Онлайн расчёт режекторных фильтров на RC цепях.
Пассивные и активные режекторные фильтры на ОУ. Калькуляторы.
Режекторный фильтр — не частый гость в наших краях. Зверь редкий, нелюдимый, но для радиолюбительского хозяйства — весьма полезный. Внешне напоминает полосовых собратьев, но охотится исключительно за сигналами вокруг центральной частоты и мало активен на частотах, выходящих за пределы отведённого ему диапазона.
Для начала определимся с терминологией.
Полосно-заграждающий фильтр (он же — режекторный фильтр, он же — фильтр-пробка) — электронный или любой другой фильтр, не пропускающий сигналы со входа на выход в определённой полосе частот, но имеющий близкий к единице коэффициент передачи при более низких и более высоких частотах.
Эта полоса подавления характеризуется шириной полосы заграждения и расположена вокруг центральной частоты подавления fо.
Заграждающий фильтр, предназначенный для подавления одной определённой частоты, называется узкополосным заграждающим фильтром или фильтром-пробкой.
Для описания режекторных фильтров используют следующие параметры:
центральная частота подавления fо;
две граничных частоты – нижняя fн и верхняя fв, при которых Кu = 0,7mах;
диапазон частот Δf = fв − fн, называемый полосой задержания;
параметр Q = (fв + fн)/(2Δf), называемый добротностью.
Простейшие Т-образные фильтры и их амплитудно-частотная характеристика приведены на Рис.1.
Рис.1
Центральная частота подавления этих фильтров рассчитывается по формуле: fо = 1/(2π*R*C) при R1=R2=R, C1=C2=C. Глубина режекции — всего 10 дБ, а полоса задержания составляет значение, в 5-6 раз превышающее fо.
Именно в силу указанных выше хилых характеристик — подобные простейшие цепи уступили позиции двойным Т-образным RC-фильтрам (Рис.2), часто называемым 2ТФ.
Двойной Т-образный RC-фильтр при определённых условиях (симметрия моста, точный подбор элементов, согласование входа и выхода) почти полностью подавляет центральную частоту fo. Глубина режекции (подавления частоты fo) при работе на высокоомную нагрузку достигает 50 дБ. Добротность Q — около 0,3.
На Рис.2 приведена классическая схема двойного Т-образного режекторного фильтра, на Рис.3 — с возможностью плавной регулировки центральной частоты подавления.
Начнём с нерегулируемой схемы.
Обычно выбираются следующие соотношения элементов R2=R1, R3=R1/2.
Номиналы этих резисторов должны быть на порядок больше выходного импеданса предыдущего каскада и на порядок меньше входного сопротивления последующего.
Ничего не изменилось, центральная частота вычисляется по формуле fо = 1/(2π*R*C).
РИСУЕМ ТАБЛИЦУ ДЛЯ ДВОЙНЫХ Т-ОБРАЗНЫХ RC-ФИЛЬТРОВ
При желании ввести регулировку центральной частоты подавления fо с диапазоном перекрытия по частоте более чем в 2 раза, при сохранении параметров, присущих двойным Т-образным режекторным фильтрам, имеет смысл воспользоваться схемой, приведённой на Рис.3.
Значение резистора R1 должно в 6 раз превышать суммарную величину R2, R3 и R4, поэтому его следует выбирать номиналом — не менее 100 кОм.
Формула для расчёта частоты подавления fо = 1/(2πС √ 3×R 3_1 ×R 3_2 ), где R 3_1 — сумма сопротивлений слева от регулирующего вывода R3, а R 3_2 — справа.
Рисуем таблицу и для таких фильтров.
ТАБЛИЦА ДЛЯ ПЕРЕСТРАИВАЕМЫХ РЕЖЕКТОРНЫХ RC-ФИЛЬТРОВ
Дальнейшего улучшения параметров режекторных фильтров можно добиться введением в схему на Рис.2 положительной обратной связи, подаваемой в точки, идущие к земляной шине.
