вольт, причем скачки напряжения возникаю не каждую секунду а даже меньше и это только на заведенном движке, при заглушенном напряжения вообще нет.

Влад, в личку пож фото и сайт где брал, а то у мну при вкл просто зажигании показует меньше чем надо, а когда завожу все ОК! Личка на УКК )))

Так давай я тебе отправлю? У меня есть запасная. И даже вроде не одна. Я себе сходы 2 или 3 заказывал. �� Я ж потом приборку поменял. Думаю, они мне больше не пригодятся. Просто контора из Луганска. Дальше ты все понял.
Главное найти их — давно дело было.
А еще прочисть контакты на приборке. Я так с датчиком температуры тоже долго воевал. Датчики перебирал, провода менял, а оказалось все намного проще. Проверь напряжение на конце провода на датчик при включенном зажигании и при заведенном моторе.

Что даст последнее? И так понятно, что напряжение без дрыжки меньше… ИМХО… а снормальной кренкой все должно работать, раньше по крайней мере так было…

Смотри, какой прикол я заметил. Когда у меня слетела кренка, то на конце провода датчика в коллекторе у меня было напряжение 9,4…9,7 В на всех режимах двигателя. Соответственно стрелки и датчика температуры, и уровня топлива начали врать в меньшую сторону. Поменял кренку — все стало на места. Потом я поменял и приборку в сборе (по другим причинам). Пару месяцев назад опять начало показывать температуру меньше. Я сходу померял напряжение на проводе. 10 В, и кошка не ходи. И слава Богу, что не начал разбирать и менять. Начал грешить на датчик, ибо время от времени показывало правильно. Переменял датчиков, мама не горюй. На всех показывает меньше. И только после такого нагрева, что включался вентилятор, и последующего охлаждения до рабочей температуры стрелка становилась в правильное положение. Тут я понял, что где-то в самой проводке косяк. Поменял 150 раз скрученный провод под капотом. Не помогло. Потом просто рукой залез под панель, хотел перемять провода, чтобы выяснить нет там ли где-то излома. И опа-на — стало на место. Но на следующий день все повторилось. В общем снял разъем с приборки (не демонтируя ее). Просто вытер контакты. Все стало на свои места. Потом еще раз протер контакты уже кислотой. Вот месяц почти как все в норме.

угу, понятно, буду пробовать, на всяк случай найди те кренки- одну мне и одну Игоряну с Курахово

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

КРЕН, «кренка» — бытовое название интегральных стабилизаторов напряжения серии 142. Размеры её корпуса не позволяют нанести полную маркировку серии (КР142ЕН5А и т.п.), поэтому разработчики ограничились кратким вариантом – КРЕН5А. «Кренки» получили широкое распространение как в промышленности, так и в любительской практике.

Что из себя представляют стабилизаторы напряжения КРЕН 142

Микросхемы серии 142 завоевали популярность из-за простоты получения стабильного напряжения – несложная обвязка, отсутствие регулировок и настроек. Достаточно подать питание на вход, и получить стабилизированное напряжение на выходе. Наибольшую известность и распространение получили нерегулируемые интегральные стабилизаторы в корпусах ТО-220 на напряжение до 15 вольт:

  • КР142ЕН5А, В – 5 вольт;
  • КР142ЕН5Б, Г – 6 вольт;
  • КР142ЕН8А, Г – 9 вольт;
  • КР142ЕН8Б, Д – 12 вольт;
  • КР142 ЕН8В, Е – 15 вольт;
  • КР142 ЕН8Ж, И – 12,8 вольт.

В случаях, когда надо получить более высокое стабильное напряжение, применяются приборы:

  • КР142ЕН9А – 20 вольт;
  • КР42ЕН9Б – 24 вольта;
  • КР142ЕН9В – 27 вольт.

Эти микросхемы также выпускаются в планарном исполнении с несколько отличающимися электрическими характеристиками.

Серия 142 включает в себя и другие интегральные стабилизаторы. К микросхемам с регулируемым выходным напряжением относятся:

  • КР142ЕН1А, Б – с пределами регулирования от 3 до 12 вольт;
  • КР142ЕН2Б – с пределами 12…30 вольт.

Эти приборы выпускаются в корпусах с 14 выводами. Также в эту категорию входят трехвыводные стабилизаторы с одинаковым выходным диапазоном 1,2 – 37 вольт:

  • КР142ЕН12 положительной полярности;
  • КР142ЕН18 отрицательной полярности.

В серию входит микросхема КР142ЕН6 – двуполярный стабилизатор с возможностью регулировки выходного напряжения от 5 до 15 вольт, а также включение в качестве нерегулируемого источника ±15 вольт.

Все элементы серии имеют встроенную защиту от перегрева и короткого замыкания на выходе. А переполюсовку по входу и подачу внешнего напряжения на выход они не любят – время жизни в таких случаях исчисляется секундами.

Модификации микросхемы

Модификации микросхем, входящих в серию, отличаются корпусом. Большинство однополярных нерегулируемых стабилизаторов выполнено в «транзисторном» корпусе TO-220. Он имеет три вывода, этого хватает не во всех случаях. Поэтому часть микросхем выпускались в многовыводных корпусах:

  • DIP-14;
  • 4-2 – то же самое, но в керамической оболочке;
  • 16-15.01 – планарный корпус для монтажа на поверхность (SMD).

В таких исполнениях выпускаются, в основном, регулируемые и двуполярные стабилизаторы.

Основные технические характеристики

Кроме выходного напряжения, для стабилизатора важен ток, который он может обеспечить под нагрузкой.

Да верно типа упрощенного параметрического стабилизатора.
чем больше входное напряжение и меньше выходное и бОльшее потребление тока, тем больше требуется ему радиатор для охлаждения.

есть ещё и ругулируемые, они такие же как предыдущие, только средний земельный общий вывод подключается к регулируемому элемету типа резистор.