В результате подобных действий фильтры становятся активными и приобретают следующий вид.
На Рис.4 приведена схема активного режекторного фильтра на основе простого двойного Т-моста.
Значение добротности определяется отношением значений резисторов K=R5/R4. При изменении этого отношения в диапазоне К=0.01-0.2 добротность Q меняется практически линейно и принимает значения от 30 до 2. Дальнейшее увеличение параметра К не приветствуется, в связи с ухудшением неравномерности АЧХ в полосе пропускания.
Для желающих же регулировать значение добротности в более широких пределах на Рис.5 приведена схема активного режекторного фильтра на двух операционных усилителях. Здесь переменный резистор R4 позволяет изменять добротность в пределах 50 — 0.3.
А при необходимости получить перестраиваемый по частоте активный режекторный фильтр, регулирующий вывод переменного резистора R3 на Рис.3, точно таким же образом подключается к выходу операционного усилителя. Результатом является схема, изображённая на Рис.6 .
На Рис.7 приведена схема режекторного фильтра, позволяющая регулировать как частоту подавления, так и добротность в широких пределах.
Обе таблицы для расчёта частотозадающих элементов остаются в силе!
Ну, да и хватит, на следующей странице будем мурыжить режекторные LC фильтры.
3.4. Режекторный фильтр
Режекторный фильтр (РФ) – схема, не пропускающая сигналы со входа на выход в определенной полосе частот, но имеющая близкий к единице коэффициент передачи при более низких и более высоких частотах.
Режекторный фильтр получают параллельным соединением ФВЧ и ФНЧ. Дополнительным условием при этом является соблюдение неравенства fгр ФНЧ < fгр ФВЧ . Если оно не будет выполнено, то через схему пройдут все сигналы (часть пропустит ФНЧ, другую часть – ФВЧ, а средние по частоте сигналы – оба фильтра).
Для режекторных фильтров используют те же параметры, что и для полосовых: две граничных частоты – нижнюю fн.гр и верхнюю fв.гр, при которых КU 0,7 mах[КU(f)]; однако диапазон частот Δf = fв.гр − fн.гр называют полосой задержания. Отношение Q = (fв.гр + fн.гр)/(2Δf) называют добротностью.
Примером ПФ является двойной Т-мост (рис. 3.9). Т-мостом схема называется потому, что по размещению элементов она напоминает букву «Т».
3.5. Кварцевый фильтр
Примером неэлектрического фильтра является кварцевый фильтр (кварцевый резонатор, кварц), основой которого служит пластина, вырезанная из монокристалла двуокиси кремния SiO2. Эту пластину располагают между двумя металлическими обкладками, образующими кварцедержатель. В целом конструкция напоминает плоский конденсатор, однако благодаря свойствам кварцевой пластины характеристики кварцевого фильтра существенно отличаются от свойств емкости.
Эквивалентная электрическая схема кварцевого фильтра приведена на рис. 3.10. Собственно пластина может быть заменена последовательным сое-
Для чего нужен режекторный фильтр в спутниковом оборудовании
Полосовой фильтр представляют собой схему, чувствительную к частотам, пропускающую узкий диапазон на участке резонансной центральной fr‑частоты. Частоты, лежащие выше полосы пропускания или расположенные ниже ее — подавляются.
Принцип работы устройства режекторного типа противоположен полосовому. Он устраняет или подавляет сигналы с частотами, поражающими в узкий диапазон с центральной fc‑частотой. Частоты, находящиеся выше или ниже последней, подвергаются максимальному ослаблению с последующим пропусканием.