бывают из четырьмя выводами, четвёртый как правило служит включением и отключением стабилизатора, точнее выходное напряжение отключает.

Изображение

Если стабилизатор напряжения включить особым образом (третья нога не наземле)
то получим стабилизатор тока.

_________________
Лечу лечить WWW ашу покалеченную технику.

Сборка печатных плат от $30 + БЕСПЛАТНАЯ доставка по всему миру + трафарет

Импульсные источники питания LM450/600-20Bxx производства компании MORNSUN представляют собой надежные ИП, подходящие для применения в суровых условиях эксплуатации. Особенностью источников питания этой серии является мощность, увеличенная до 450/600 Вт, что существенно расширяет спектр возможных применений. В ИП реализованы необходимые защитные функции, такие как защита от короткого замыкания выхода, перегрузки и превышения выходного напряжения. Изоляция «вход-выход» выдерживает напряжение до 4000 В и резкие перепады температур.

Обзор представленных в Компэл новых серий семейств DDRH и RSDH на DIN-рейку и на шасси для высоковольтных сетей постоянного тока с диапазоном входных напряжений от 150 до 1500 В. Могут применяться для станций зарядки электромобилей и электробусов, ж/д транспорта, систем хранения энергии, альтернативной энергетики, телекоммуникационных центров и центров обработки данных.

Часовой пояс: UTC + 3 часа

Кто сейчас на форуме

Сейчас этот форум просматривают: нет зарегистрированных пользователей и гости: 7

Что такое кренка в электронике. Как получить нестандартное напряжение

В большинстве радиоэлектронных устройств все напряжения относительно стандартны: 3V, 5V, 9V, 12V и так далее.
Насчет выдаваемого напряжения стандартны обычно и электрохимические источники тока: батарейки (1,5V, 9V), аккумуляторы и так далее.
Но бывают случаи когда требуется получить и необычное напряжение: например 6V или 8V. Скажите такое случается крайне редко? Отнюдь.

Немного отвлекусь от темы и приведу реальный пример из реальной практики:
В некоторых моделях телевизоров Sharp питание видеопроцессора осуществлялось через трехногий стабилизатор AN7808 (то есть 8V). При меньшем напряжении- отключается яркость, при подаче 9V телевизор работает, но нет цветности и увеличен размер по кадрам. В старые добрые времена «родной» 8-ми Вольтовый стабилизатор найти было довольно проблематично и приходилось «выкручиваться» с родными советскими КРЕНками типа КР142ЕН на фиксированное напряжение 5 и 12 Вольт.

Для решения данной проблемы возможны два варианта:
1. Изготовить регулируемый источник питания.
2. Изменить напряжение стабилизации у микросхемы-стабилизатора.

Рассмотрим оба варианта:

регулируемый источник питания

Схем регулируемых источников питания в интернете много. Можно найти различные схемы как на транзисторах так и на микросхемах, с защитой и без, но мы рассмотрим самый простой вариант регулируемого источника питания- на микросхеме серии LM317. На ней можно изготовить простенький регулируемый источник питания с выходным напряжением в пределах 1,5. 30V и током до 1,5Ампер. Кстати, у неё есть и отечественный аналог имеется- называется он КР142ЕН12А. Схема включения у него такая:

Как видим ничего сложного и хитрого: самый обыкновенный диодный мост , пара конденсаторов на входе и выходе и цепь регулировки.

Как изменить напряжение стабилизации у КРЕНки

Здесь, в общем-то тоже нет ничего хитрого: достаточно просто средний (тот который «общий» вывод) у КРЕНки подключить через стабилитрон. См схему:


Выходное (причем стабилизированное!) напряжение при этом поднимется на значение напряжения стабилизации стабилитрона.
То есть если взять 5-ти вольтовую КРЕНку и поставить дополнительно стабилитрон, скажем, на 3,3V, то на выходе мы получим 5+3,3=8,3V.

А если вдруг необходимо поднять напряжение не на много, скажем всего на 0,5. 1,5V? Тоже не сложно: таких стабилитронов не существует, но вместо стабилитрона можно использовать обыкновенный диод (только включается он не как стабилитрон а наоборот- катодом к «общему»). См рисунок:


Все дело в том что на p-n переходе диода создается падение напряжения:
для кремниевых диодов оно составляет порядка 0,6-0.7V, для германиевых 0.3-0.4V.
Именно это свойство можно и использовать: если установить, скажем, два последовательно включенных кремниевых диода то напряжение на выходе КРЕНки подымется приблизительно на 1,4V.

Небольшое дополнение: в «последних» отечественных телевизорах (которые еще выпускались в середине-конце 1990-х годов) можно было встретить источники питания где 12-ти Вольтовый стабилизатор был выполнен на микросхеме КР142ЕН8Г с включением среднего вывода через подстроечный резистор. Но диапазон регулировки у такой схемы был, прямо скажем, не очень. Так что все что было написано выше более эффективно.

Ну и напоследок : основная часть материала и картинки позаимствованы с сайта Практическая электроника (с предварительного согласия!!)

Зачастую радиолюбители сталкиваются с проблемой получить стабилизированный блок питания с большим током. Но простейшие кренки не выдерживают такие токи. Я предлагаю схему, которая может пропускать через себя ток до 7.5 Ампер при напряжении 12В ± 0.1В. Устройство состоит из силового трансформатора, диодного моста (не менее 10 Ампер), двух конденсаторов для подавления пульсаций, транзистора КТ818Г, микросхемы стабилизации КРЕН8А, резистора 43 Ома.

Работа устройства:
При работе устройства без нагрузки, ток протекает через диодный мост, конденсаторы, и микросхему стабилизации. На выходе мы получим 12В. При нагрузке схемы, например усилителем низкой частоты открывается транзистор кт818г, и вся нагрузка протекает по нему, минуя микросхему стабилизации. Таким образом микросхема стабилизации выполняет только функцию стабилизации.

Микросхему стабилизации и транзистор обязательно нужно закрепить на радиаторы, причем на два разных, либо на один, но тогда их придется изолировать.

В схеме используются радиодетали:
Прежде всего понадобится силовой трансформатор
Диодный мост (от 8А — 10А) (не менее — более можно)
Электролитические конденсаторы: 100 мкФ* 35В, 1000 мкФ * 16В.
Резистор 43 Ома (0,5Вт) не менее – больше можно
Транзистор КТ818Г
Микросхема стабилизации КРЕН8А
Стоимость около 100 руб. (без трансформатора)

В схеме детали можно заменить аналогами.
Еще радиаторы могут немного греться – это приемлемо.

Список радиоэлементов

Сегодня напишу о том, о чём надо было написать ещё давно, так как подсветок и поделок из светодиодов становится всё больше и больше, но бывает в них перегорает один или два светодиода, и уже красота уходит на задний план, вот чтобы этого не происходило, надо ставить стабилизаторы на светодиодные продукты. Поставив один раз такие стабилизаторы мы добиваемся долговечности и бесперебойной работы наших светодиодов.

Простой стабилизатор для светодиодов своими руками

Ни для кого не секрет что светодиодные лампочки , использующиеся в автомобиле, а так же большинство светодиодных лент рассчитано на постоянное напряжение в 12 вольт. А так же все знают что напряжение в бортовой сети может превышать 15 вольт, что для чувствительных светодиодов может быть губительно. Следствием резких скачков напряжения светодиоды могут выходить из строя (мигать, терять в яркости или что чаще просто перегорать).

С данной проблемой бороться можно и даже нужно, тем более особых знаний и затрат это не требует. Как вы наверное уже догадались, для борьбы с высоким (для светодиодов) напряжением необходимо приобрести и изготовить стабилизатор напряжения. Стабилизатор на 12 вольт можно без особого труда найти в любом магазине радиодеталей. Маркировка может быть разной, я брал КРЕН 8Б (15 рублей) и диод 1N4007 (1 рубль). Диод необходим для предотвращения переполюсовки и впаивать его нужно на вход стабилизатора.

Схема подключения

Заготовочки

Начал подключение стабилизаторов на подсветку ног (у меня уже было сделано). Как видно на картинке напряжение в бортовой сети с выключенным зажиганием (напряжение аккумулятора) составляет 12.24 вольта что для светодиодной ленты не страшно, а вот напряжение в бортовой сети с заведённым двигателем составляет угрожающие (для светодиодов) 14.44 вольта. Далее видим что стабилизатор со своей задачей справляется на отлично и выдаёт на выходе напряжение никогда не превышающее 12 вольт, что не может не радовать.

Единичный пример, в любых других эл. цепях ситуация аналогична

Схема подключения

Правая передняя дверь


/>

Светодиодная подсветка все глубже внедряется в нашу жизнь. Капризные лампочки выходят из строя и красота сразу меркнет. И все потому, что светодиоды не могут работать просто от включения в электросеть. Они обязательно подключаются через стабилизаторы (драйверы). Последние препятствуют перепадам напряжения, выходу из строя компонентов, перегреву и т. п. Об этом и о том, как собрать простую схему своими руками, и пойдёт речь в статье.

Выбор стабилизатора

В бортовой сети автомашины рабочее питание составляет примерно от 13 В, большинству же светодиодов подходит 12 В. Поэтому обычно ставят стабилизатор напряжения, на выходе которого 12 В. Таким образом, обеспечиваются нормальные условия для работы светотехники без ЧП и преждевременного выхода из строя.

На этом этапе любители сталкиваются с проблемой выбора: конструкций опубликовано множество, но не все хорошо работают. Выбрать нужно тот, что достоин любимого транспортного средства и, кроме того:

  • действительно будет работать;
  • обеспечит безопасность и защищенность светотехнике.

Самый простой стабилизатор напряжения, сделанный своими руками

Если у вас нет желания покупать готовое устройство, тогда стоит узнать, как сделать простенький стабильник самому. Импульсный стабилизатор в авто сложно изготовить своими руками. Именно поэтому стоит присмотреться к подборке любительских схем и конструкций линейных стабилизаторов напряжения. Самый простой и распространенный вариант стабильника состоит из готовой микросхемы и резистора (сопротивления).

Сделать стабилизатор тока для светодиодов своими руками проще всего на микросхеме . Сборка деталей (см. рисунок ниже) осуществляется на перфорированной панели или универсальном печатном плато.

Схема 5 амперного блока питания с регулятором напряжения от 1,5 до 12 В.

Для самостоятельной сборки такого устройства понадобятся детали:

  • плато размером 35*20 мм;
  • микросхема LD1084;
  • диодный мост RS407 или любой небольшой диод для обратного тока;
  • блок питания, состоящий из транзистора и двух сопротивлений. Предназначен для отключения колец при включении дальнего или ближнего света.

При этом светодиоды (в количестве 3 шт.) соединяются последовательно с токоограничивающим резистором, выравнивающим ток. Такой набор, в свою очередь, параллельно соединяется со следующим таким же набором светодиодов.

Стабилизатор для светодиодов на микросхеме L7812 в авто

Стабилизатор тока для светодиодов может быть собран на базе 3-контактного регулятора напряжения постоянного тока (серии L7812). Устройство навесного исполнения отлично подходит для питания, как светодиодных лент, так и отдельных лампочек в автомобиле.

Необходимые компоненты для сборки такой схемы:

  • микросхема L7812;
  • конденсатор 330 мкф 16 В;
  • конденсатор 100 мкф 16 В;
  • диод выпрямительный на 1 ампер (1N4001, к примеру, или аналогичный диод Шоттки);
  • провода;
  • термоусадка 3 мм.

Вариантов на самом деле может быть много.

Схема подключения на базе LM2940CT-12.0

Корпус стабилизатора можно выполнить практически из любого материала, кроме дерева. При использовании более десяти светодиодов, рекомендуется к стабильнику приделать алюминиевый радиатор.