Расчет режекторного фильтра
Центральная частота подавления
ЦЧП показывает половину суммы находящихся сверху и снизу граничных частот. Рассчитывается по формуле fо=ω0/2•3,14 (Гц), где:
ω0 — центральная частота подавления
fо — полоса подавления
Граничные частоты
Полоса задержания
Добротность режекторного фильтра
Характеристики режекторного фильтра
АЧХ режекторного фильтра
ФЧХ режекторного фильтра
Показатель прямоугольности
УГО режекторного фильтра
Условное графическое обозначение используется для описания элемента на схемах. Типовые или стандартные УГО выполнены согласно требованиям ГОСТ, доступны в стандартах системы. Специальные УГО разрабатываются в рамках элемента.
УГО режекторного фильтра представлено в виде трех заключенных в квадрат волнистых линий, где срединная перечеркнута косой короткой чертой.
Режекторный фильтр на операционном усилителе
Схема режекторного фильтра
Конструкция выполнена на базе регенеративного каскада, находящегося на полевом транзисторе и выступающего в роли умножителя. Последний необходим для предотвращения подавления сигналов широкой частотной полосы.
Конденсатор, имеющий переменную емкость, перестраивает прибор в рамках полосы пропускания приемника ПЧ. На входе и выходе последнего находятся истоковые работающие на транзисторах повторители, необходимые для снижения влияния фильтра на функционирование предыдущего каскада.
Устройство включается между первым УПЧ-каскадом и преобразователем или между УПЧ-каскадами. Отключение прибора происходит посредством выключателя, закорачивающего режекторный контур.
Знакомство с частотными фильтрами. Часть 1: как спроектировать и немного схитрить
Представьте: вы принимаете аналоговый сигнал, смотрите на результаты показаний и видите, что синусоиду «перекосило». Все из-за плохой селективности вашего приемника и шумов, которые он принимает. Чтобы выделить и выровнять полезный сигнал и не слушать бесконечное шипение, в радиоприемнике должны быть качественные фильтры. Но что это такое, как они работают и какими бывают? Давайте разбираться.
Используйте навигацию, если не хотите читать текст полностью:
Что такое частотный фильтр
Синий сигнал — с шумами, оранжевый — идеальный, абсолютно чистый. Фильтр не может на 100% выпрямить сигнал, флуктуации все равно будут (см. пример, зеленый — отфильтрованный сигнал).
Пример диапазона частот усиливаемого сигнала. Зависимость коэффициента пропускания по напряжению от частоты сигнала.
Фильтры широко применяют в измерительной, электронно вычислительной и радиотехнике. Яркий пример из схемотехники приемно-передающих устройств — ФНЧ/ ФПЧ в супергетеродинах и приемниках прямого преобразования, которые помогают выделить определенную частоту из диапазона.
Типичная схема супергетеродина.
Фильтры используют не только в радиостанциях, усилителях и другой профессиональной технике. Их можно встретить в любом приемно-передающем устройстве — например, в смартфоне или роутере. Если говорить о более «прекрасном», то фильтры используют в эквалайзерах для обработки аудиосигналов.
Эквалайзер FabFilter Pro-Q2.
Какие бывают фильтры
Чаще всего можно встретить фильтры нижних частот (ФНЧ) и верхних (ФВЧ), а также полосовые и заградительные.
Фильтр верхних частот — пропускает частоты выше частоты среза.
Фильтр нижних частот — пропускает частоты ниже частоты среза.
Полосовой фильтр — пропускает определенную полосу.
Заградительный фильтр — не пропускает частоты определенной полосы, но пропускает колебания, выходящие за ее пределы.
Частота среза — это такая частота, после которой идет фронт (спад) с полосы пропускания на полосу заграждения. Посмотрим, как это выглядит на АЧХ ФНЧ:
Видно, что с увеличением частоты падает коэффициент передачи.
Соответственно, для названных видов фильтров АЧХ будут следующими:
АЧХ для ФНЧ, ФВЧ, полосового и режекторного (заградительного) фильтров.
Согласитесь — красивые рисунки! Но как получить это на плате практике?