Может кто-то пробовал и скажет, что можно запросто обойтись без лишних заморочек, напрямую подключив светодиоды. Но в этом случае последние большую часть времени будут находиться в неблагоприятных условиях, посему прослужат недолго или вовсе сгорят. А ведь тюнинг дорогих авто выливается в довольно крупную сумму.

А по поводу описанных схем, их главное достоинство – простота. Для изготовления не требуется особых навыков и умений. Впрочем, если схема слишком сложная, то собирать её своими руками становится не рационально.

Заключение

Идеальный вариант подключения светодиодов – через . Устройство уравновешивает колебания сети, с его использованием уже не будут страшны броски тока. При этом необходимо соблюдать требования к электропитанию. Это позволит подстроить свой стабилизатор под сеть.

Аппарат должен обеспечивать максимальную надежность, устойчивость и стабильность, желательно на долгие годы. Стоимость собранных устройств зависит от того, где все необходимые детали будут покупаться.

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

КРЕН, «кренка» — бытовое название интегральных стабилизаторов напряжения серии 142. Размеры её корпуса не позволяют нанести полную маркировку серии (КР142ЕН5А и т.п.), поэтому разработчики ограничились кратким вариантом – КРЕН5А. «Кренки» получили широкое распространение как в промышленности, так и в любительской практике.

Что из себя представляют стабилизаторы напряжения КРЕН 142

Микросхемы серии 142 завоевали популярность из-за простоты получения стабильного напряжения – несложная обвязка, отсутствие регулировок и настроек. Достаточно подать питание на вход, и получить стабилизированное напряжение на выходе. Наибольшую известность и распространение получили нерегулируемые интегральные стабилизаторы в корпусах ТО-220 на напряжение до 15 вольт:

  • КР142ЕН5А, В – 5 вольт;
  • КР142ЕН5Б, Г – 6 вольт;
  • КР142ЕН8А, Г – 9 вольт;
  • КР142ЕН8Б, Д – 12 вольт;
  • КР142 ЕН8В, Е – 15 вольт;
  • КР142 ЕН8Ж, И – 12,8 вольт.

В случаях, когда надо получить более высокое стабильное напряжение, применяются приборы:

  • КР142ЕН9А – 20 вольт;
  • КР42ЕН9Б – 24 вольта;
  • КР142ЕН9В – 27 вольт.

Эти микросхемы также выпускаются в планарном исполнении с несколько отличающимися электрическими характеристиками.

Серия 142 включает в себя и другие интегральные стабилизаторы. К микросхемам с регулируемым выходным напряжением относятся:

  • КР142ЕН1А, Б – с пределами регулирования от 3 до 12 вольт;
  • КР142ЕН2Б – с пределами 12…30 вольт.

Эти приборы выпускаются в корпусах с 14 выводами. Также в эту категорию входят трехвыводные стабилизаторы с одинаковым выходным диапазоном 1,2 – 37 вольт:

  • КР142ЕН12 положительной полярности;
  • КР142ЕН18 отрицательной полярности.

В серию входит микросхема КР142ЕН6 – двуполярный стабилизатор с возможностью регулировки выходного напряжения от 5 до 15 вольт, а также включение в качестве нерегулируемого источника ±15 вольт.

Все элементы серии имеют встроенную защиту от перегрева и короткого замыкания на выходе. А переполюсовку по входу и подачу внешнего напряжения на выход они не любят – время жизни в таких случаях исчисляется секундами.

Модификации микросхемы

Модификации микросхем, входящих в серию, отличаются корпусом. Большинство однополярных нерегулируемых стабилизаторов выполнено в «транзисторном» корпусе TO-220. Он имеет три вывода, этого хватает не во всех случаях. Поэтому часть микросхем выпускались в многовыводных корпусах:

  • DIP-14;
  • 4-2 – то же самое, но в керамической оболочке;
  • 16-15.01 – планарный корпус для монтажа на поверхность (SMD).

В таких исполнениях выпускаются, в основном, регулируемые и двуполярные стабилизаторы.

Основные технические характеристики

Кроме выходного напряжения, для стабилизатора важен ток, который он может обеспечить под нагрузкой.

Тип микросхемы Номинальный ток, А
К(Р)142ЕН1(2) 0,15
К142ЕН5А, 142ЕН5А 3
КР142ЕН5А 2
К142ЕН5Б, 142ЕН5Б 3
КР142ЕН5А 2
К142ЕН5В, 142ЕН5В, КР142ЕН5В 2
К142ЕН5Г, 142ЕН5Г, КР142ЕН5Г 2
К142ЕН8А, 142ЕН8А, КР142ЕН8А 1,5
К142ЕН8Б, 142ЕН8Б, КР142ЕН8Б 1,5
К142ЕН8В, 142ЕН8В, КР142ЕН8В 1,5
КР142ЕН8Г 1
КР142ЕН8Д 1
КР142ЕН8Е 1
КР142ЕН8Ж 1,5
КР142ЕН8И 1
К142ЕН9А, 142ЕН9А 1,5
К142ЕН9Б, 142ЕН9Б 1,5
К142ЕН9В, 142ЕН9В 1,5
КР142ЕН18 1,5
КР142ЕН12 1,5

Этих данных достаточно для предварительного решения о возможности применения того или иного стабилизатора. Если нужны дополнительные характеристики, их можно найти в справочниках или в интернете.

Назначение выводов и принцип работы

По принципу работы все микросхемы серии относятся к линейным регуляторам. Это означает, что входное напряжение распределяется между регулирующим элементом (транзистором) стабилизатора и нагрузкой так, что на нагрузке падает напряжение, которое задается внутренними элементами микросхемы или внешними цепями.

Если входное напряжение увеличивается, транзистор прикрывается, если уменьшается – приоткрывается таким образом, чтобы на выходе напряжение оставалось постоянным. При изменении тока нагрузки стабилизатор отрабатывает так же, поддерживая неизменным напряжение нагрузки.

Схема линейного регулятора напряжения.

У этой схемы есть недостатки:

  1. Через регулирующий элемент постоянно протекает ток нагрузки, поэтому на нём постоянно рассеивается мощность P=Uрегулятора⋅Iнагрузки. Эта мощность расходуется впустую, и ограничивает КПД системы – он не может быть выше Uнагрузки/ Uрегулятора.
  2. Напряжение на входе должно превышать напряжение стабилизации.

Но простота применения, дешевизна прибора перевешивают недостатки, и в диапазоне рабочих токов до 3 А (и даже выше) что-то более сложное применять бессмысленно.

Габаритные размеры КР142ЕН.

У регуляторов напряжения с фиксированным напряжением, а также у регулируемых стабилизаторов новых разработок (К142ЕН12, К142ЕН18) в трех- и четырехвыводном исполнении выводы обозначаются цифрами 17,8,2. Такое нелогичное сочетание выбрано, очевидно, для соответствия выводов с микросхемами в корпусах DIP. На самом деле такая «дремучая» маркировка сохранилась только в технической документации, а на схемах пользуются обозначениями выводов, соответствующим зарубежным аналогам.

Обозначение по технической документации Обозначение на схемах Назначение вывода
Стабилизатор с фиксированным напряжением Стабилизатор с регулируемым напряжением Стабилизатор с фиксированным напряжением Стабилизатор с регулируемым напряжением
17 In Вход
8 GND ADJ Общий провод Опорное напряжение
2 Out Выход

Микросхемы старой разработки К142ЕН1(2) в 16-выводных планарных корпусах имеют следующее назначение выводов:

Назначение Номер вывода Номер вывода Назначение
Не используется 1 16 Вход 2
Фильтр шума 2 15 Не используется
Не используется 3 14 Выход
Вход 4 13 Выход
Не используется 5 12 Регулировка напряжения
Опорное напряжение 6 11 Токовая защита
Не используется 7 10 Токовая защита
Общий 8 9 Выключение

Недостатком планарного исполнения служит большое количество излишних выводов прибора.
Стабилизаторы КР142ЕН1(2) в корпусах DIP14 имеют другое назначение выводов.

Назначение Номер вывода Номер вывода Назначение
Токовая защита 1 14 Выключение
Токовая защита 2 13 Цепи коррекции
Обратная связь 3 12 Вход 1
Вход 4 11 Вход 2
Опорное напряжение 5 10 Выход 2
Не используется 6 9 Не используется
Общий 7 8 Выход 1

У микросхем К142ЕН6 и КР142ЕН6, выпускаемых в разных вариантах корпуса с теплоотводом и однорядным расположением выводов, цоколёвка следующая:

Номер вывода Назначение
1 Вход сигнала регулировки обоих плеч
2 Выход «-»
3 Вход «-»
4 Общий
5 Коррекция «+»
6 Не используется
7 Выход «+»
8 Вход «+»
9 Коррекция «-»

Пример типовой схемы подключения

Для всех нерегулируемых однополярных стабилизаторов типовая схема одинакова:

Типовая схема подключения микросхемы КР142ЕН.

С1 должен иметь ёмкость от 0,33 мкФ, С2 – от 0,1. В качестве С1 может быть использован фильтрующий конденсатор выпрямителя, если проводники от него до входа стабилизатора имеют длину не более 70 мм.

Двуполярный стабилизатор К142ЕН6 обычно включается так:

Схема подключения двуполярного стабилизатора напряжения КРЕН.

Для микросхем К142ЕН12 и ЕН18 напряжение на выходе устанавливается резисторами R1 и R2.

Схема подключения К142ЕН12, К142ЕН8.

Для К142ЕН1(2) типовая схема включения выглядит сложнее:

Схема подключения К142ЕН1, К142ЕН2.

Кроме типовых схем включения интегральные для стабилизаторов серии 142 существуют и другие варианты, позволяющие расширить область применения микросхем.

Какие существуют аналоги

Для некоторых приборов серии 142 существуют полные зарубежные аналоги:

Микросхема К142 Зарубежный аналог
КРЕН12 LM317
КРЕН18 LM337
КРЕН5А (LM)7805C
КРЕН5Б (LM)7805C
КРЕН8А (LM)7806C
КРЕН8Б (LM)7809C
КРЕН8В (LM)78012C
КРЕН6 (LM)78015C
КРЕН2Б UA723C

Полный аналог означает, что микросхемы совпадают по электрическим характеристикам, по корпусу и расположению выводов. Но существуют еще и функциональные аналоги, которые во многих случаях замещают проектную микросхему. Так, 142ЕН5А в планарном корпусе не является полным аналогом 7805, но по характеристикам ей соответствует. Поэтому, если есть возможность установить один корпус вместо другого, то такая замена не ухудшит качество работы всего устройства.

Другая ситуация – КРЕН8Г в «транзисторном» исполнении не считается аналогом 7809 из-за того, что имеет меньший ток стабилизации (1 ампер против 1,5). Если это не критично и фактический потребляемый ток по цепи питания меньше 1 А (с запасом), то смело можно менять LM7809 на КР142ЕН8Г. И в каждом конкретном случае всегда надо прибегать к помощи справочника – зачастую можно подобрать что-то похожее по функционалу.

Как проверить работоспособность микросхем КРЕН

Микросхемы серии 142 имеют достаточно сложное устройство, поэтому мультиметром однозначно проверить её работоспособность невозможно. Единственный способ – собрать макет реального включения (на плате или навесным монтажом), который включает в себя, как минимум, входную и выходные ёмкости, подать на вход питание и проверить напряжение на выходе. Оно должно соответствовать паспортному.

Несмотря на доминирование на рынке микросхем зарубежного производства, приборы серии 142 удерживают свои позиции за счет качества изготовления и других потребительских свойств.