Очередной резистивный делитель, или из чего состоят фильтры
На самом деле, схема фильтра напоминает резистивный делитель (делитель напряжения на резисторах). Посмотрите сами:
Слева — резистивный делитель, справа — электрический фильтр.
Разница буквально в одном элементе: вместо резистора стоит конденсатор. Но на АЧХ это влияет очень сильно. При включении делителя АЧХ будет стабильна, то есть частота источника на выходную амплитуду никак влиять не будет. Другая ситуация с фильтром: на определенной частоте появляется явный срез.
АЧХ резистивного делителя.
Это связано с тем, что при увеличении частоты тока сопротивление на конденсаторе уменьшается и напряжение падает — по такому принципу работают ФНЧ.
АЧХ можно «отразить», если поменять емкость и резистор местами — превратить ФНЧ в ФВЧ. Но это не все варианты схемотехнического многообразия
Схема и АЧХ для RC-ФВЧ.
LC-фильтры
Вместо резистора можно поставить индуктивность, и тогда вместо привычного ФНЧ (RC-ФНЧ) получим LC-ФНЧ. Суть та же: у него будет своя частота среза и так далее. Но добротность фильтра будет выше — соответственно, область частот, которую пропускает фильтр (она же полоса пропускания), будет меньше, а спад АЧХ — круче. Именно LC-контуры используются в фильтрах для работы с высокочастотным диапазоном.
Принцип построения LC-фильтров основан на свойствах емкостей и индуктивностей по-разному вести себя в цепях переменного тока.
Индуктивное сопротивление катушки прямо пропорционально частоте тока, проходящего через нее. Следовательно, чем выше частота тока на катушке, тем большее реактивное сопротивление она этому току оказывает — сильнее задерживает переменные токи на более высоких частотах и легче пропускает на более низких.
У конденсатора наоборот: чем выше частота тока, тем легче протекает переменный ток. А чем ниже его частота, тем большим препятствием для тока оказывается этот конденсатор.
Схемы режекторного и полосового фильтров чуть сложней. Режекторный фильтр — это цепь с параллельно соединенными индуктивностью и емкостью, а полосовой — с последовательно соединенными.
Слева — режекторный фильтр, справа — полосовой.
Г-, Т- и П-образные фильтры
Схематически ФНЧ и ФВЧ бывают Г-образными, Т-образными и П-образными (многозвенными).
Г-образные — это схемы ФНЧ и ФВЧ, которые мы рассмотрели выше. Их входные сопротивления всегда меньше выходных. Г-образные фильтры часто применяют в качестве трансформаторных сопротивлений. В качестве фильтров обычно используют П- и Т-образные схемы.
Г-, П- и Т-образные RC-фильтры.
Немного о параметрах частотных фильтров
Вот мы упомянули, что у фильтров есть ширина полосы пропускания, добротность, частота среза. Но все ли это параметры и как они связаны? Давайте разбираться.
Ключевые параметры
При проектировании частотных фильтров учитывают следующие параметры:
- наклон АЧХ — чем круче, тем лучше,
- частота среза — выбирается разработчиком,
- неравномерность АЧХ — чем меньше, тем лучше,
- отношение входного и выходного сопротивлений — особенно важный параметр для ВЧ-фильтров,
- ослабление в полосе задержания — оно же ослабление в полосе заграждения, но без учета переходного участка (длительности фронта).
Подробнее о частоте среза
Важно отметить, что частота среза для ФНЧ и ФВЧ вычисляется по одному выражению:
Зная сопротивление/ индуктивность и емкость, можно определить, на какой частоте случится ослабление на -3 дБ. То есть, опираясь на нужную частоту среза, мы можем рассчитать и спроектировать фильтр. Или не все так просто?