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Подбор стабилизатора напряжения для жилого помещения: как выбрать подходящее устройство для дома и квартиры

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Как выбрать стабилизатор напряжения для газового котла отопления в сети 220 В?

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Как подключить однофазный стабилизатор напряжения на весь дом?

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Что такое микросхема, типы и корпуса микросхем

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Защита от перенапряжения: что лучше стабилизатор или реле контроля напряжения?

Что такое кренка в электронике

Один из важных узлов радиоэлектронной аппаратуры — стабилизатор напряжения в блоке питания. Еще совсем недавно такие узлы строили на стабилитронах и транзисторах. Общее число элементов стабилизатора было довольно значительным, особенно если от него требовались функции регулирования выходного напряжения, защиты от перегрузки и замыкания выхода, ограничения выходного тока на заданном уровне.

С появлением специализированных микросхем ситуация изменилась. Выпускаемые микросхемные стабилизаторы напряжения способны работать в широких пределах выходных напряжения и тока, часто имеют встроенную систему защиты от перегрузки по току и от перегревания — как только температура кристалла микросхемы превысит допустимое значение, происходит ограничение выходного тока.

В настоящее время ассортимент отечественных и зарубежных микросхем-стабилизаторов напряжения настолько широк, что ориентироваться в нем стало уже довольно трудно. Помещенные ниже таблицы призваны облегчить предварительный выбор микросхемного стабилизатора для того или иного электронного устройства.

В табл. 1 представлен перечень наиболее распространенных на отечественном рынке трехвыводных микросхем линейных стабилизаторов напряжения на фиксированное выходное напряжение и их основные параметры; на рис. 1 упрощенно показан внешний вид приборов, а также показана их цоколевка. В таблицу включены лишь стабилизаторы с выходным напряжением в пределах 5. 27 В — в этот интервал укладывается подавляющее большинство случаев радиолюбительской практики. Конструктивное оформление зарубежных приборов может отличаться от показанного на рис. 1.

Следует иметь в виду, что сведения о рассеиваемой мощности при работе микросхемы с теплоотводом в паспортах приборов обычно не указывают, поэтому в таблицах даны некоторые усредненные ее значения, полученные из графиков, имеющихся в документации. Отметим также, что микросхемы одной серии, но на разные напряжения, по рассеиваемой мощности могут различаться.

Ряд микросхем, изготовляемых в дальнем и ближнем зарубежье, имеют маркировку, не соответствующую российской стандартизированной системе. Так, перед обозначением стабилизаторов групп 78, 79, 78L, 79L, 78M, 79M, перечисленных в таблице, в действительности могут присутствовать одна или две буквы, кодирующие, как правило, фирму-изготовитель. Позади указанных в таблице обозначений также могут быть буквы и цифры, указывающие на те или иные конструктивные или эксплуатационные особенности микросхемы.

Более подробная информация о некоторых сериях отечественнох микросхемных стабилизаторах помещена в [1-5], а по зарубежным — в [6;7].