Что такое порядок фильтра
Допустим, вы знаете частоту среза и хотите спроектировать фильтр. Но что такое R, C и L? Обычные номиналы для сопротивления, емкости и индуктивности? Вы можете ответить «да» и будете правы: для ФНЧ и ФВЧ второго порядка (самых обычных Г-образных RC- и LC-фильтров) достаточно подобрать резистор, конденсатор и катушку с нужными параметрами. Но для фильтров больших порядков ответ неоднозначный.
Наклон АЧХ удовлетворяет не всегда: если он сильно пологий, то радиоприемное устройство может поймать лишние частоты. Чтобы избавиться от такого эффекта, разработчики стараются делать фильтры с крутым наклоном АЧХ.
Наклон АЧХ тем круче, чем больше ослабление в полосе задержания и выше порядок фильтра. Последнее указывает на количество L- и C- элементов: в фильтре пятого порядка будет, например, три емкости и две индуктивности.
Зависимость крутизны наклона АЧХ от количества порядков (n).
Можно сказать, что каждый LC-элемент — индуктивность или емкость — дает уклонение АЧХ на 12 дБ на октаву, тогда как RC — всего 6 дБ на октаву.
Рассчитывать фильтры — это сложно
Теперь вы знаете, что означают те самые R, C и L в формулах для частоты среза: это «суммы» номиналов для элементов фильтра. Стало ли от этого проще рассчитывать фильтры под определенную частоту среза? Не особо.
Чтобы рассчитать фильтр большого порядка по заданным условиям, применяют специальные методики. Среди них — формулы на базе полиномов Баттерворта и Чебышева, функций Бесселя.
Нормированные АЧХ фильтров.
По сути, выбирая конкретную методику, вы выбираете фильтр:
- Фильтр Баттерворта — обладает самой плоской характеристикой затухания в полосе пропускания, за счет этого имеет плавный спад.
- Фильтр Чебышева — обладает самым крутым спадом, но у него самые неравномерные характеристики в полосе пропускания.
- Фильтр Бесселя — имеет хорошую фазочастотную характеристику и крутой спад.
Но рассчитать фильтр можно проще, если «схитрить» и использовать онлайн-калькулятор. Так можно узнать, например, номиналы для фильтра Чебышева пятого порядка с частотой среза 4 МГц. Проверим, работает ли он на практике.
Возможно, эти тексты тоже вас заинтересуют:
Собираем фильтр Чебышева
Предварительно я узнал номиналы через онлайн-калькулятор и проверил фильтр в Multisim. Если подключить параллельно Bode Plotter и правильно установить масштабы, программа покажет идеальную АЧХ фильтра Чебышева.
Multisim, схема ФНЧ Чебышева пятого порядка.
Супер — схему можно «перенести» на макетную плату.
Понадобится генератор гармонических колебаний и осциллограф, подключенный к выходам фильтра. Если у вас есть анализатор цепей, можно использовать его.
Синусоида синего цвета — выходной сигнал, желтого — входной.
Частота, МГц | Вход, мВ) | Выход, мВ | Вход, дел | Выход, дел | Вход | Выход |
0,5 | 500 | 50 | 26 | 14 | 13000 | 700 |
1 | 1000 | 50 | 13 | 13 | 13000 | 650 |
1,5 | 1000 | 50 | 14 | 13 | 14000 | 650 |
2,5 | 1000 | 50 | 14 | 14 | 14000 | 700 |
4 | 500 | 50 | 12 | 12 | 6000 | 600 |
5,5 | 1000 | 10 | 11 | 9 | 11000 | 90 |
6,5 | 1000 | 2 | 9 | 11 | 9000 | 22 |
7,5 | 1000 | 2 | 7 | 10 | 7000 | 20 |
8,5 | 1000 | 2 | 6 | 11 | 6000 | 22 |
10,5 | 1000 | 2 | 5 | 11 | 5000 | 22 |
Если отразить значения на системе координат, получится график для фильтра Чебышева.
Готово — у нас получилось добиться вполне крутого спада на частоте 4 МГц, ФНЧ Чебышева работает.