Микросхема Uвых, В Iмакс, А Pмакс, Вт Включение Корпус (см. рис.1)
КР1157ЕН501А, КР1157ЕН501Б 5 0,1 0,5 плюсовое КТ-26 (1,б)
КР1157ЕН601А, КР1157ЕН601Б 6
КР1157ЕН801А, КР1157ЕН801Б 8
КР1157ЕН901А, КР1157ЕН901Б 9
КР1157ЕН1201А, КР1157ЕН1201Б 12
КР1157ЕН1501А, КР1157ЕН1501Б 15
КР1157ЕН1801А, КР1157ЕН1801Б 18
КР1157ЕН2401А, КР1157ЕН2401Б 24
КР1157ЕН502А, КР1157ЕН502Б 5 0,1 0,5 плюсовое КТ-26 (1,а)
КР1157ЕН602А, КР1157ЕН602Б 6
КР1157ЕН802А, КР1157ЕН802Б 8
КР1157ЕН902А, КР1157ЕН902Б 9
КР1157ЕН1202А, КР1157ЕН1202Б 12
КР1157ЕН1502А, КР1157ЕН1502Б 15
КР1157ЕН1802А, КР1157ЕН1802Б 18
КР1157ЕН2402А, КР1157ЕН2402Б 24
КР1157ЕН2702А, КР1157ЕН2702Б 27
КР1157ЕН5А, КР1157ЕН5Б 5 0,1 0,5 плюсовое КТ-27-2 (1,в)
КР1157ЕН9А, КР1157ЕН9Б 9
КР1157ЕН12А, КР1157ЕН12Б 12
КР1157ЕН15А, КР1157ЕН15Б 15
КР1157ЕН18А, КР1157ЕН18Б 18
КР1157ЕН24А, КР1157ЕН24Б 24
КР1168ЕН5 5 0,1 0,5 минусовое КТ-26 (1,б) *
КР1168ЕН6 6
КР1168ЕН8 8
КР1168ЕН9 9
КР1168ЕН12 12
КР1168ЕН15 15
78L05 5 0,1 0,5 плюсовое ТО-92 (1,а)
78L62 6,2
78L82 8,2
78L09 9
78L12 12
78L15 15
78L18 18
78L24 24
79L05 5 0,1 0,5 минусовую ТО-92 или КТ-26 (1,б)
79L06 6
79L12 12
79L15 15
79L18 18
79L24 24
КР1157ЕН5В, КР1157ЕН5Г 5 0,25 1,3 плюсовое КТ-27-2 или ТО-126 (1,в)
КР1157ЕН9В, КР1157ЕН9Г 9
КР1157ЕН12В, КР1157ЕН12Г 12
КР1157ЕН15В, КР1157ЕН15Г 15
КР1157ЕН18В, КР1157ЕН18Г 18
КР1157ЕН24В, КР1157ЕН24Г 24
78M05 5 0,5 7,5 плюсовое ТО-202 или ТО-220 (1,г)
78M06 6
78M08 8
78M12 12
78M15 15
78M18 18
78M20 20
78M24 24
79M05 5 0,5 7,5 минусовое ТО-220 (1,д)
79M06 6
79M08 8
79M12 12
79M15 15
79M20 20
79M24 24
КР142ЕН8Г 9 1 10 плюсовое КТ-28-2 (1,г)
КР142ЕН8Д 12
КР142ЕН8Е 15
КР142ЕН9Г 20
КР142ЕН9Д 24
КР142ЕН9Е 27
КР142ЕН5В 5 1,5 10 плюсовое КТ-28-2 (1,г)
КР142ЕН5Г 6
КР142ЕН8А 9
КР142ЕН8Б 12
КР142ЕН8В 15
КР142ЕН9А 20
КР142ЕН9Б 24
КР142ЕН9В 27
7805 5 1,5 ** 10 плюсовое ТО-220 (1,г)
7806 6
7808 8
7885 8,5
7809 9
7812 12
7815 15
7818 18
7824 24
7905 5 1,5 ** 10 минусовое ТО-220 (1,д)
7906 6
7908 8
7909 9
7912 12
7915 15
7918 18
7924 24
КР1162ЕН5А, КР1162ЕН5Б 5 1,5 10 минусовое КТ-28-2 (1,д)
КР1162ЕН6А, КР1162ЕН6Б 6
КР1162ЕН8А, КР1162ЕН8Б 8
КР1162ЕН9А, КР1162ЕН9Б 9
КР1162ЕН12А, КР1162ЕН12Б 12
КР1162ЕН15А, КР1162ЕН15Б 15
КР1162ЕН18А, КР1162ЕН18Б 18
КР1162ЕН24А, КР1162ЕН24Б 24
КР1179ЕН05 5 1,5 10 минусовое ТО-220 (1,д)
КР1168ЕН06 6
КР1179ЕН08 8
КР1179ЕН12 12
КР1179ЕН15 15
КР1179ЕН24 24
КР1180ЕН5А, КР1180ЕН5Б 5 1,5 10 плюсовое КТ-28-2 (1,г)
КР1180ЕН6А, КР1180ЕН6Б 6
КР1180ЕН8А, КР1180ЕН8Б 8
КР1180ЕН9А, КР1180ЕН9Б 9
КР1180ЕН12А, КР1180ЕН12Б 12
КР1180ЕН15А, КР1180ЕН15Б 15
КР1180ЕН18А, КР1180ЕН18Б 18
КР1180ЕН24А, КР1180ЕН24Б 24
КР142ЕН5А 5 2 10 плюсовое КТ-28-2 (1,г)
КР142ЕН5Б 6
Микросхема Uвых, В Iмакс, А Pмакс, Вт Включение Корпус
КР1157ЕН1 1,2. 37 0,1 0,6 плюсовое КТ-26 (1,е)
КР1168ЕН1 1,3. 37 0,1 0,5 минусовое КТ-26 (1,е)
КР142ЕН12А 1,2. 37 1,5 10 плюсовое КТ-28-2 (1,ж)
КР142ЕН12Б 1,2. 37 1 10 плюсовое КТ-28-2 (1,ж)
КР142ЕН18А 1,3. 26,5 1 10 минусовое КТ-28-2 (1,и)
КР142ЕН18Б 1,3. 26,5 1,5 10 минусовое КТ-28-2 (1,и)
LM317L 1,2. 37 0,1 0,625 плюсовое ТО-92 (1,е)
LM337LZ 1,2. 37 0,1 0,625 минусовое ТО-92 (1,е)
LM317T 1,2. 37 1,5 15 плюсовое ТО-220 (1,ж)
LM337T 1,2. 37 1,5 15 минусовое ТО-220 (1,и)
Тип микросхемы Номинальный ток, А
К(Р)142ЕН1(2) 0,15
К142ЕН5А, 142ЕН5А 3
КР142ЕН5А 2
К142ЕН5Б, 142ЕН5Б 3
КР142ЕН5А 2
К142ЕН5В, 142ЕН5В, КР142ЕН5В 2
К142ЕН5Г, 142ЕН5Г, КР142ЕН5Г 2
К142ЕН8А, 142ЕН8А, КР142ЕН8А 1,5
К142ЕН8Б, 142ЕН8Б, КР142ЕН8Б 1,5
К142ЕН8В, 142ЕН8В, КР142ЕН8В 1,5
КР142ЕН8Г 1
КР142ЕН8Д 1
КР142ЕН8Е 1
КР142ЕН8Ж 1,5
КР142ЕН8И 1
К142ЕН9А, 142ЕН9А 1,5
К142ЕН9Б, 142ЕН9Б 1,5
К142ЕН9В, 142ЕН9В 1,5
КР142ЕН18 1,5
КР142ЕН12 1,5

Этих данных достаточно для предварительного решения о возможности применения того или иного стабилизатора. Если нужны дополнительные характеристики, их можно найти в справочниках или в интернете.

Назначение выводов и принцип работы

По принципу работы все микросхемы серии относятся к линейным регуляторам. Это означает, что входное напряжение распределяется между регулирующим элементом (транзистором) стабилизатора и нагрузкой так, что на нагрузке падает напряжение, которое задается внутренними элементами микросхемы или внешними цепями.

Если входное напряжение увеличивается, транзистор прикрывается, если уменьшается – приоткрывается таким образом, чтобы на выходе напряжение оставалось постоянным. При изменении тока нагрузки стабилизатор отрабатывает так же, поддерживая неизменным напряжение нагрузки.

Схема линейного регулятора напряжения.

У этой схемы есть недостатки:

  1. Через регулирующий элемент постоянно протекает ток нагрузки, поэтому на нём постоянно рассеивается мощность P=Uрегулятора⋅Iнагрузки. Эта мощность расходуется впустую, и ограничивает КПД системы – он не может быть выше Uнагрузки/ Uрегулятора.
  2. Напряжение на входе должно превышать напряжение стабилизации.

Но простота применения, дешевизна прибора перевешивают недостатки, и в диапазоне рабочих токов до 3 А (и даже выше) что-то более сложное применять бессмысленно.

Габаритные размеры КР142ЕН.

У регуляторов напряжения с фиксированным напряжением, а также у регулируемых стабилизаторов новых разработок (К142ЕН12, К142ЕН18) в трех- и четырехвыводном исполнении выводы обозначаются цифрами 17,8,2. Такое нелогичное сочетание выбрано, очевидно, для соответствия выводов с микросхемами в корпусах DIP. На самом деле такая «дремучая» маркировка сохранилась только в технической документации, а на схемах пользуются обозначениями выводов, соответствующим зарубежным аналогам.

Обозначение по технической документации Обозначение на схемах Назначение вывода
Стабилизатор с фиксированным напряжением Стабилизатор с регулируемым напряжением Стабилизатор с фиксированным напряжением Стабилизатор с регулируемым напряжением
17 In Вход
8 GND ADJ Общий провод Опорное напряжение
2 Out Выход

Микросхемы старой разработки К142ЕН1(2) в 16-выводных планарных корпусах имеют следующее назначение выводов:

Назначение Номер вывода Номер вывода Назначение
Не используется 1 16 Вход 2
Фильтр шума 2 15 Не используется
Не используется 3 14 Выход
Вход 4 13 Выход
Не используется 5 12 Регулировка напряжения
Опорное напряжение 6 11 Токовая защита
Не используется 7 10 Токовая защита
Общий 8 9 Выключение

Недостатком планарного исполнения служит большое количество излишних выводов прибора.
Стабилизаторы КР142ЕН1(2) в корпусах DIP14 имеют другое назначение выводов.

Назначение Номер вывода Номер вывода Назначение
Токовая защита 1 14 Выключение
Токовая защита 2 13 Цепи коррекции
Обратная связь 3 12 Вход 1
Вход 4 11 Вход 2
Опорное напряжение 5 10 Выход 2
Не используется 6 9 Не используется
Общий 7 8 Выход 1

У микросхем К142ЕН6 и КР142ЕН6, выпускаемых в разных вариантах корпуса с теплоотводом и однорядным расположением выводов, цоколёвка следующая:

Номер вывода Назначение
1 Вход сигнала регулировки обоих плеч
2 Выход «-»
3 Вход «-»
4 Общий
5 Коррекция «+»
6 Не используется
7 Выход «+»
8 Вход «+»
9 Коррекция «-»

Пример типовой схемы подключения

Для всех нерегулируемых однополярных стабилизаторов типовая схема одинакова:

Типовая схема подключения микросхемы КР142ЕН.

С1 должен иметь ёмкость от 0,33 мкФ, С2 – от 0,1. В качестве С1 может быть использован фильтрующий конденсатор выпрямителя, если проводники от него до входа стабилизатора имеют длину не более 70 мм.

Двуполярный стабилизатор К142ЕН6 обычно включается так:

Схема подключения двуполярного стабилизатора напряжения КРЕН.

Для микросхем К142ЕН12 и ЕН18 напряжение на выходе устанавливается резисторами R1 и R2.

Схема подключения К142ЕН12, К142ЕН8.

Для К142ЕН1(2) типовая схема включения выглядит сложнее:

Схема подключения К142ЕН1, К142ЕН2.

Кроме типовых схем включения интегральные для стабилизаторов серии 142 существуют и другие варианты, позволяющие расширить область применения микросхем.

Какие существуют аналоги

Для некоторых приборов серии 142 существуют полные зарубежные аналоги:

Микросхема К142 Зарубежный аналог
КРЕН12 LM317
КРЕН18 LM337
КРЕН5А (LM)7805C
КРЕН5Б (LM)7805C
КРЕН8А (LM)7806C
КРЕН8Б (LM)7809C
КРЕН8В (LM)78012C
КРЕН6 (LM)78015C
КРЕН2Б UA723C

Полный аналог означает, что микросхемы совпадают по электрическим характеристикам, по корпусу и расположению выводов. Но существуют еще и функциональные аналоги, которые во многих случаях замещают проектную микросхему. Так, 142ЕН5А в планарном корпусе не является полным аналогом 7805, но по характеристикам ей соответствует. Поэтому, если есть возможность установить один корпус вместо другого, то такая замена не ухудшит качество работы всего устройства.

Другая ситуация – КРЕН8Г в «транзисторном» исполнении не считается аналогом 7809 из-за того, что имеет меньший ток стабилизации (1 ампер против 1,5). Если это не критично и фактический потребляемый ток по цепи питания меньше 1 А (с запасом), то смело можно менять LM7809 на КР142ЕН8Г. И в каждом конкретном случае всегда надо прибегать к помощи справочника – зачастую можно подобрать что-то похожее по функционалу.

Как проверить работоспособность микросхем КРЕН

Микросхемы серии 142 имеют достаточно сложное устройство, поэтому мультиметром однозначно проверить её работоспособность невозможно. Единственный способ – собрать макет реального включения (на плате или навесным монтажом), который включает в себя, как минимум, входную и выходные ёмкости, подать на вход питание и проверить напряжение на выходе. Оно должно соответствовать паспортному.

Несмотря на доминирование на рынке микросхем зарубежного производства, приборы серии 142 удерживают свои позиции за счет качества изготовления и других потребительских свойств.

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Описание характеристик, назначение выводов и примеры схем включения линейного стабилизатора напряжения LM317

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Как работает микросхема TL431, схемы включения, описание характеристик и проверка на работоспособность

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Описание, технические характеристики и аналоги выпрямительных диодов серии 1N4001-1N4007

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Назначение, характеристики и аналоги транзистора 13001

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Что такое диодный мост, принцип его работы и схема подключения

Описание, характеристики и схема включения стабилизатора напряжения КРЕН 142

Режимы работы, описание характеристик и назначение выводов микросхемы NE555

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *